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An effective acute inflammatory response results in the elimination of infectious
microorganisms, followed by a smooth transition to resolution and repair. During the
inflammatory response, neutrophils play a crucial role in antimicrobial defense as the first
cells to reach the site of infection damage. However, if the neutrophils that have performed
the bactericidal effect are not removed in time, the inflammatory response will not be able
to subside. Anti-inflammatory macrophages are the main scavengers of neutrophils and
can promote inflammation towards resolution. MicroRNAs (miRNAs) have great potential
as clinical targeted therapy and have attracted much attention in recent years. This paper
summarizes the involvement of miRNAs in the process of chronic diseases such as
atherosclerosis, rheumatoid arthritis and systemic lupus erythematosus by regulating lipid
metabolism, cytokine secretion, inflammatory factor synthesis and tissue repair in two
types of cells. This will provide a certain reference for miRNA-targeted treatment of
chronic diseases.
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1 INTRODUCTION

Inflammation is a cascade reaction of human tissues and organs response to harmful stimuli such as
pathogens (1). On the cellular level, inflammation that is manifested as mutual damage between
damage factors and histiocytes, as well as the regeneration of parenchymal cells and interstitial cells
are often followed by tissue dysfunction due to changes in protein activity, changes in cellular
metabolites, and connective tissue reorganization (2). The solution of inflammation mainly includes
two aspects: one is anti-inflammatory, that is to prevent the re-recruitment of inflammatory cells;
the other is decomposition, that is to remove apoptotic inflammatory cells (mainly neutrophils) (3).
However, unresolved inflammatory cascades that bring new features to tissues and cells may
promote he establishment of chronic inflammation leading to tissue and organ dysfunction (4).
Thus, chronic inflammation can contribute to many potential chronic diseases, including diabetes
(5), cardiovascular disease (CVD) (6), rheumatoid arthritis (RA) (7), inflammatory bowel disease
(IBD) (8), neurodegenerative diseases (9) and systemic lupus erythematosus (SLE) (10).
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Both neutrophils and macrophages belong to phagocytic cells,
but they play different important roles in inflammatory response.
Neutrophils are “whistlers” of the inflammatory response, which
means they are the first immune cells to be recruited to the site of
infection or injury. The phagocytosis of neutrophils can destroy
pathogens and some damage factors. However, if it is not cleared
in time, the derived death induction pathways such as oxidation
and hydrolysis can form an inflammation amplification loop,
causing serious tissue damage and developing the inflammatory
response into a chronic disease (11). Inflammatory cells such as
neutrophils are often eliminated by macrophages. Macrophages
can not only phagocytose pathogens and damage factors, but also
phagocytose apoptotic cells and participate in lipid metabolism.
For example, the efferocytosis of macrophages enables the
apoptotic cells to be eliminated before necrosis, releasing anti-
inflammatory cytokines and specialized proresolving mediators
(SPMs) at the same time, and establishing immune tolerance
(12). Therefore, macrophages are the “finalizers” of the
inflammatory response and play a key role in the resolution
and regression of inflammation. Macrophages play distinct roles
in the different stages of inflammatory response. The dysfunction
of macrophages in the late stage of the inflammatory response is
likely to prevent the inflammation from resolving.

Studies on the relationship between non-coding RNAs
(ncRNA) and the control of chronic inflammatory diseases in
some species have shown that ncRNA has become a key
regulatory factor for the development and function of the
immune system (13–15). miRNAs belong to a major subfamily
of ncRNA and are endogenous non-coding ribonucleic acid with
a length of about 20 nucleotides (16). miRNAs mediate specific
gene silencing through complementarity to mRNA sequences
(17, 18). A miRNA can be targeted to multiple mRNAs, while an
mRNA can also be targeted by many different or related
miRNAs. miRNAs often control multiple targets within a
signal axis to amplify and regulate the utility. In addition to
directly targeting mRNAs, miRNAs can further coordinate
inflammation by targeting enzymes or transcription factors
exerting indirect effects (16, 18–21). These basic properties of
miRNA make it very suitable for regulating chronic
inflammatory (2). miRNAs regulate inflammatory cascades by
regulating target gene levels, which determine whether
phagocytosis occurs, how strong the response is, and the
threshold at which inflammation subside (16). For example,
under the stimulation of inflammatory mediators and mildly
oxidized low-density lipoprotein, the expression of miR-155 is
up-regulated. MiR-155 directly targets B-cell lymphoma 6
protein (Bcl6), enhances the expression of inflammatory
mediators (such as CCL2) in macrophages, and damages the
efferent cytosis of macrophages, leading to the accumulation of
inflammatory cells at the infected site of injury and secondary
necrosis of apoptotic cells, which eventually develops into
atherosclerosis (22).

The existing literature on miRNA is extensive and focuses
particularly on the regulation of various signaling pathways by
miRNA. In recent years, there has been growing recognition of
the vital links between miRNAs and immune cells. miRNAs are
Frontiers in Immunology | www.frontiersin.org 2
active in inflammatory responses. For example, miRNAs regulate
the levels and types of chemokines by targeting chemokine (C-X-
C motif) ligand (CXCL) (23), cholesterol metabolism by
targeting ATP binding cassette transporter A1 (ABCA1) and
ATP binding cassette transporter G1 (ABCG1) (24), the release
of inflammatory factors by targeting the nuclear factor kappa-B
(NF-kB) signaling pathway (25), and tissue repair by targeting
suppressor of cytokine signaling-1 (SOCS1) (26).

Although there are many reports in the literature on
regulation of specific miRNA on phagocytes (neutrophils and
macrophages), most are restricted to functional elucidations
without reference to specific chronic diseases. There has been
very little systematic summery of the regulations of miRNA on
phagocytes in specific diseases. We fills a gap in the research on
this aspect. The primary aim of this paper is to review recent
research into the regulation mechanism of miRNA on
phagocytes in different chronic diseases, explore the
relationship between miRNAs and phagocytes in different
chronic diseases, and provide empirical evidence for the claim
that miRNA can become a potential therapeutic target for
chronic diseases eventually.
2 MECHANISM OF INFLAMMATORY
RESPONSE AND CHRONIC INFLAMMATION

2.1 Function and Mechanism of
Inflammatory Response
Under normal conditions, the homeostatic control mechanism
maintains the acceptable range of the environmental parameters
near the predetermined equilibrium point (27). Abnormal
conditions may cause certain parameters to deviate from their
normal homeostasis range, resulting in stress response (28).
Acute and chronic inflammation are two distinct adaptive
stresses triggered by inadequate or ineffective other
homeostatic mechanisms. When body tissue is damaged, the
inflammatory process is a protective cascade of local blood
vessels characterized by redness, swelling, pain, heat and
dysfunction, which can aid in the removal of foreign bodies
and tissue repair (29, 30). The inflammatory cascade is
preprogrammed and pervasive, and can be triggered by almost
every tissue, playing an important physiological role in tissue
homeostasis (31).

When the body faces threats such as infection and injury, it
induces its own acute inflammatory response, which usually lasts
for minutes to days (32). The inflammatory response is controlled
by a complex regulatory networds consisting of inducers, sensors,
mediators, and effectors, and the inflammatory response can be
determined according to the components of the regulatory
networks (33). The recognition of pattern recognition receptors
(PRR) initiates an immune response that identifies structural
components of pathogens as pathogen-associated molecular
patterns (PAMPs) and chemicals produced by injured cells as
damage-associated molecular patterns (DAMPs) (34–36).
Different receptors in immune cells recognize these patterns,
and upon triggering these receptors, inflammatory cytokines
May 2022 | Volume 13 | Article 901166
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such as TNF-a and IL-6 are released, causing changes in
endothelial cells and allowing immune cells to flow through
endothelial cells to tissues (29, 37). DAMPs are a class of
substances released by cells into the surrounding interstitial fluid
when cells are stimulated by injury, hypoxia and stress, including
degraded matrix molecules, leukocyte degranulation molecules,
and heat shock proteins (HSP). They are considered harmful
signals that trigger inflammatory responses through pattern
recognition receptors such as Toll-like receptors or NOD
(nucleotide binding oligomer domain protein)-like receptors
(34–36, 38). For example, TLR4 can identify endogenous
substrates such as free fatty acids (FFA) (38). PAMPs are ligand
receptors that are recognized and bound by PRRs, including some
highly conserved molecular structures shared on the surface of
pathogenic microorganisms, such as the lipopolysaccharide of
PAMPs are ligand receptors that are recognized and bound by
PRRs, including some highly conserved molecular structures
shared on the surface of pathogenic microorganisms, such as the
lipopolysaccharide of G- (gram-negative) bacterium. They also
include some common molecular structures on the surface of host
apoptotic cells, such as phosphatidyl serine (33). NADPH oxidase
utilizes the respiratory burst in hexose phosphate to convert
oxygen molecules into superoxide anions. Superoxide anion
generates hydrogen peroxide under the action of superoxide
dismutase (SOD), which can be bactericidal, and can further
generate oxides with strong bactericidal power under the action
of myeloperoxide (MPO), such as OCI-. However, reactive oxygen
species (ROS) generated during oxidative sterilization of
neutrophils may leak into surrounding tissues. Strong
bactericidal oxidants may also cause damage to neutral proteases
that inhibit lysosome release, thereby harming surrounding
tissues (39).

Infection and tissue damage are well-known inflammatory
triggers that attract leukocytes and plasma proteins to tissue
damage (4). Furthermore, tissue stress or dysfunction induces an
adaptive response called para-inflammation, which occurs
between essential homeostasis and canonical inflammatory
responses and is mediated primarily by tissue-resident
macrophages (4, 40). Regardless of the cause of the
inflammatory response, the ultimate goal is to eliminate or
isolate the source of the interference, allowing the host to
adapt to the abnormal condition and restore tissue function
and homeostasis. However, part of the inflammation can develop
into chronic disease due to persistent tissue dysfunction due to
environmental variables, genetic mutations and even modern
unhealthy human diseases (31, 41).

2.2 The Role of Neutrophils and
Macrophages in the Inflammatory
Response
At the most basic level, acute inflammatory responses induced by
infection or tissue damage result in the coordinated distribution
of blood components (plasma and leukocytes) to the site of
disease or injury. This process can be roughly divided into: First,
blood vessel flow and tiny blood vessels become larger, and newly
formed capillaries and larger arterioles help increase blood flow
Frontiers in Immunology | www.frontiersin.org 3
to areas of inflammation (4). Then, vasodilation and vascular
permeability increase, leading to leakage of microcirculatory
plasma and phagocytosis of leukocytes. Endothelial cell
selectins on the surface of vascular endothelial cells can
inducibly connect with leukocyte integrins and chemokine
receptors. This connection allows endothelial cell modification,
increased microvascular permeability, and preferential access of
plasma proteins and white blood cells (mainly neutrophils) to
infected or injured tissues through the posterior capillary vein
(32). Neutrophils are activated by direct stimulation of cytokines
released by pathogens or tissue resident cells, and activated
neutrophils capture bacteria via phagosomes and then begin
almost simultaneously degranulation-dependent non-oxygen
bactericidal action and triphosphopyridine nucleotide
(NADPH) oxidation enzyme (NOX2)-dependent aerobic
bactericidal action (42). Under the degranulation-dependent
non-oxygen sterilization, various bactericides and hydrolytic
enzymes in the granules are released, including lysozyme,
bactericidal/permeability increasing protein polypeptide (BPI)
protein, defensin, elastase, cathepsin G, protease 3, azurocidin
(CAP37) and acid b-glycerophosphatase (43). However, if these
bactericides and hydrolases in granules are exocytosed into
tissues outside neutrophils, they will damage normal tissues
and further aggravate inflammation (44). In oxygen-dependent
sterilization, activated neutrophils are highly phosphorylated by
the serine residues in p47phox, which bind to the p67phox p40phox

complex, and then migrate to the plasma membrane to bind to
cytochrome b558. At this point, an NADPH oxidase is
assembled (45).

After neutrophils play a bactericidal role at the site of
inflammation, they often produce pus. The main forms include
necrosis, pyroptosis, and neutrophils external traps (NET)
(Figure 1) (46). Necrosis is often triggered by intracellular
parasites, manifested by the activation of intracellular TLRs,
interferon (IFN)-a and granulocyte-macrophage colony-
stimulating factor receptors (47). Pyroptosis is activated by the
cleavage of Gasdermin D (GSDMD) by the intracellular
pathogen inflammasome. Under the action of necrosis and
pyroptosis, neutrophils release inflammatory factors, such as
interleukin-1b (IL-1b), and the area of tissue damage increases
and the degree of damage is more serious (48). The neutrophil
extracellular trap is a suicide system that captures and kills
microorganisms. The neutrophil extracellular trap is an
externalized form of the nucleus and mitochondria, consisting
of DNA, histones, and granule proteins. ROS surge activates the
proteins arginine deiminase 4 (PAD4), neutrophil elastase (NE)
and Gasdermin D under the action of the respiratory burst of
neutrophils (49). These proteases catalyze the processes of
chromatin decondensation, nuclear membrane disassembly,
assembly of antimicrobial proteins on chromatin, and cell
rupture. Likewise, the cellular contents released by NET will
further exacerbate the damage to surrounding tissue. Unlike the
first two, NET can also cause autoimmune diseases by exposing
cellular endogenous components to immune cells (50).

Conversely, in response to inflammation, neutrophils also die
by a non-inflammatory pathway, that is macrophage-mediated
May 2022 | Volume 13 | Article 901166
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efferocytosis. Macrophage uptake of dying neutrophils can
rapidly clear cells to prevent secondary necrosis, and can also
trigger anti-inflammatory signaling pathways that play an
important role in inflammation resolution. If efferent
pleocytosis malfunctions, amplifying loops that promote
secondary necrosis and exacerbate inflammation (51). It is not
difficult to see that macrophages play an important role in the
resolution of inflammation. Anti-inflammatory macrophages
can secrete various anti-inflammatory mediators (such as IL-
10) and express programmed cell death ligand (PD-L), thereby
suppressing inflammation (52). However, if pro-inflammatory
macrophages cannot complete the transformation to anti-
inflammatory macrophages during the initial period of
inflammation, a large number of pro-inflammatory
macrophages will accumulate, the inflammatory response will
continue, and tissue repair will be delayed (53).
3 THE CONNECTION BETWEEN CHRONIC
INFLAMMATION AND CHRONIC DISEASE

Chronic inflammation is associated with persistent production of
pro-inflammatory mediators and persistent activation of pro-
inflammatory signaling pathways, and phagocytic-associated
inflammasomes, cell differentiation, lipid metabolism, tissue
repair, and microbiota contribute to aging-related phenotypes
and chronic disease (54).

3.1 Inflammation Resolution and
Chronic Diseases
Acute inflammation is characterized by a complex but well-
coordinated inflammatory response with a resolution period of
Frontiers in Immunology | www.frontiersin.org 4
acute inflammation. Numerous pro-inflammatory cytokines
rapidly released by neutrophils characterize the inflammatory
environment (TNF and IL-1), and omega-6 pro-inflammatory
arachidonic acid (AA)-derived eicosenoic acid (prostaglandins
and leukotrienes) (55). These potent pro-inflammatory factors
are difficult to identify microbes and their host cells, and thus are
prone to irreversible damage to surrounding tissues (4, 56). In an
effective acute inflammatory response, damaging factors are
rapidly eliminated, while endothelial and immune cells
undergo a “lipid mediator switch” that converts pro-
inflammatory SPMs into anti-inflammatory prostaglandins,
which trigger inflammation subsided, effectively preventing
persistent inflammation and tissue necrosis (57). Regression is
the process by which inflammation ceases and has historically
been seen as a passive process (58). Numerous studies published
over the past few years have shown that regression is an active
process, manifested by a complex set of mediators that regulate
cellular events necessary for inflammatory cell clearance from the
site of infection or injury and restoration of tissue function (3,
40). Inflammation can be resolved by removal of inflammatory
stimuli, inhibition of proinflammatory signaling, catabolism of
proinflammatory mediators, and cellular burial (3).
Inflammation may resolve if granulocytes are eliminated
during the inflammatory response and the monocyte
population (macrophages and lymphocytes) within the tissue
returns to pre-inflammatory numbers and phenotypes (59).
However, if the inflammatory response persists, a normally
healthy immune response can degrade into a dangerous
chronic inflammatory disease that can be fatal.

While immune responses are required for successful
pathogen clearance, symbiotic contact with commensal
microorganisms, wound repair, and overall tissue homeostasis,
they can become dysfunctional and initiate persistent responses
FIGURE 1 | Neutrophil Death under Harmful Stimulation. Neutrophils recognize pathogens through pattern recognition receptors (PRRs). The main PRRs are Toll-
like receptors (TLR) or NOD-like receptors (NLR), and there are some other PRRs, such as scavenger receptors (SR). These PRRs can recognize pathogens in the
extracellular cytoplasm and endosomes. Neutrophils are activated after recognizing the pathogen and begin to kill the pathogen. The final outcome of an
inflammatory environment is often: necrosis, pyroptosis, and neutrophils external traps. These death pathways have different characteristics, but all exacerbate the
inflammatory response.
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without resolution phases (4). Persistent stimulation, pro-
inflammatory signaling, or damage to pro-catabolic/anti-
inflammatory pathways can lead to irreversible inflammatory
responses, in which inflammatory cells such as neutrophils and
monocytes/macrophages infiltrate the tissue, leaving the tissue
chronically inflammatory (31). When these events occur, a
normal healthy immune response can deteriorate into a
chronic inflammatory state, a hallmark of chronic disease (41).
Chronic inflammation has a post-resolution phase involving
Ly6Chi inflammatory monocytes (iMOs) and dendritic cells
that enhance the adaptive branch of the response, while
macrophages in tissues preferentially deplete apoptotic
Polymorphonuclear neutrophils (PMNs), thereby connecting
innate and adaptive immune system (60–62). The organism
tries to establish ‘adaptive homeostasis’ in this new phase, but
this may be beneficial in shaping the developmental environment
of chronic disease (3). Indeed, adaptive changes are often
induced at the expense of many other physiological activities,
leading to the formation of non-adaptive traits. In evolution, a
balance is established between the beneficial effects of adaptive
traits and the undesired effects of non-adaptive traits (4).
However, long-term changes in environmental conditions can
upset this balance, increase the burden on the body, and lead to
the development of chronic diseases. For example, prolonged
secondary infection induces autoimmune activation at a lower
cost than endogenous antigens, such as those released by
apoptotic cells (63). We can conclude that many chronic
inflammatory diseases are characterized by persistent acute
inflammation combined with failed attempts at adaptive
immunity, resulting in immune maladaptation.
3.2 Possible Factors Leading to
Chronic Diseases
Even though the etiology of some chronic inflammatory diseases
is unknown, early detection and treatment are essential to stop
their progression. According to Karen T. Feehan et al, the factors
that lead to chronic diseases can be roughly divided into (3):

a. Aging: Over the years, extensive research has demonstrated
an age-related increase in cellular inflammation. Senescent
cells secrete large amounts of soluble factors, collectively
referred to as the senescence-associated secretory phenotype
(SASP), which include large amounts of pro-inflammatory
cytokines and chemokines, growth factors, and extracellular
matrix (ECM) remodeling enzymes, all of which contribute to
A phenomenon known as “aging inflammation” (64).
Multiple molecular pathways contribute to the acquisition
of cellular senescence-associated secretory phenotypes,
including persistent DNA damage response (DDR) (65),
unfolded protein response (UPR) (66) and missense nucleic
acids (67, 68). By activating NF-kB, these specific intracellular
receptors can be detected (69). Sustained activation of NF-kB
leads to transcription of numerous genes involved in the
control of inflammatory responses, including adhesion
molecules such as vascular cell adhesion molecule-1
Frontiers in Immunology | www.frontiersin.org 5
(VCAM-1) and cytokines such as interleukin (IL-6) and
tumor necrosis factor (TNF) (70). Notably, SASP can
metastasize senescence by detonating in neighboring cells, a
so-called bystander effect, thus creating a pro-inflammatory
environment during systemic horizontal spread (71, 72). In
addition to the aging-associated secretory phenotype that
contributes to senescent inflammation, the thymus
produces fewer T cells as we age, reducing our ability to
respond to neoantigens and memory for new infections or
immunities (73). Increased autoantibodies against self-tissue,
memory phenotype T cells release greater amounts of pro-
inflammatory cytokines in response to persistent/chronic
viral infection (74).

b. Self-antigens lead to autoimmune diseases: Chronic
inflammation may be induced to a large extent by immune
responses to self-tissues. Immune complexes are produced in
situ or in various organs, including nuclear residues derived
from apoptotic cells. The formation of autoantibodies (AAbs)
against double-stranded DNA (dsDNA) and other nuclear
autoantigens is an important feature of systemic lupus
erythematosus, which is easily associated with NETs
mentioned above. Strikingly, nearly 100 SLE-associated
autoantibodies, including nuclear DNA and nuclear
proteins, were detected in NETs (75). Nucleic acid-carrying
ICs (immune complexs) may also be phagocytosed by
macrophages, releasing pro-inflammatory cytokines. NET
components, such as elastase, cathepsin G, and citrullinated
histone H3, were also detected in the serum and synovial fluid
of RA patients, and these components all have certain damage
to the cartilage matrix (76).

c. Damage-Associated Molecular Patterns: DAMPs trigger
chronic immune responses that alter tissue function,
produced and detected by TLRs or NLRs on innate
immune cells (77). Obesity is mainly caused by fat cell
hypertrophy and excessive calorie intake, and the
accumulation of lipids in the bloodstream is the root cause
of cardiovascular disease (78). In the pathogenesis of
atherosclerosis, early-stage macrophages take up oxidized
low-density lipoprotein and other lipids through their TLR
ligands, activate NF-kB signaling and trigger the release of
inflammatory factors (79). However, the continuous influx
of lipoproteins overwhelms the lipid-handling capacity of
macrophages and renders macrophage-based lipid clearance
systems ineffective (51). Due to the accumulation of lipids in
the endoplasmic reticulum membrane, the macrophages are
persistently in an inflammatory state, the macrophages are
dysfunctional in the efferocytosis of neutrophils, the
inflammatory response never enters a regressive state, and
chronic inflammation form.

d. Microbiota and its secretions: The microbiota in the gut has a
significant impact on human health. Chronic inflammation
can also be caused by the microbiota due to their ability to
affect the gut and surrounding tissues (80). Studies have
shown that the diversity of gut microbiota in health and
disease and its impact on the environment can vary from
protective to pro-inflammatory in animal models of
May 2022 | Volume 13 | Article 901166
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inflammatory bowel disease. Although gut bacteria are
known to activate the immune system, persistent
inflammation can alter gut microbiota and lead to
ecological imbalances (8). During intestinal inflammation,
monocyte recruitment was increased, but IL-10 levels were
consistently low. In this case, monocytes are insensitive to
inflammatory stimuli and acquire the M1 phenotype,
secreting a large amount of inflammatory substances such
as IL-1b, TNF-a, ROS (59). Furthermore, in IBD, defects in
neutrophil migration at sites of inflammation, neutrophil-
related oxidative stress, inflammatory factors, disruption of
tissue integrity, increased epithelial and vascular
permeability, enhanced immune cell recruitment and
Inflammation polarizes and hinders wound healing (81).
However, due to the complex assemblage of different
species, the study of disease phenotypes by specific
microbial members is still ongoing.
4 mIRNAS REGULATE PHAGOCYTES
IN THE PATHOGENESIS OF
CHRONIC DISEASES

Chronic inflammation is involved in the production of chronic
relapsing diseases characterized by excessive activation of the
immune response and high levels of autoantibodies, which are
autoimmune diseases. Interaction of gene expression and
environment plays an important role in the pathogenesis of
chronic relapsing disease (82–84). miRNAs are rheostats of gene
transcription and are widely involved in innate immune
regulation such as phagocytosis, exocytosis, induction of
endotoxin tolerance, and cytokine responses (85). Exosomes
are extracellular vesicles (MVs) that transport miRNAs
between immune cells via membrane budding and endocytosis.
Notably, some miRNAs are activated during inflammatory
responses and can limit excessive immune responses. The
imbalance of these miRNAs can lead to uncontrolled
production of inflammatory cytokines, which can lead to the
occurrence of various diseases. It is not difficult to see that
miRNAs are key regulators of innate immune cell development
and function and maintenance of immune homeostasis (86).
Phagocytes, including neutrophils and macrophages, are the
whistleblowers and finishers of the inflammatory response,
respectively, and are important in the resolution of
inflammation and the development of chronic diseases. In the
following sections, we will use these two types of cells as
examples to illustrate the regulatory role of miRNAs on them
and how they affect chronic diseases.

4.1 Neutrophils
Neutrophils are the most abundant innate immune cells in the
blood, and during the development of an immune response,
neutrophils first reach the site of inflammation/functional
damage (87). Myeloblasts in the bone marrow develop into
granulosa cells through several morphologically distinct stages,
Frontiers in Immunology | www.frontiersin.org 6
including promyelocytes, myeloid cells, mesenchymal cells, and
ribbon cells (88). Granulocyte generation is characterized by
differential expression of transcription factors and cyclins, a
process controlled by granulocyte-colony stimulating factor
(G-CSF) (89). During inflammation, the number of
neutrophils at the site of infection damage increases. Normally,
neutrophils should be cleared by efferocytosis of macrophages
after their mission is complete. This process leads to the down-
regulation of the synthesis of inflammatory factors such as IL-23
in cells, thereby reducing the release of G-CSF, and the
inflammatory response tends to subside (90, 91).

4.1.1 miRNA and the Function of Neutrophils
Typically, neutrophils are seen as short-lived cells that perform
very repetitive roles, such as releasing antimicrobial chemicals,
until more specialized cells reach the site of inflammation,
enabling a more effective attack. As a result of the activation of
multiple cytokines, growth factors, and bacterial products,
neutrophils are more complex than initially thought, exhibiting
phenotypic and functional diversity and participating in the
pathogenesis of health and disease (43, 92). Evidence suggests
that neutrophils help activate other immune cells, regulate
inflammation and wound healing, which are critical for tissue
integrity and the control and resolution of inflammatory
processes (92, 93). When exposed to specific stimuli (serum
amyloid A17), specific mature neutrophils (which eventually
grow into fully formed granules and segmental nuclei) may
proliferate outside the bone marrow, prolonging their time in
the tissue. Although longer lifespans may allow neutrophils to
perform more complex activities in tissues, such as helping
resolve inflammation or building adaptive immune responses,
their persistence in tissues can damage other cells (94).

Neutrophils are a specialized form of phagocytic cells. When
bacteria come into contact with these cells, they eat and destroy
the bacteria. Neutrophils engulfing bacteria produce reactive
oxygen species (ROS) through an electron transfer system
called NADPH, such as O2-, HO- and H2O2 being converted to
hypochlorous acid (HOCl) by myeloperoxidase (MPO), which in
turn kills bacteria (43, 95). In addition, the bactericidal effect of
neutrophils is also reflected in the transport of a variety of
different cellular particles with different components and
functions (96). Neutrophil granules contain MPO, neutrophil
proteases (elastase, cathepsin G, protease 3, azurin) and
membrane permeability factors (lysozyme, defensins, bacterial
permeability increasing proteins) and are the major germicidal
granules (97, 98). This means that neutrophil activation and
migration need to be tightly controlled to prevent tissue damage
and uncontrolled inflammation.

When discussing inflammatory processes, neutrophils are
often viewed as passive components that die and are
eliminated over days or weeks, rather than as active
participants. They are now known to produce pro-resolution
lipid mediators, suggesting that they are actively involved in the
resolution-inducing process. GPCRs (G-protein-coupled
receptors) and their analogous G-protein-coupled compounds
(GPCRs) play important roles in the transport and activation of
neutrophils in the in vivo environment (99). LXA4 is a
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lipopolysaccharide (also known as FPR2) that inhibits neutrophil
recruitment by binding to its G protein-coupled receptor LXA4R
at the end of an acute inflammatory response. By blocking and
removing chemokines and cytokines, neutrophils also contribute
to the resolution of inflammation (100). Lipolytic mediators such
as LXA4, resolvin E1, and protectin D1 promote C-C chemokine
receptor type 5 (CCR5) production through apoptotic
neutrophils, which then act as functional decoys and
scavengers of chemokine (C-C motif) ligand 3 (CCL3) and
CCR5 (101).

As a rule, neutrophils are regarded as short-lived cells that
perform a very recurring role, such as releasing antibacterial
chemicals, until more specialized cells arrive at the inflammatory
site, allowing for more effective attacks. Half-lives in mice and
humans are 1.5 and 8 hours, respectively (102, 103).To ensure
that neutrophils are present at the site of inflammation, they are
activated, and their life span is enhanced severalfold during the
inflammatory process (104). Neutrophils are more complex than
first thought. They exhibit phenotypic and functional diversity
and are involved in the pathogenesis of both health and disease
(43, 92), as a result of activation by a variety of cytokines, growth
factors, and bacterial products (105). There is evidence that
neutrophils contribute to the activation of other immune cells,
regulation of inflammation, and wound healing, which is crucial
for tissue integrity and ordinance and resolution of the
inflammation process (92, 93). Upon exposure to specific
stimuli, such as serum amyloid A17, particular mature
neutrophils (which eventually grow into fully-formed granules
and segmented nuclei) may multiply outside the bone marrow,
lengthening their time in the tissue. Even though a more
extended lifespan may allow neutrophils to perform more
complex activities in the tissue, such as helping to resolve
inflammation or establishing an adaptive immune response,
their continuing presence in the tissue may harm other cells (94).

Finally, the treatment of apoptotic neutrophils is a critical step
in addressing inflammation, which is carefully regulated by the
expression of an “eat me” signal that initiates an anti-
inflammatory program in phagocytes (106, 107). Indeed, the
recognition and uptake of apoptotic neutrophils can influence
the phenotype of macrophages (106), and macrophages
themselves also polarize towards an anti-inflammatory type
when they perform efferocytosis on apoptotic neutrophils,
release anti-inflammatory factors and promote tissue repair
(108, 109). Thus, neutrophils are part of the cellular cascade
that coordinates the resolution of inflammation. They are
important for shutting down the inflammatory response early
and preventing the development of chronic inflammation.

One of the most effective ways neutrophils fight infection and
tissue damage is through their immune system. Neutrophils are a
specialist form of phagocyte. These cells can eat and destroy
bacteria when they come into touch with them. An electron
transfer system known as NADPH is a multi-protein electron
transfer system that can be assembled and activated to generate
reactive oxygen species (ROS) such as O2-, HO-, and H2O2 (43,
95). Myeloperoxidase(MPO) converts H2O2 to hypochlorous
acid (HOCl). Neutrophils transport a variety of different cell
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particles with distinct components and functions (96). The
neutrophil granules contain MPO, neutral protease (elastase,
cathepsin G, protease 3, and azurin), and membrane
permeability factors (lysozyme, defensin, and bacterial
permeability-increasing protein), which are the main
bactericidal granules (97, 98). This means that neutrophil
activation and migration need to be strictly controlled in order
to prevent tissue damage and inflammation from becoming out
of control. GPCRs (G protein-coupled receptors) and their
analogous G protein-coupled compounds (GPCCs) play an
essential role in the trafficking and activation of neutrophils in
vivo environments (99).

miRNAs play key roles in cellular processes such as
granulocyte proliferation, activation, and apoptosis. Mef2c is
an important regulator of granulocyte development. Johnnidis
et al. found that miR-223-deficient mice had neutrophil
hyperactivity and hyperinflammatory function caused by direct
targeting of transcription factor MEF2C, suggesting that miR-
223 is a negative regulator of granulocyte production and
inflammatory response (110). These findings suggest that miR-
223 acts as a regulator of granulocyte activation, effectively
suppressing pathogenic immune responses (111). The
overexpression of miR-21 is closely related to the activation of
granulocytes (112). Elevation of miR-199 reduces neutrophil
chemotaxis and migration by inhibiting the cyclin-dependent
kinase 2 (Cdk2) pathway, ultimately reducing the inflammatory
response (113). MiR-9 is a component of the feedback loop of
granulocyte-induced inflammation, and miR-9 inhibits the
synthesis of NF-kB by regulating the TLR4 pathway, thereby
activating neutrophils (114). The role of miR-155 in granulocytes
has been revealed in vitro and in vivo. MiR-155 is essential for
granulocyte proliferation by regulating SH2-containing inositol
5’-phosphatase 1 (SHP1). An animal model study showed that
elevated miR-155 produces myeloproliferative disorders,
suggesting that miR-155 is critical for maintaining the balance
of innate immune cells (96, 115).

4.1.2 miRNA and NETs
Under inflammatory conditions, neutrophils release a network of
complexes consisting of chromatin DNA, histones, and granule
proteins into the extracellular environment, leading to
extracellular death, a structure known as a neutrophil
extracellular trap (116). Granular proteins that have been
identified in NET include antimicrobial proteins (such as
lactoferrin, cathepsin G, defensins, LL37, and bacterial
permeability-increasing proteins), proteases (such as neutrophil
elastase, protease 3 (PR3), and gelatin enzymes) or enzymes
responsible for the production of reactive oxygen species such as
myeloperoxidase (MPO) (116). Recent evidence suggests that
NETs and their components may be detrimental to host tissues
and have contributed to the development of many non-infectious
diseases (117), such as atherosclerosis (118), systemic lupus
erythematosus (119), vasculitis (120), and thrombosis (121,
122). Antineutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) is a systemic necrotizing vasculitis of small
vessels characterized by the production of antineutrophil
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cytoplasmic antibodies against neutrophil cytoplasmic proteins
(ANCA) (123, 124), targeting some NET components such as
MPO, PR3 and neutrophil elastase (125). Methods such as
DNase and NET-DNA targeting using NET-associated
proteins have demonstrated that inhibiting the production of
NETs can prevent tissue damage (126).

Recent studies have shown that NET and miRNA are very
closely related. Linhares-Laseda et al. are the first to demonstrate
the presence of NET-associated miRNA vectors and miRNAs in
NET-enriched supernatants (NET-miRs). This provides a new
class of molecules and a new protein platform that can be created
and delivered in NETs. Their research revealed a novel role for
NET in cellular communication, facilitating the transport of
miRNAs from neutrophils to neighboring cells. NET, as a
negative feedback loop, reduces hyperreactivity and maintains
normal regulation of inflammatory responses (Figure 2). In
monocytes/macrophages, the protein kinase C (PKC) pathway
is involved in adhesion/migration, M1/M2 polarization, TLR
activation and inflammatory cytokine production (127). It has
been shown that the role of miRNA-142-3p may also affect these
activities, suggesting that NET may allow extensive control of
surrounding cellular functions through the release of miRNAs.
Specifically, miRNA-142-3p carried by NET downregulates
protein kinase Ca (PKCa) and regulates TNF-a production in
macrophages when NET interacts with macrophages (128–130).
Not only that, miRNAs released by surrounding cells via
exosomes can also affect neutrophil NETosis formation. In
Yong-Zhanggan et al.’ s study, exosomal miR-146a produced
by oxLDL-treated macrophages stimulated ROS and NET
production and worsened atherosclerosis by targeting SOD2
(131). The study by Reyes-Garcıá AML et al. showed that NET
represents an important relationship between inflammation and
thrombosis, and that both NET components DNA and H4 lead
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to increased HNF4A mRNA expression, which may suggest that
it is partly involved in the Coagulation factor regulation. They
determined that H4 induced decreased expression of specific
miRNAs in the miR-17/92 cluster, which partially explains why
H4 induced increased TF expression (132).

4.1.3 miRNAs Regulate Neutrophil-Involved
Chronic Diseases
Although it has been traditionally believed that the primary role
of neutrophils is to effectively eliminate extracellular pathogenic
factors, it is not surprising that neutrophils play an important
role in the pathogenesis of many diseases based on the recent
discovery of a wide range of neutrophil functions. Some results
indicate that neutrophils have become an important determinant
of chronic inflammation (133). In the following section we would
discuss about the role of miRNAs in regulating neutrophils in
chronic diseases such as sepsis, asthma, systemic lupus
erythematosus and so on (Table 1).

4.1.3.1 Sepsis
When ill individuals encounter an inappropriate immune
response, it can lead to exacerbations of sepsis, and the
cardiovascular system is a susceptible system to sepsis (150). On
the anti-inflammatory side, miR-21 drives an overwhelming
inflammatory response by indirectly inhibiting the expression of
the anti-infective mediator prostaglandin E2(PGE 2)/IL-10 (134).
MiR-let-7b directly targets toll-like receptor 4 (TLR4) and nuclear
factor kB (NF-kB), reducing interleukin-6 (IL-6), IL-8, tumor
necrosis factor alpha (TNF-a) and other pro-inflammatory
factors, up-regulate the anti-inflammatory factor IL-11 (140). In
terms of pro-inflammatory, up-regulation of miR-146a, miR-887-
3p, miR-155, and down-regulation of miR-223-3p play important
roles. miR-146a modulates inflammatory responses by inhibiting
FIGURE 2 | miRNA-mediated regulation of inflammatory factors by NET released in neutrophils. Under the influence of the vascular inflammatory environment,
neutrophils, for example, mature macrophages release exosome-loaded miR-146, which stimulates neutrophil development and maturation to form NETs. The NETs
supernatant contains miRNA, such as miR-142-3p. miR-142-3p targets macrophages to release more pro-inflammatory factors, which in turn accelerate the
formation of a pro-inflammatory environment.
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the Toll-like receptor/NF-kB axis and sod2 and modulates NET
formation by altering its senescence phenotype (136, 137). MiR-
887-3p released by neutrophils increases endothelial release of
chemokines and promotes transendothelial leukocyte migration
(138). Furthermore, neutrophils promote vascular inflammation
and atherosclerosis by delivering miR-155-carrying microvesicles
to disease-prone areas (139). Downregulation of miR-223-3p
promotes the expression of mitogen-activated protein kinase
(MAPK)-interacting serum/threonine kinase 1 (MKNK 1),
which regulates the abundance of neutrophil-expressed
inflammatory factors involved in sepsis (135).

4.1.3.2 Asthma
Asthma is a chronic respiratory disease. Airway obstruction in
asthma includes bronchial smooth muscle spasms and different
degrees of airway inflammation, which are characterized by
edema, mucus secretion, and inflow of various inflammatory
cells (151). Expression of miR-223 in neutrophils inhibits the
NLRP3/IL-1b axis, reduces airway inflammation, and reduces
NLRP3 (Nucleotide-binding oligomerization domain, leucine-
rich repeat and pyrin domain-containing 3) levels and IL-1b
release (141). Has-miR-223-3P, a neurotropic miRNA,
regulates TLR/Th17 signaling and endoplasmic reticulum
stress by inhibiting the TLR/Th17 pathway (142). The up-
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regulation of miR-199a-5p in neutrophils is negatively
correlated with lung function (143). MiR-629-3p damages the
bronchial epithelium by inducing IL-8 mRNA expression and
promoting inflammatory response (144). In addition, miR-26a,
miR-146a, and miR-31 are also related to the levels of
interleukin-5 (IL-5), IL-8, IL-12, and tumor necrosis factor-a
(TNF-a) (152).

4.1.3.3 Systemic Lupus Erythematosus
Systemic lupus erythematosus is a chronic autoimmune disease
characterized by the loss of self-tolerance and the formation of
nuclear autoantigens and immune complexes. The disease has a
wide range of manifestations, which can involve multiple organ
system inflammations. The course of the disease is chronic or
relapsed and alleviated, leading to significant morbidity and even
mortality (153). In SLE, the down-regulation of miR-4512 in
neutrophils promotes the expression of TLR4 and CXCL2, which
has the function of promoting the formation of NETs (23). As a
TLR-7 agonist, miR-let-7b appears in pro-inflammatory
neutrophils (low-density granulocytes (LDGs)) NET of SLE
and plays a role in inducing vascular cell pro-inflammatory
response (145). In addition, the down-regulation of miR-125a
weakened the original inhibitory effect on IL-16 gene, and the
up-regulation of IL-16 expression directly acts on lung epithelial
TABLE 1 | miRNAs regulate neutrophil-involved chronic diseases.

miRNA Expression level Target Function Chronic diseases Ref.

miR-21 ↑ PGE 2/IL-10 pro-inflammation sepsis (134)
miR-223-3p ↓ MKNK1 pro-inflammation sepsis (135)
miR-146a ↑ NF-kB pro-inflammation sepsis (136, 137)

SOD2 promote NETosis
miR-887-3p ↑ IL-1b pro-inflammation sepsis (138)

VCAM-1
miR-155 ↑ NF-kB pro-inflammation sepsis (139)
miR-let-7b ↑ TLR4 anti-inflammation sepsis (140)

NF-kB
miR-223 ↑ NLRP3/IL-1b anti-inflammation asthma (141)
hsa-miR-223-3p ↑ TLR/Th17 endoplasmic reticulum stress asthma (142)
miR-199a-5p ↑ WNT2 inhibit lung regeneration asthma (143)

WNT4
miR-629-3p ↑ IL-8 pro-inflammation asthma (144)
miR-4512 ↓ TLR4 promote NETosis SLE (23)

CXCL2
miR-let-7b ↑ TLR-7 pro-inflammation SLE (145)
miR-125a ↓ IL-16 pro-inflammation SLE (146)
miR-223-3p ↑ GM-CSF anti-inflammation COPD (147)

TRAF4
miR-1285 ↑ SP11 pro-inflammation IBD (144)

inhibit tissue repair
miR-23a ↑ Lamin B1 inhibit tissue repair IBD (148)
miR-155 RAD51 pro-inflammation
miR-223 ↑ IL-18 anti-inflammation AOSD (149)
May 2022 | Volume 13 | Art
PGE 2, prostaglandin E2; IL-10, interleukin-10; MKNK1, mitogen-activated protein kinase interacting serine/threonine kinase 1; NF-kB, nuclear factor kappa light-chain enhancer of
activated B cells; SOD2, manganese superoxide dismutase, superoxide dismutase 2; VCAM-1, vascular cell adhesion molecule-1; TLR4, toll-like receptor 4; NLRP3, Nucleotide-binding
oligomerization domain, leucine-rich repeat and pyrin domain-containing 3; Th17, helper T cell 17; WNT, Wingless-Type MMTV Integration Site Family; CXCL2, Chemokine(C-X-Cmotif)
ligand10; GM-CSF, granulocyte monocyte-colony stimulation factor; TRAF4, (TNF) tumor necrosis factor-receptor-associated factor 4; SP11, S-locusprotein 11; RAD51, a homologous
recombination regulator homologous recombination; SLE, Systemic lupus erythematosus; COPD, chronic obstructive pulmonary disease; IBD, inflammatory bowel disease; AOSD, Adult-
onset Still’s disease.
↑ Represents expression level rises.
↓ Represents expression level decreases.
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cells, thereby significantly enhancing the expression of
neutrophil chemokines, leading to lung injury (146).

4.1.3.4 Other Chronic Diseases
In inflammatory bowel disease (IBD), miR-23a and miR-155
enhance the deleterious effects of neutrophils by targeting lamin
B1 and RAD51 (a homologous recombination regulator),
inhibiting tissue healing responses (148). Neutrophil-derived
traces (NDTR) are membrane-derived vesicles produced by
neutrophil migration toward inflammatory foci and contain
pro-inflammatory miRNAs, such as miR-1285. MiR-1285
promotes intestinal inflammation and inhibits tissue repair by
targeting the S-locusprotein 11 (SP11) gene. Other miRNAs in
NDTR, including miR-1260, miR-4454, and miR-7975, have
similar utility (144). In atherosclerosis, miR-146a (a brake of
inflammatory response) is downregulated, thereby increasing
NETosis and increasing thrombotic risk (137). In rheumatoid
arthritis, citrullinated protein antigen and TNF-a decreased the
expression of many miRNAs and their biogenesis-related genes,
such as miRNA-223, miRNA-126 and miRNA-148a, thereby
increasing their potential mRNA target. These miRNAs are
mainly associated with migration and inflammation in synovial
fluid neutrophils (154).In chronic pulmonary disease (COPD),
miR-223-3P suppressed Granulocyte monocyte-colony
stimulation factor (GM-CSF) secret and gene expression of the
pro-Inflammatory transcription factor traf4, which is related to
neutrophilic inflammation (147). In Adult-onset Still’s disease
(AOSD), the expression of miR-223 in neutrophils is suppressed
(149). In IBD, miR-23a and miR-155 can enhance the harmful
effects of polymorphonuclears (PMNs) and inhibit the tissue
healing response (148).

4.2 Macrophages
Macrophages are ubiquitous in our body, and most tissue-
resident macrophages are seeded in the yolk sac in embryonic
form for long-term self-renewal (155). Tissue macrophages are
specialized according to the microenvironment of the tissue in
which they live and have specific functions. Therefore, they are
not only immune cells, but also participate in the formation of
living tissues through specialized auxiliary functions, such as
osteoclasts in bone (156), macrophages in intestinal muscularis
(157), and small keratinocytes in brain tissue (158). The
remaining macrophages were derived from monocyte-
macrophages. Monocytes are present in the blood circulation
and have a high degree of functional plasticity, providing the
necessary support for their involvement in the initiation and
subsequent resolution of inflammatory responses (4, 159). In an
inflammatory response, damaged infected areas can
chemotactically recruit mature monocytes, expose them to
several cytokines and bacterial products, and differentiate into
macrophages. They participate in inflammatory processes
together with tissue-resident macrophages to maintain the
macrophage pool in the tissue (160, 161).

Dynamic regulation of complex gene networks and signaling
cascades that control macrophage polarization, priming, and
plasticity through multiple layers of regulation of gene
expression (162). Transcription and translation are complex
Frontiers in Immunology | www.frontiersin.org 10
processes that are tightly regulated and strongly influence
cellular function. Specific miRNA subsets induced by different
microenvironmental signals have been shown to modulate
transcriptional output to obtain distinct macrophage activation
patterns and polarization states, ranging from M1 phenotype to
M2 phenotype (163), affecting multiple macrophages biology,
such as monocyte differentiation and development, macrophage
polarization, infection, inflammatory activation, cholesterol
homeostasis, cell survival, and phagocytosis (164).
4.2.1 miRNA and the Plasticity of Macrophages
Macrophages are an important plastic cell. The local
microenvironment can make macrophages directional
polarization, from one phenotype to another phenotype (165).
Macrophages are heterogeneous, and their phenotype and
function are regulated by the surrounding microenvironment.
Macrophages are generally divided into two distinct
subpopulations: a) M1 macrophages (typically activated
macrophages), induced to differentiate by lipopolysaccharide
(LPS) alone or in combination with Th1 cytokines such as
IFN-g and TNF-a, secrete high levels of pro-inflammatory cells
Factors, such as interleukin-1b (IL-1b), IL-6, IL-12, and cyclo-
oxygen-ase-2 (COX-2), have pro-inflammatory effects. M1
macrophages have potent antibacterial and antitumor activities
and are able to mediate ROS-induced tissue damage while
impairing tissue regeneration and wound healing (166–169). b)
M2 macrophages (alternately activated macrophages), which
have anti-inflammatory and immunomodulatory effects, are
polarized by Th2 cytokines (such as IL-4, IL-13) and produce
anti-inflammatory cytokines (such as IL- 10, TGF-b). Exposure
of M2 macrophages to the M1 signaling environment results in
“repolarization” or “reprogramming” of differentiated M2
macrophages and vice versa (165, 168, 170, 171). M1
macrophages and M2 macrophages have distinct functional
and transcriptional profiles, and the balance of polarization
between them determines the fate of inflamed or injured
organs. When in an infection or inflammatory response,
macrophages first exhibit the M1 phenotype to resist the
stimulation to release anti-inflammatory factors such as TNF-a
and IL-1b. At this time, M2 macrophages secrete a large amount
of IL-10 and TGF-b to inhibit inflammation, promote tissue
repair, angiogenesis, and maintain environmental stability (51).

MiRNA-125, miR-127, miRNA-146, miRNA-155 and
miRNA-let-7a/f were involved in the polarization of M1
macrophages, while miRNA-9, miRNA-21, miRNA-146,
miRNA-147 and miR-223 regulates the polarization of M2
macrophages. Compared with miR-155 and miR-142-3p,
miRNA-let-7a reduced macrophage proliferation. Macrophage
apoptosis is negatively regulated by miR-21 and miRNA-let-7e
(172–174). GATA binding protein 3(GATA3) is targeted by
miR-720, whereas BCL6 is targeted by miR-127 and miR-155,
all of which induce M1 polarization. The polarization of M2
macrophages is dependent on these two miRNAs (175, 176). On
the other hand, overexpression of miR-720 reduces M2
polarization (175). There is evidence that miR-127 and miR-
155 increase pro-inflammatory cytokines, and that M2
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macrophages can be transformed into M1 macrophages by
overexpression of miR-155 (22, 176–178). MiR-146a increases
the expression of M2 marker genes (such as CD206) in
peritoneal macrophages and decreases the expression of M1
phenotypic markers, resulting in M2 polarization of
macrophages (such as IL-12) (179).

The role of miRNAs in regulating macrophage polarization
allows it to influence the duration and intensity of the innate
immune response, which helps prevent excessive macrophage
inflammation. miRNAs may transform macrophages from pro-
inflammatory to anti-inflammatory by affecting the expression of
immune proteins (180, 181). MiR-146a and miR-155 are the
earliest expressed miRNAs in LPS-induced macrophages and are
controlled by NF-kB (182, 183). Numerous studies have
confirmed that there is a negative feedback loop in the
production of miRNAs in the NF-kB pathway (Figure 3). The
NF-kB pathway is inhibited by miR-146a, which increases
transcription of two distinct miR-146a targets: the adaptor
proteins TNF receptor associated factor 6 (TRAF6) and
interleukin-1 receptor associated kinase 1 (IRAK1) (182). MiR-
155, a pro-inflammatory miRNA, is also involved in this negative
feedback regulation, rapidly increasing NF-kB expression in
macrophages using TLR ligands and type 1 interferons (184).
Notably, miR-155 is a key component of various feed forward
networks that regulate the length and intensity of inflammatory
responses (185, 186).

Members of the same miRNA family may have completely
opposite regulatory effects. LPS-activated macrophages express
distinct miR-125a and miR-125b, which play an antagonistic role
in cellular inflammatory responses. In contrast to miR-125a, the
level of miR-125b was decreased at an early stage in LPS-induced
macrophages. Enhanced expression of miR-125b induces
stronger IFN-g responses and maintains activation of pro-
inflammatory cells by targeting innovation and research focus
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(IRF4), thereby promoting M2 macrophage polarization (187,
188). Similarly, miR-146a and miR-146b may act as a relay
system to buffer TLR4 trigger-induced expression of
proinflammatory genes (189).
4.2.2 miRNAs Regulate Macrophage-Involved
Chronic Diseases
Macrophages play a central role in the innate immune response
and are the link between the innate and adaptive immune
responses. Macrophages directly neutralize pathogens by
phagocytosis and secrete chemokines and cytokines to
coordinate the response of other immune cells (such as
neutrophils and lymphocytes) and the stroma (159).
Macrophages have a variety of functions, including: a)
phagocytosis and killing, b) antigen presentation, c) mediating
inflammatory responses, which include interleukin-1 (IL-1), IL-
6, and TNF-a with different types of cytokines to achieve (190,
191), d) Tissue repair, regeneration and fibrosis (53), e) lipid
metabolism (192).

As stated in “The Doctor’s Dilemma” (Act 1): “There is really
only one truly scientific cure for all diseases, and that is to
stimulate phagocytes.” Macrophages are key in chronic
inflammation and related pathological processes cell (193).
While macrophages are critical for effective control and
clearance of infections, clearance of pathogens and dead cells,
and promotion of tissue repair and wound healing, they may also
cause tissue damage and pathological changes during infections
and inflammatory diseases (194). What is more needed now is to
calm them down so that the inflammatory response can be
addressed. M2 macrophages play a key role in the resolution of
inflammatory responses. Phagocytic debris, damaged or dead
cells, and apoptotic neutrophils are essential functions of M2
macrophages in this process. During tissue breakdown,
FIGURE 3 | miRNA-mediated negative feedback loop of macrophage polarization to M1 type. TLR on the macrophage cell membrane, stimulated by bacterial LPS,
activates NF-kB pathway, which in turn promotes the formation of miR-146a, and the formation of miR-146a inhibits NF-kB pathway by inhibiting IRAK1 and TRAF6.
Expression and function are two distinct concepts for the same miRNA family members.
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macrophages are the main source of lipid mediators and produce
anti-inflammatory cytokines, and IL-10 and TGF-b are involved
in tissue breakdown (195, 196). After being stimulated by the
extracellular environment, macrophages can adjust their own
miRNA secretion levels to adapt to the environment. In addition,
miRNAs secreted by macrophages can also be transported to
other cells through extracellular vesicles, thereby regulating the
functions of these cells. The following summarizes the role of
miRNAs in regulating macrophages in some chronic
diseases (Table 2).

4.2.2.1 Atherosclerosis
Vascular wounds heal s lowly when st imulated by
hyperglycemia, hypertension or nicotine. In the early stage of
atherosclerosis, the vascular injury area becomes an
inflammatory microenvironment, and inflammatory cells
(such as neutrophils and macrophages) gather, making the
vascular endothelium vulnerable to injury. In the mid-stage,
lipids rich in blood impair the regenerative capacity of
endothelial cells and cause the accumulation of moxLDL in
macrophages, transforming into foam cells. In the advanced
stage, it is difficult for the vascular wound to heal. The constant
influx of lipoproteins causes the lipid clearance system of
macrophages to fail. Cholesterol accumulation in the
endoplasmic reticulum of macrophages leads to the same
effects as activation of toll-like receptors 2 (TLR2) and 4
(TLR4) and inflammatory activation of macrophages (12). It
can be seen that in the process of AS, macrophages are
gradually damaged, resulting in secondary necrosis of
apoptotic cells and aggravation of inflammation.

The regulation of macrophages by miRNAs exists in various
stages of atherosclerosis. In the early stage of trauma, monocytes-
macrophages are rapidly recruited by inflammatory factors and
differentiate into large numbers of macrophages. Under the
influence of a diminished generation of nitrotyrosine, miR-342–
5p is up-regulated in macrophages and induces macrophages to
produce pro-inflammatory factors (such as Nos2, IL-1b, and IL-6)
by an Akt (protein kinase B) 1- and miRNA-155-dependent
pathway. Up-regulation of miR-342-5p also results in decreased
expression of Bmpr2 (bone morphogenetic protein receptor, type
II). Bmpr2 mRNA may regulate the synthesis of inflammatory
mediators in macrophages by binding to miR-342-5p, which
competes with Akt1 (197). MiR-92a directly targets Krüppel-like
factor 2 (KLF2) to increase the expression of KLF

2, endothelial nitric oxide synthase, and thrombomodulin
(198). The expression of miR-155 in macrophages is increased.
miR-155 can inhibit the proliferation of macrophages and reduce
the content of diseased macrophages by targeting colony-
stimulating factor-1 (178). The down-regulation of miR-383 in
macrophages also has a similar effect. The down-regulation of
miR-383 reduces energy consumption and increases the cell
survival rate of bone marrow-derived macrophages by reducing
the inhibition of the poly (ADP-ribose)-glycopyrrolate gene
(PARG) (199). In addition, miR-10a is upregulated in
macrophages and mediates Dicer lipolytic and anti-
inflammatory effects by inhibiting ligand-dependent nuclear
receptors and promoting fatty acid oxidation (200). In the late
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stage, under the induction of Free Cholesterol-Induced
Macrophase Apoptotic Cells (FC-AM), miR-10b in resident
peritoneal macrophages (RPM) was up-regulated to reduce the
expression of ABCA1 in RPM, thereby reducing the size of late
plaques and enhancing the stability of plaques (201). Stimulated by
a variety of inflammatory mediators, including mildly oxidized
low-density lipoprotein (moxLDL), miR-155 reduces the anti-
infectious signaling proteins (Bcl-6) and phosphorylated-stat-3,
thereby enhancing the expression of inflammatory mediators in
macrophages (such as CCL2) and impairing efferocytosis. In the
hypercholesterolemia environment, miR-302a is up-regulated to
inhibit the expression of ATP-binding cassette transporter A1
(ABCA1), to stimulate the lipid-cleaning function of macrophages
with cholesterol accumulation in plaques (202).

In addition, miR-17-5p, miR-140a, and miR-146a played a
pro-inflammatory role in AS. SNHG16 is up-regulated and
inhibits the expression of miR-17-5p, the proliferation,
infectious factors, and NF-kB signaling factors are increased in
macrophages, thus promoting the inflammatory response in AS
patients and the proliferation of THP-1 macrophages (25).
Monocyte-derived miR-140a inhibits IL-10 expression,
enhances the pro-inflammatory capacity of ox-LDL-stimulated
differentiated macrophages, and reduces IL-10-mediated anti-
inflammatory response (205). MiR-146a, on the other hand,
promoted the release of ROS and NETs by inhibiting SOD2
(131). In terms of anti-inflammatory, miR-155 from THP-1
macrophages inhibits foam cell formation and enhances
cholesterol efflux (203). miR-34a regulates macrophage
cholesterol efflux and reverses cholesterol transport by
inhibiting ATP-binding cassette subfamily G member 1
(ABCG1) and liver x receptor a (204). In the aspect of tissue
repair, exosomes derived from nicotine-treated macrophages
inhibit phosphatase and tension homologue deleted from
chromosome 10 (PTEN) by releasing miR-21-3p to promote
the migration and proliferation of vascular smooth muscle cells
(VSMCs) (206).

4.2.2.2 Obesity and Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is a chronic low-grade
inflammatory disease characterized by insulin resistance (IR)
and pancreatic b -cell dysfunction. MiRNA-34a, miR-210, miR-
690, and miR-467a-5p are related to insulin metabolism. Under
the infiltration of adipose tissues, miR-34a in macrophages is up-
regulated and inhibits Krüppel-like factor 4 (Klf4), which is able to
inhibit the anti-inflammatory polarization of macrophages.
miRNA is positively correlated with insulin resistance and
metabolic inflammatory parameters (207). The macrophages in
adipose tissues directly target the NADH dehydrogenase
ubiquinone 1 a subcomplex 4 (NDUFA 4) gene by releasing
miR-210 and promoting the onset of obesity-related diabetes by
regulating glucose uptake and mitochondrial CIV activity (208).
Anti-inflammatory M2-type macrophages are important to
maintain normal metabolic homeostasis. M2-polarized bone
marrow-derived macrophages (BMDM) secrete exosomes (Exos)
containing miRNA, and miR-690 in the exosomes acts as an
insulin sensitizer by inhibiting NAD kinase (NADK), thereby
improving glucose tolerance (209). MiR-467a-5p, by targeting
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TABLE 2 | miRNAs regulate macrophage-involved chronic diseases.

miRNA Expression level Target Function Chronic diseases Ref.

miR-342-5p ↑ Akt1 pro-inflammation in early AS (197)

miR-155 ↑ CSF-1 inhibit macrophage lesion in early AS (178)

miR-92a ↑ KLF2 pro-inflammation in early AS (198)

miR-383 ↓ Parg promote macrophage survival in early AS (199)

miR-10a ↑ LCoR promote lipid metabolism in early AS (200)

miR-10b ↑ ABCA1 reduclate plaque in advanced AS (201)

miR-155 ↑ Bcl6 pro-inflammation weaken efferocytosis in advanced AS (22)

miR- 302a ↑ ABCA1 promote lipid metabolism in advanced AS (202)

miR-155 ↑ CEH inhibit foam cell AS (203)

miR-17-5p ↓ NF-kB promote lipid metabolism AS (25)

miR-34a ↑ ABCG1
liver X receptor a

pro-inflammation AS (204)

miR-146a ↑ SOD2 pro-inflammation AS (131)

miR-140a ↑ IL-10 pro-inflammation AS (205)

miR-21-3p ↑ PTEN promote tissue repair AS (206)

miR-34a ↑ KLF4 pro-inflammation promote insulin resistance Obesity (207)
T2DM

miR-210 ↑ NDUFA4 promote insulin resistance Obesity (208)
T2DM

miR-690 ↑ Nadk insulin sensitizer Obesity (209)
T2DM

miR-467a-5p ↑ THBS1 prevent insulin resistance Obesity (210)
T2DM

miR-505-3p ↓ RUNX1 pro-inflammation Obesity (211)
T2DM

miR-29 ↑ TRAF3 pro-inflammation Obesity (212)
T2DM

miR-712 ↓ LRRK2 anti-inflammation Obesity (213)
T2DM

miR-128-2 ↑ ABCA1 promote lipid metabolism Obesity (214)
ABCG1 T2DM
RXRa

miR-33a ↑ ABCA1 inhibit lipid metabolism Obesity (24)
ABCG1 T2DM

miR-221-3p ↓ JAK3 pro-inflammation RA (215)
miR-29b ↑ HBP1 pro-inflammation RA (216)

miR-132 ↑ COX2 promote osteoclastogenesis RA (217)

miR-574-5p ↑ TLR 7/8 promote osteoclastogenesis RA (218)
miR-20a ↑ RANKL inhibit osteoclastogenesis RA (219)

miR-6089 ↑ TLR4 inhibit osteoclastogenesis RA (220)

miR-148a ↓ GP130 pro-inflammation IBD (221)
IKKa
IKKb
IL1R1
TNFR2

miR-590-3p ↑ LATS1 anti-inflammation promote tissue repair IBD (222)

miR-378a-5p ↑ NLRP3 anti-inflammation promote tissue repair IBD (223)

miR-142-5p ↑ SOCS1 promote fibrosis liver cirrhosis (26)

miR-130a-3p ↓ PPARg promote fibrosis liver cirrhosis (26)

miR-4512 ↓ TLR4
CXCL2

pro-inflammation SLE (23)

miR-20a ↑ IL-18 anti-inflammation AOSD (149)

miR-181b ↑ PKCd regulate macrophage polarization Myocardial infarction (224)
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Akt1, serine/threonine protein kinase 1; CSF-1,colony-stimulating factor-1; KLF2,Krüppel-like factor 2; Parg, poly(ADP-ribose)-glycohydrolase; LCoR, ligand-dependent nuclear receptor
corepressor; Bcl6, B-cell lymphoma 6 protein; RXRa, Retinoid X receptors a; ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette subfamily G member 1; JAK3,
Janus kinase 3 tyrosine-protein kinase; COX, Cyclooxygenase; IKK, inhibitor of nuclear factor kappa-B kinase; PTEN, phosphatase and tension homologue deleted from chromosome 10;
KLF4, Krüppel-like factor 4; NDUFA4, NADH dehydrogenas, ubiquinone 1 alpha subcomplex 4; THBS1, thrombospondin 1; IL1R1, interleukin 1 receptor type 1; TNFR2, TNF receptor
superfamily member 1b; TRAF3,TNF-receptor-associated factor 3; NF-kB, nuclear factor kappa light-chain enhancer of activated B cells; HBP1, the high-mobility group box-containing
protein 1; TLR,Toll-like receptor; RANKL, receptor activation of nuclear factor-kB ligand; NLRP3, NOD-like receptor family, pyrin domain-containing 3; SOCS1,suppressor of cytokine
signaling 1; PPARg, peroxisome proliferator-activated receptor g; PKCd,protein kinase C d; AS, atherosclerosis; T2DM, diabetes mellitus type 2; AR, rheumatoid arthritis; IBD, inflammatory
bowel disease; SLE, Systemic lupus erythematosus; AOSD, Adult-onset Still’s disease.
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thrombospondin 1 (THBS1), increases the infiltration of
macrophages in adipose tissues, increases the level of IL-6 in
adipose tissues, and can prevent insulin resistance (210). Both
miR-505-3p and miR-29 have pro-inflammatory effects. miR-505-
3p is down-regulated and promotes the expression of the
transcription factor (RUNX1). CCR3, CCR4, CXCR, and
RUNX1 are increased in MF (macrophage), and this increase
promotes pro-inflammatory macrophages (211). The miR-29
exosome promotes inflammation by promoting the recruitment
and activation of circulating monocytes and macrophages in a
TNF-receptor-associated factor 3 (TRAF3) dependent manner
(212). Furthermore, our results show that pancreatic b cells
regulate systemic inflammatory tone and glucose homeostasis
through miR-29 in response to nutrient overload (212).
Persistence of pro-inflammatory M1 macrophages in diabetic
wounds contributes to the persistence of chronic inflammation
in diabetic wounds. The persistence of M1 macrophage phenotype
and its failure to remodel into M2-type macrophages play a key
role in diabetic wound injury. The level of miR-21 has staged
characteristics in diabetic wound healing. In the early and late
stages of diabetic wound repair, miR-21 level is high, while in the
middle stage of trauma, miR-21 level is significantly low. In
macrophages, M1-polarized bacteriophage showed up-regulation
of miR-21 and the pro-inflammatory factors IL-1b, TNF-a, and
IL-6. In addition, hyperglycemia induces NOX2 expression and
ROS production through the HG/miR-21/PI3K/NOX2/ROS
signaling cascade. Dysregulation of miR-21 may lead to
abnormal inflammation and persistent M1 macrophage
polarization in diabetic wounds (225). The down-regulation of
miR-712 reduces and inhibits the phosphorylation of p38 and
ERK1/2 kinases and inhibits the pro-inflammatory transformation
of macrophages by promoting the expression of apotant infectious
gene LRRk2 (213). MiR-128-2 and miR-467a-5p participate in the
regulation of macrophage cholesterol transport by inhibiting ATP-
binding cassette transporter A1 (ABCA1), ATP-binding cassette
subfamily G member 1 (ABCG1) and Retinoid X receptors a
(RXRa) (24, 214).

4.2.2.3 Rheumatoid Arthritis
Rheumatoid arthritis is chronic inflammatory arthritis that can
lead to irreversible cartilage and bone damage, characterized by
persistent synovitis, systemic inflammation, and autoantibodies
(226). The down-regulation of miR-221-3p promotes the
expression of Janus kinase 3 tyrosine-protein kinase (JAK3) and
drives M2 macrophages to show M1 cytokine characteristics,
resulting in weakened anti-inflammatory response and enhanced
pro-inflammatory response (215). The upregulation of miR-29b
targets the high-mobility group box-containing protein 1 (HBP1)
and promotes the persistent existence of CD14-positive peripheral
blood mononuclear cells (PBMs) at inflammatory sites (216). Up-
regulation of miR-20a inhibits receptor activation of NF-kB ligand
(RANKL), thereby inhibiting the proliferation and differentiation
potential of osteoclasts (219). MiR-132 and miR-574-5p target
COX2 and TLR 7/8 signaling, respectively, to promote
osteoclastogenesis and intensify rheumatoid arthritis (217, 218).
MiR-6089 inhibits lipopolysaccharide (LPS)-induced cell
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proliferation and activation of macrophase-like THP-1 cells by
inhibiting the level of TLR4 (220).

4.2.2.4 Infectious Bowel Disease
Infectious bowel disease (IBD) is a chronic and recurrent
inflammatory bowel disease that is an abnormal immune
response to intestinal microflora triggered by environmental
factors in susceptible hosts. MiR-590-3p can activate the
transcription regulated by YAP/b-catenin in macrophages,
reduce inflammatory signals and promote epithelial
regeneration by directly targeting large tumor suppressor,
homolog 1 (LATS1) (222). The down-regulation of miR-148a
increases the levels of GP130, inhibitor of nuclear factor kappa-B
kinase a (IKKa), IKKb, interleukin 1 receptor type 1 (IL1R1),
and TNF receptor superfamily member 1b (TNFR2), resulting in
the decreased activation of NF-kB and signal transducer and
activator of transcription 3 (STAT3) in macrophages and colon
tissues, and promotion of colitis (221). MiR-378a-5p, on the
other hand, plays a vital role in the repair of colitis by targeting to
nod-like receptor family, pyrin domain-containing 3
(NLRP3) (223).

4.2.2.5 Other Chronic Diseases
In liver cirrhosis and idiopathic pulmonary fibrosis, miR-142-5p
prolongs STAT6 phosphorylation by inhibiting suppressor of
cytokine signaling 1 (SOCS1) protein, leading to increased IgE,
eosinophil infiltration, fibroblast proliferation and collagen
synthesis, and aggravates tissue fibrosis (26). MiR-130a-3p
attenuates its repression of peroxisome proliferator-activated
receptor g (PPARg), which coordinates STAT6 signaling, and
also promotes tissue fibrosis (26). In systemic lupus
erythematosus (SLE), downregulation of miR-4512 leads to
high expression of TLR4 and CXCL2 in macrophages, which
release more pro-inflammatory factors (23). In adult-onset still’s
disease (AOSD), miR-20a is upregulated in macrophages and
suppresses the expression of the proinflammatory factor IL-18
(149). PKCd (protein kinase C d) is an important mediator of
inducing Mf polarization. In myocardial infarction, miR-181b
regulates macrophage polarization by targeting PKCd. We
summarize the above content in Table 2.
5 CONCLUSION AND FUTURE
PERSPECTIVES

In this paper, the latest progress of miRNA in regulating
neutrophils and macrophages is reviewed. miRNAs can
determine the resolution of inflammatory responses by
regulating the functions of neutrophils and macrophages, and
thus serve as potential therapeutic targets for chronic diseases.
miRNA can regulate the level of inflammatory factors in injured
or infected sites by influencing the differentiation and function of
neutrophils and the formation of NET, play a role in polycytosis
of self-apoptosis, and participate in the development of chronic
diseases through oxidation and hydrolysis derived from
phagocytosis and killing. For macrophages, miRNA mainly
participates in chronic diseases by regulating the polarization,
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phagocytosis, efferent cytopenia, and lipid metabolism of
macrophages, and repairing, regenerating, and fibrosis of tissues.

However, it is not difficult to find from the foregoing that
most of the current effects of miRNAs are concentrated in a
certain part of a specific disease. For example, miR-223-3p is
anti-inflammatory in the context of sepsis (135) while pro-
inflammatory in the context of COPD (147). We can conclude
from this that the effects of miRNAs are environment-specific,
that is, the functions of miRNAs on neutrophils and
macrophages are highly dependent on surrounding
environmental factors, which makes miRNAs have inevitable
side effects. Therefore, extensive experiments are needed to
evaluate the global regulatory network of miRNAs to
determine the therapeutic utility of miRNAs before they can be
put into the clinic.
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Kinase Cϵ Is Required for Macrophage Activation and Defense Against
Bacterial Infection. J Exp Med (2001) 194:1231–42. doi: 10.1084/
jem.194.9.1231

129. Wu Z, Zhao G, Peng L, Du J, Wang S, Huang Y, et al. Protein Kinase C Beta
Mediates CD40 Ligand-Induced Adhesion of Monocytes to Endothelial
Cells. PloS One (2013) 8:e72593. doi: 10.1371/journal.pone.0072593

130. Parihar SP, Ozturk M, Marakalala MJ, Loots DT, Hurdayal R, Maasdorp DB,
et al. Protein Kinase C-Delta (Pkcd), a Marker of Inflammation and
Tuberculosis Disease Progression in Humans, is Important for Optimal
Macrophage Killing Effector Functions and Survival in Mice. Mucosal
Immunol (2018) 11:496–511. doi: 10.1038/mi.2017.68

131. Zhang Y-G, Song Y, Guo X-L, Miao R-Y, Fu Y-Q, Miao C-F, et al. Exosomes
Derived From oxLDL-Stimulated Macrophages Induce Neutrophil
Extracellular Traps to Drive Atherosclerosis. Cell Cycle (2019) 18:2672–82.
doi: 10.1080/15384101.2019.1654797
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