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Abstract

The currently known protein sequences are not distributed equally in sequence space, but

cluster into families. Analyzing the cluster size distribution gives a glimpse of the large and

unknown extant protein sequence space, which has been explored during evolution. For six

protein superfamilies with different fold and function, the cluster size distributions followed a

power law with slopes between 2.4 and 3.3, which represent upper limits to the cluster distri-

bution of extant sequences. The power law distribution of cluster sizes is in accordance with

percolation theory and strongly supports connectedness of extant sequence space. Perco-

lation of extant sequence space has three major consequences: (1) It transforms our view of

sequence space as a highly connected network where each sequence has multiple neigh-

bors, and each pair of sequences is connected by many different paths. A high degree of

connectedness is a necessary condition of efficient evolution, because it overcomes the

possible blockage by sign epistasis and reciprocal sign epistasis. (2) The Fisher exponent is

an indicator of connectedness and saturation of sequence space of each protein superfam-

ily. (3) All clusters are expected to be connected by extant sequences that become apparent

as a higher portion of extant sequence space becomes known. Being linked to biochemically

distinct homologous families, bridging sequences are promising enzyme candidates for

applications in biotechnology because they are expected to have substrate ambiguity or cat-

alytic promiscuity.

Introduction

Despite the rapidly growing amount of DNA data due to advances in DNA sequencing tech-

niques, only a tiny fraction of all protein sequences existing in the biosphere has been

sequenced, yet. While we currently know the sequences of almost 108 proteins [1], the number

of extant sequences was estimated to be 1034, and up to 1043 different protein sequences might

have been explored during 4 Gyr of evolution [2]. Though this number seems to be large, it is

infinitesimally small as compared to the theoretical sequence space (10400 possible sequences

for a medium-sized protein), and it would be highly improbable to find functional proteins by

random search [3]. Therefore, the Darwinian model of protein evolution based on mutation of

the genotype and subsequent natural selection of the phenotype excludes the possibility of

extant sequences being scattered in the theoretical sequence space, but they are expected to

form a connected network, where functional sequences and mutations form the nodes and
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edges, respectively [4]. In his fundamental article about the structure of sequence space, J.

Maynard Smith asked the questions whether indeed all existing proteins are part of a single

network with a single starting point, what fraction of the functional sequence space has been

explored yet, and how large is the space of functional, but never-born proteins [5]. Although

the sequence space of functional proteins is unknown, we can reliably measure distances

between sequences by global or local alignment methods [6]. The currently known protein

sequences are not equally distributed, but cluster into homologous families [7]. However, due

to the sparsity of the known sequence space, in most clusters even neighboring nodes differ by

multiple mutations. As an exception, the TEM β-lactamase family has a very high microdiver-

sity, and the variants form a dense single network with nodes connected by single mutations

[8].

The apparent sparsity of the known sequence space is a consequence of our limited knowl-

edge of the extant sequences in the biosphere. Therefore, we expect that as we know more

sequences, all nodes will gradually form a connected network. As an alternative explanation of

sparsity, the observed separation between clusters is the consequence of ancestor sequences

having become extinct during evolution [9].

In this work, the known sequence space was explored by applying percolation theory to

learn about the extant sequence space. Percolation theory describes the cluster distribution on

a randomly populated lattice, with a parameter p describing the occupancy of the lattice sites

[10]. For increasing values of p, the characteristic cluster size sξ and the fraction P of sites

belonging to the largest cluster increases. As p approaches the percolation threshold pc, an infi-

nite cluster appears for the first time on an infinite lattice, while on a finite-sized lattice the

largest cluster percolates between the lattice boundaries. The core of percolation theory is a set

of scaling relations that depend on |pc-p|, such as sξ * |pc-p|-1/σ and P * (p-pc)
β with critical

exponents σ and β which depend on the geometry of the lattice. Most importantly, percolation

theory predicts that the cluster size distribution N(s) (the number N of clusters with size s)

decreases for s << sξ as N(s) * s-τ and decays exponentially for s >> sξ. Near to percolation

(p!pc), sξ becomes infinite. Thus, for s spanning many orders of magnitude log N(s) depends

linearly on log s, with the Fisher exponent τ describing the ratio of small to large clusters.

Thus, investigating the cluster size distribution N(s) of homologous protein families pro-

vides insights into the structure of the known sequence space and gives a glimpse of the extant

sequence space, despite our limited knowledge.

Materials and methods

Clustering

The in-house databases on α/β hydrolases (abH, 395000 sequences)[11], cytochrome P450

monooxygenases (CYP, 53000 sequences)[12], thiamine diphosphate-dependent decarboxyl-

ases (DC, 39000 sequences)[13], and β-hydroxyacid dehydrogenases / imine reductases (bHAD,

31000 sequences)[14] were updated by searching the NCBI non-redundant protein database

(GenBank [15]) by BLAST [16]. For each homologous family, representative sequences were

selected as seed sequences. Family databases for short-chain dehydrogenases/reductases (SDR,

141000 sequences) and ω-transaminases (oTA, 121000 sequences) were established based on

seed sequences derived from literature [17],[18].

For each protein database, sequence identities of high-scoring sequence pairs were calcu-

lated by the USEARCH software suite (version 9.2)[19]. Sequence pairs with a distinct

sequence identity cutoff were clustered by the Python module graph-tool (https://graph-tool.
skewed.de/) (version 2.17).
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Cluster size distribution

For the six protein superfamilies, the cluster size distribution N(s) was analyzed for cluster

sizes s = 1, 2, 3,. . ., 1000. Because for large cluster sizes data becomes increasingly sparse, a his-

togram distribution was generated by counting the number of clusters Ni,j = S j
s = i, N(s) with

cluster sizes between i and j.

The observed cluster size distributions were compared to three model distributions: a

Gaussian distribution N(s) ~ exp(-½�(s-μ)2/σ2), an exponential distribution N(s) ~ exp(-b�s)

and a power law distribution N(s) ~ s-τ with the Fisher exponent τ characterizing the model

distribution (S1 Fig). Excel sheets for the calculation of the distributions are provided as sup-

porting information (S1 File). The log-log plots of the three model distributions differ consid-

erably: log N(s) of the Gaussian distribution increases gradually with log s and decays rapidly

for s>μ, while for the exponential distribution is decays rapidly for all s>0. In contrast, for the

power law distribution log N(s) depends linearly on log s with a slope of –τ.

For each model distribution, the respective histogram distribution was calculated. Qualita-

tively, the histogram distributions were similar to the model distributions. For power law dis-

tributions with τ>1, the corresponding histogram distribution could also be approximated by

a straight line with a slope of -τh. However, the two slopes -τ and -τh deviated.

For each histogram distribution of the six protein families, the slope -τh was determined by

fitting the initial linear decay (N1,10, N11,100, and N101,1000) by linear regression, and the Fisher

exponent of the respective cluster size distribution was derived from τh by varying τ of the

model distribution to fit the observed τh.

Results

Sequence space

The known protein sequence space is rapidly increasing, but it represents only a tiny fraction

of the extant sequence space, that has been explored during evolution. In turn, the extant

sequence space represents a fraction p of the much bigger sequence space coding for functional

proteins. Although both the extant and the functional sequence space and therefore also p are

unknown, the scaling properties of the cluster size distribution can be used as an indicator of

p: if the cluster size distribution in the extant sequence space follows a power law over many

orders of magnitude, p is close to a critical percolation threshold pc.

The scaling properties of the extant sequence space are investigated by analyzing the scaling

properties of the much smaller space of known sequences. Because a typical protein superfam-

ily consists of 104−105 protein sequences, the cluster size range is limited to 2–3 orders of mag-

nitude. The sparsity of the known sequence space has three major consequences: (1) Because

of the poor statistics of the cluster size distribution N(s) between s = 1 and 1000, the number of

clusters with a size between 1 and 10 (N1,10), 11 and 100 (N11,100), and 101 and 1000 (N101,1000)

are analyzed, and the corresponding cluster size distribution is derived from this histogram

distribution. (2) Except for very few families, e.g. TEM β-lactamases, it is rare that two mem-

bers of a protein superfamily differ by only one amino acid. Therefore, neighbor relationships

are established by global sequence identity as a cutoff criterion. Using a 90% cutoff criterion,

two proteins of 400 amino acids are considered to be neighbors if they differ in less than 40

positions. As a consequence, the structure of the resulting network and the Fisher exponent τ
depend on the cutoff criterion for the neighborhood relationship. (3) The Fisher exponent τ
depends on the number of known sequences. As the number of known sequences increases,

the protein families become more densely populated, and the number of large clusters is

expected to increase. As a consequence, the Fisher exponent τ decreases. Therefore, the
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observed Fisher exponent τ as evaluated from the known protein superfamilies represents an

upper limit to the Fisher exponent of the extant sequence space.

The structure of the known sequence space was analyzed for six large protein superfamilies

with high diversity in sequence and function: α/β hydrolases (abH, 395,000 sequences) [11],

short-chain dehydrogenases/reductases (SDR, 141,000 sequences), ω-transaminases (oTA,

121,000 sequences), cytochrome P450 monooxygenases (CYP, 53,000 sequences) [12], thia-

mine diphosphate-dependent decarboxylases (DC, 39,000 sequences) [13], and β-hydroxyacid

dehydrogenases / imine reductases (bHAD, 31,000 sequences) [14] (Table 1). The six protein

superfamilies differ in their fold and their number of family members, which is reflected in the

distributions of pairwise sequence identity (Fig 1). In the abH superfamily, the majority of

sequences had pairwise sequence identity of 40–60%, while almost all CYPs had a pairwise

sequence identity of 15–25%. SDRs, DCs and bHADs showed a bimodal distribution with

maxima at 20–30 and 40–50%.

Cluster size distribution

For each of the six protein superfamilies, the sequences were clustered by a cutoff criterion of

60% global sequence identity which is often applied for defining homologous families. The

number N of clusters with size s was analyzed in a histogram with logarithmic bins for s

between 1 and 10, 11 and 100, 101 and 1,000, 1,001 and 10,000, and 10,001 and 100,000 to

improve statistical sampling (Fig 2). Intuitively, we had expected a Gaussian normal distribu-

tion, assuming a random distribution of cluster sizes. However, in contrast to intuition, the

distribution of cluster sizes followed a power law N(s) ~ s-τh, indicated by a linear dependency

of log s and log N(s) for the six protein superfamilies (abH, SDR, oTA, CYP, DC, bHAD). The

Fisher exponent τh of a histogram describes the ratio between small and large clusters and is

derived from linear regression in the log-log plot of the histogram [20]. From the Fisher expo-

nent τh of the histogram, the Fisher exponent τ of the underlying cluster size distribution was

calculated by fitting the observed τh of the histogram to a model distribution of cluster sizes

following a power law distribution. Though the protein families differ in size, structure, and

function, for four of the five (SDR, oTA, DC, bHAD) the Fisher exponent τ varied only slightly

(1.8–1.9). The smallest Fisher exponent was derived for the CYP superfamily (τ = 1.6). For the

largest superfamily (abH), the Fisher exponent was 2.0. These values are in agreement with the

Fisher exponent of τ�2 determined for the protein family size distribution of the Gene3D

database [21] or the TRIBES resource [22], while the distribution of protein folds showed a

slightly larger exponent of 2.5 [23].

Dependency of τ on the cluster criterion

While the Fisher exponent τ was almost independent of the protein family and its size, its abso-

lute value depended on the cutoff criterion used for clustering. Upon clustering of the six

Table 1. Protein superfamily size and the Fisher exponent extrapolated to 100% sequence identity (τ100) of the six protein families.

Abbreviation Enzyme superfamily Superfamily size τ100

abH α/β hydrolases 395000 2.6

SDR short-chain dehydrogenases/reductases 141000 2.4

oTA ω-transaminases 121000 2.3

CYP cytochrome P450 monooxygenases 53000 3.3

DC thiamine diphosphate-dependent decarboxylases 39000 2.8

bHAD β-hydroxyacid dehydrogenases/imine reductases 31000 2.5

https://doi.org/10.1371/journal.pone.0189646.t001
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families with six cutoffs between 60 and 90%, the cluster size distributions followed a power

law for all cutoffs (S2 Fig). With increasing clustering cutoff, the relative number of small clus-

ters increases, while the number of large clusters decreases. Consequently, the Fisher exponent

τ increased almost linearly with increasing cutoff (Fig 3) from τ60 = 1.6–2.0 at 60% cutoff, to

τ90 = 2.2–2.9 at 90% cutoff. The Fisher exponent τ was extrapolated to a cutoff of 100%, repre-

senting a network of nodes separated by only one mutation (τ100). For the six protein families,

the extrapolated τ100values varied between 2.4 and 3.3 (2.6, 2.4, 2.3, 3.3, 2.8 and 2.5 for abH,

SDR, oTA, CYP, DC, and bHAD, respectively).

Dependency of τ on the number of sequences

Of the 395,000 abH sequences, 50, 25, or 12.5% were randomly selected and clustered, and the

cluster size distribution was determined for four distinct cutoff values (S3 Fig). With a decreas-

ing number of sequences, the relative number of small clusters increased, while the number of

Fig 1. Distributions of pairwise global sequence identity. Distributions of pairwise global sequence

identity for the protein families of α/β-hydrolases (abH), short-chain dehydrogenases/reductases (SDR),ω-

transaminases (oTA), cytochrome P450 monooxygenases (CYP), thiamine diphosphate-dependent

decarboxylases (DC) and β-hydroxyacid dehydrogenases/imine reductases (bHAD).

https://doi.org/10.1371/journal.pone.0189646.g001
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large clusters decreased. Consequently, the Fisher exponent τ increased with decreasing num-

ber of sequences: at 60% cutoff from 2.0 for the complete database to 2.0, 2.2, and 2.3 at 50, 25,

and 12.5% randomly selected abH sequences, respectively. A similar trend was observed for

the other cutoff values: τ70 = 2.1–2.5, τ80 = 2.2–2.9, τ90 = 2.4–3.2. Therefore, it is expected that

the Fisher exponent τ of the cluster distribution of the known sequences decreases as more

extant sequences will be sequenced in the future, and the extrapolated τ100 values for the six

families (between 2.4 and 3.3) represent upper limits to the cluster size distribution of the

extant sequence network. Because percolation theory predicts values of τ between 2.055 for

percolation in a 2-dimensional lattice and 2.5 in a lattice with more than 5 dimensions [24],

the upper limits of 2.4–3.3 are in agreement with percolation in the extant sequence space.

Thus, the observation of a power law cluster size distribution results from the connected-

ness of extant sequence space which is as a consequence of Darwinian evolution. Interestingly,

a model that describes protein structural evolution on a three dimensional lattice also results

in a power law cluster size distribution with an exponent of 2.3 [25]. It is a tempting observa-

tion that the two foundations of protein evolution, the connectedness of extant sequence space

and the formation of a stable fold, both result in a power law cluster size distribution with a

similar exponent. This observation relates to the fundamental property of protein folds: the

stability of a fold is closely related to its evolvability. The more stable a fold is, the more

sequences can adopt it, thus forming larger and better connected sequence networks.

Fig 2. Cluster size distributions. Cluster size distribution of α/β hydrolases (abH), short-chain

dehydrogenases/reductases (SDR),ω-transaminases (oTA), cytochrome P450 monooxygenases (CYP),

thiamine diphosphate-dependent decarboxylases (DC), and β-hydroxyacid dehydrogenases/imine

reductases (bHAD) follow a power law distribution: N(s) ~s-τ (N(s), number of clusters of size s; τ, Fisher

exponent). Cluster criterion: 60% global sequence identity.

https://doi.org/10.1371/journal.pone.0189646.g002
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Discussion

Connectedness and saturation of sequence space

The cluster size distribution of the known sequence space of six protein superfamilies followed

a power law, with the extrapolated Fisher exponent τ100 being an upper limit to the Fisher

exponent of the extant sequence space. The observation of few clusters containing many

sequences might relate with the assumption that more stable protein folds are more evolvable,

thus forming larger and higher connected clusters of mutations. The extrapolated Fisher expo-

nent is independent of characteristic properties of the protein families such as family size

(Table 1). Because the Fisher exponent measures the ratio of small to large clusters, it can be

interpreted as an indicator of the global connectedness of the known sequences of a protein

family. The protein families oTA, SDR, bHAD and abH (τ100 = 2.3, 2.4, 2.5 and 2.6, respec-

tively) had a smaller τ100 and thus a higher ratio of large to small clusters than the protein fami-

lies DC, or CYP (τ100 = 2.8 and 3.3, respectively). A high ratio of large to small clusters

indicates a high connectedness. There are at least three possible reasons for a high connected-

ness of a protein family: (1) The protein family is well explored; thus, a high fraction of its

extant sequence space is already known. (2) The protein family has a high microdiversity. (3)

The protein family covers only a small region in sequence space, thus overall variability is low.

Our observation that the connectedness gradually increased as more sequences become

known is supported by the concept of gradual saturation of sequence space. This concept

describes the observation that the number of newly sequenced genes that form separate clus-

ters plotted over time decreases to zero[26]. Rather than expanding, the sequence space of

Fig 3. Fisher exponents. Fisher exponent τ of the size distribution of homologous families for clustering

cutoffs between 60 and 90% with extrapolated Fisher exponent τ100 determined by linear regression

(abbreviations according to Fig 2).

https://doi.org/10.1371/journal.pone.0189646.g003
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protein families is gradually becoming denser and more connected. As τ100 measures the con-

nectedness of the protein family, it also measures the current level of saturation, with the pro-

tein families SDR and CYP having the highest and lowest saturation, respectively.

Bridges between homologous families

The six protein families showed a similar linear dependency of τ on the clustering cutoff.

Thus, for high cutoff values many small clusters were observed, which gradually combine into

larger clusters as the clustering cutoff was decreased, and bridges between clusters gradually

appeared (S4 and S5 Figs). These bridges were formed by sequences that had been part of one

cluster and then became part of a second cluster, or were recruited from previously isolated

sequences, as the clustering cutoff was decreased. These bridging sequences are interesting, as

they belong to both clusters. If global sequence similarity relates to biochemical function, a

cluster is characterized by a similar biochemical function that differs between the clusters. The

bridging sequences, having similarities to two or even more clusters, are therefore promising

candidates with substrate ambiguity [27] or even catalytic promiscuity [28].

Protein evolution

By analyzing the known sequence space, we predict that extant proteins form a percolating,

highly connected network where each sequence has multiple neighbors, and each pair of

sequences is connected by many different paths, as expected from evolution [4]. However, the

density in sequence space is not uniform, but follows a power law distribution which indicates

that certain folds were more evolvable than others. Percolation allows for the concept of evolu-

tion as adaptive walks on a fitness landscape [29], where sequences at the ends of the walks

may substantially differ from one another [30]. A high degree of connectedness also overcomes

the possible blockage by sign epistasis and reciprocal sign epistasis [31] and thus is a necessary

condition of efficient evolution, despite the fact that only an infinitesimally small portion of

the theoretical sequence space been explored during the course of life on Earth [2]. In a highly

connected sequence network as a model of evolution [32], sequences are found that form brid-

ges between two clusters. Since the number of bridges is much smaller than the number of

cluster members, they only gradually appear as the number of sequenced genes increases. Con-

sequently, the observed separation of families is merely a consequence of our limited knowl-

edge of extant sequence space. With increasing sequence data from genomics and

metagenomics projects, we expect more and more sequences to occur which form bridges

between yet separated families and thus contribute to the connectedness of known sequence

space.

These bridging sequences are equivalent to reconstructed ancestral sequences in binary

trees [33]. Since they form a link between two branches, ancestral proteins are assumed to be

generalists with a broader substrate spectrum or even multiple activities [28]. While the binary

tree model of evolution assumes that the ancestor sequences have disappeared from the bio-

sphere, the network model of evolution assumes that bridging sequences still exist. For any

two neighboring, biochemically distinct clusters, we expect bridging sequences to exist that

contribute to the formation of a continuous network. It will be challenging to analyze how the

biochemical properties change as we walk across the bridges. Most probably, bridging

sequences are multi-functional or promiscuous enzymes with known or latent activities of

both sub-families. In contrast to ancestors, these generalists already exist in the biosphere and

are waiting to be found.
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Supporting information

S1 Fig. Model distributions. Model distributions displayed as log-log plot: Gaussian distribu-

tion N(s) = a�exp(-½ (s-μ)2/σ2) with a = 10000, μ = 200, σ = 50, exponential distribution N(s) =

a exp(-b s) with a = 10000 and b = 0.2, power law distribution N(s) = a�s-τ with a = 10000, -τ =

2.5.

(TIF)

S2 Fig. Cluster size distributions. Cluster size distributions for 60, 70, 80, and 90% global

sequence identity of the six protein superfamilies from Table 1 (α/β-hydrolases in blue, short-

chain dehydrogenases/reductases in green, ω-transaminases in black, cytochrome P450 mono-

oxygenases in red, thiamine diphosphate-dependent decarboxylases in cyan and β-hydroxya-

cid dehydrogenases/imine reductases in orange).

(TIF)

S3 Fig. Cluster size distributions of subsets. Cluster size distributions for 60, 70, 80, and 90%

global sequence identity of all abH sequences (filled squares) and randomly selected abH

sequences: 50% (open squares), 25% (filled circles) and 12.5% (open circles) of the original

dataset.

(TIF)

S4 Fig. Sequence identity networks with clustering cutoff at 39% sequence identity. Details

of sequence identity networks for two homologous families of short-chain dehydrogenases/

reductases (SDR) with clustering cutoff at 39% sequence identity. The network shows bridges

connecting the two homologous families (indicated in red hexagons). Visualization in Cytos-

cape (version 3.2.1) using organic layout.

(PNG)

S5 Fig. Sequence identity networks with clustering cutoff at 40% sequence identity. Details

of sequence identity networks for two homologous families of short-chain dehydrogenases/

reductases (SDR) with clustering cutoff at 40% sequence identity. The bridge sequences from

S4 Fig are indicated in red hexagons. Visualization in Cytoscape (version 3.2.1) using organic

layout.

(PNG)

S1 File. Model distributions. Power law, Gauss, and exponential model distributions.

(XLSX)
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