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Dorsal Root Ganglia Homeobox
downregulation in primary sensory neurons
contributes to neuropathic pain in rats
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Hidenori Suzuki2

Abstract

Transcriptional changes in primary sensory neurons are involved in initiation and maintenance of neuropathic pain. However,

the transcription factors in primary sensory neurons responsible for neuropathic pain are not fully understood. Dorsal Root

Ganglia Homeobox (DRGX) is a paired-like homeodomain transcription factor necessary for the development of nocicep-

tive primary sensory neurons during the early postnatal period. However, roles for DRGX after development are largely

unknown. Here, we report that DRGX downregulation in primary sensory neurons as a result of post-developmental nerve

injury contributes to neuropathic pain in rats. DRGX expression was decreased in nuclei of small and medium primary

sensory neurons after spinal nerve ligation. DRGX downregulation by transduction of a short hairpin RNA with an

adeno-associated viral vector induced mechanical allodynia and thermal hyperalgesia. In contrast, DRGX overexpression

in primary sensory neurons suppressed neuropathic pain. DRGX regulated matrix metalloproteinase-9 (MMP-9) and pros-

taglandin E receptor 2 mRNA expression in the DRG. MMP-9 inhibitor attenuated DRGX downregulation-induced pain.

These results suggest that DRGX downregulation after development contributes to neuropathic pain through transcriptional

modulation of pain-related genes in primary sensory neurons.
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Introduction

Neuropathic pain often has a chronic course and

therefore can seriously impair quality of life along with

associated problems such as a loss of function, anxiety,

depression, disturbed sleep, and impaired cognition.1

However, the pharmacotherapy of neuropathic pain

remains unsatisfactory because of limited efficacy and

severe adverse effects.2 Neuropathic pain arises from

a lesion or disease of the somatosensory system.3

Functional changes in primary sensory neurons, a

major origin of neuropathic pain, play a substantial

role in initiation and maintenance of neuropathic pain.

Genetic studies have shown that profound transcription-

al changes occur in primary sensory neurons under

neuropathic pain.4–7 However, the transcription factors

responsible for neuropathic pain are not yet fully under-
stood in primary sensory neurons.

Dorsal Root Ganglia Homeobox (DRGX) is a
paired-like homeodomain transcription factor that
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represses or enhances specific gene transcription depend-
ing on cell context.8–10 DRGX is expressed in several
areas of the peripheral and central nervous systems
during embryonic development and is required for
development of the nociceptive system during embryo-
genesis.11,12 DRGX-knockout mice exhibit extensive
death of nociceptive primary sensory neurons.11,13

In the superficial dorsal spinal cord, a reduction in
the number of glutamatergic neurons and noxious
stimulation-induced Fos-immunoreactive neurons was
observed in DRGX-knockout mice.14 Consistent with
these results, DRGX-knockout mice have reduced
responses to a broad range of noxious stimuli.11After
birth, DRGX expression becomes progressively restrict-
ed to primary sensory neurons and superficial dorsal
spinal cord neurons,15,16 as is the case with a number
of homeobox genes.17–20 In general, homeobox genes
show dynamic expression changes over the course of
development and then exhibit different functions in the
adult.21 However, roles for DRGX after development
remain largely unknown in nociceptive primary sensory
neurons.

In DRGX-knockout mice, enhanced memory perfor-
mance and front-hippocampal connectivity were observed
in association with expression changes in several genes
including matrix metalloproteinase-9 (MMP-9) and pros-
taglandin E receptor 2 (EP2) mRNA expression in the
medial prefrontal cortex, amygdala, and/or hippocam-
pus.22 MMP-9 and EP2 in the primary sensory neurons
were involved in pathological pain. MMP-9 becomes
upregulated in primary sensory neurons in the first several
days after nerve injury, and MMP-9-null mice exhibit
reduced nerve injury-induced mechanical allodynia.23

MMP-9 in the DRG is also involved in paclitaxel-
induced neuropathic pain.24 EP2 is also increased in
primary sensory neurons after nerve injury, and blockade
of this receptor relieves pain after nerve injury.25,26

In this study, we explored the function of DRGX in
primary sensory neurons after development by regulat-
ing gene expression with an adeno-associated viral
(AAV) vector and found that DRGX downregulation
induced neuropathic pain, possibly through transcrip-
tional regulation.

Materials and methods

Animal models

Sprague-Dawley male rats (sixweeks old) were used for
all experiments. All experiments were carried out in
agreement with the Animal Experiments Ethical
Review Committee and approved by the President of
Nippon Medical School (Approval number 27–037).
All rats had free access to food and water and were
allowed to live individually under optimal conditions.

For surgery, all rats were subjected to deep anesthesia
with isoflurane inhalation (2%–3%). The neuropathic
pain model was induced by spinal nerve ligation
(SNL), as previously described.27 Briefly, the left (ipsi-
lateral) lumbar fifth (L5) spinal nerve was exposed and

tightly ligated with 4–0 silk thread at two sites separated
by about 1mm. For induction of tissue inflammation,
100 ml of complete Freund’s adjuvant (CFA; Merck
GKaA, Darmstadt, Germany) was injected into the left
plantar skin of the hind paw. The right (contralateral)
side was left intact for a control.

Behavioral tests

Paw withdrawal threshold and latency in hindlimbs in
response to mechanical and thermal stimuli, respectively,
were measured before and 1, 4, 7, and 14 days after SNL.
To evaluate mechanical allodynia, we used the von Frey
test (Muromachi Kikai, Tokyo, Japan).28 For acclima-
tion, rats were placed individually in plastic enclosures

with a mesh floor at least 30min before testing. Next, a
von Frey filament was applied vertically to the planter
surface of the hindpaw until the filament slightly bent.
The weakest force (g) inducing hindpaw withdrawal at
least three times in five trials was determined to be the
paw withdrawal threshold. To evaluate thermal hyper-
algesia, the Plantar test (Ugo Basile, Comerio, Italy) was
used. Briefly, rats were placed individually in enclosures
with a floor for acclimation. Next, a radiant heat gener-

ator placed under the glass floor was positioned directly
beneath the hind paw and stimulated twice with at least
a 5-min interval. The mean value of the two trials was
referred to as the paw withdrawal latency. Both tests
were performed in a blind fashion.

Quantitative reverse transcription-polymerase
chain reaction

The L5 DRG was removed, frozen in liquid nitrogen, and
stored at �80�C until RNA purification. For RNA puri-
fication, total RNA was extracted from L5 DRGs on the
injured left and intact right sides after SNL using RNAiso

Plus (Takara Bio, Shiga, Japan). Total RNA (500ng) was
reverse-transcribed with a random primer using an iScript
Select cDNA Synthesis kit (Bio-Rad, Hercules, CA).
Purity and concentration of extracted RNAs were
measured with a NanoDrop One Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA). Quantitative
polymerase chain reaction (PCR) analysis was performed
using Power SYBR Green PCR Master Mix (Thermo
Fisher Scientific) on a StepOnePlus Real-time PCR

System (Thermo Fisher Scientific). The PCR program
was initiated by 95�C for 10min, followed by 40 cycles
consisting of 95�C for 15 s and 60�C for 1min. Primer
pairs for DRGX, MMP-9, EP2, B-cell lymphoma-2
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(Bcl-2), bcl-2 associated X protein (Bax), and caspase-3
were designed using Primer blast (https://www.nih.gov/)
as the following sequences: DRGX (forward, 50-GAA
CCGAAGAGCCAAGTGGA-30 and reverse, 50-CTGG
GGGTGGAGAGTTGATG-30), MMP-9 (forward, 50-G
TCGTGGCTCTAAACCTGAC-30 and reverse, 50-GTG
GGACACATAGTGGGAGG-30), and EP2 (forward,
50-AACGTAAAGGGCCGGAATGT-30; reverse, 50-CT
GACACTTTCCACAAAGGGC-30), Bcl-2 (forward, 50-A
T GTGTGTGGAGAGCGTCAA-30; reverse, 50-ACTCA
GTCATCCACAGAGCG-30), Bax (forward, 50-GGATC
GAGCAGAGAGGATGG-30; reverse, 50-TGTTGTCCA
GTTCATCGCCA-30), and caspase-3 (forward, 50-GAGC
TTGGAACGCGAAGAAA-30; reverse, 50-AGTCCATC
GACTTGCTTCCA-30). All samples were measured in
triplicate. Relative expression was calculated according
to the 2�DDCT method, as previously described.29

In situ hybridization

To produce an in situ hybridization probe for DRGX, a
fragment of the DRGX nucleotide sequence was ampli-
fied from rat DRG-derived cDNA using forward
(50-CTTTGAGGCAGGCATGGGTA-30) and reverse
(50-GCAACCGAGCCCTAGAAAGT-30) primers and
inserted into the T Easy Vector (Promega, Madison,
WI). After restriction enzyme digestion of the vector
with Nco I, a digoxigenin-labeled antisense RNA probe
was synthesized using SP6 RNA polymerase (Roche
Diagnostics, Basel, Switzerland). For a sense probe, a
digoxigenin-labeled RNA probe was synthesized from
the vector digested with Spe I using T7 RNA polymerase
(Roche Diagnostics).

Rats were transcardially perfused with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde
in PBS. L5 DRGs were excised, post-fixed in the same
fixative overnight at 4�C, and cryoprotected in 20%
sucrose in PBS overnight at 4�C. Tissues were rapidly
frozen in dry ice/acetone and sectioned at a 10-mm thick-
ness using a cryostat (Leica Microsystems, Wetzlar,
Germany). Sections were treated with 1 mg/ml proteinase
K for 5min. After incubation in 4% paraformaldehyde/
PBS for 20min, sections were hybridized with the
digoxigenin-labeled RNA probe in hybridization buffer
(50% formamide, 5� saline-sodium citrate (SSC) pH
4.5, 1% sodium dodecyl sulfate (SDS), 50 mg/ml heparin
sodium, and 50 mg/ml yeast RNA) at 65�C overnight.
Sections were washed with a first wash buffer (50%
formamide, 5� SSC pH 4.5, and 1% SDS) at 65�C for
30min and then three times with a second wash buffer
(50% formamide and 2� SSC pH 4.5) at 65�C for
30min. Subsequently, sections were incubated with an
alkaline phosphatase-conjugated anti-digoxigenin anti-
body (1:1000; Roche Diagnostics) at 4�C overnight, fol-
lowed by staining with BM-purple (Roche Diagnostics)

at room temperature for five days. The sense probe did

not produce any signal in intact L5 DRGs, verifying

sequence-specific staining (data not shown). Images

were captured using a high-resolution microscope

equipped with a computer (Olympus, Tokyo, Japan).

To measure cell sizes of primary sensory neurons, six

DRG sections (60-mm interval) obtained from individual

rats were analyzed. The cell area was calculated using

ImageJ software (version 1.52; National Institutes of

Health, Bethesda, MD) from the manually drawn out-

line of primary sensory neurons.

Immunofluorescence

For generation of a polyclonal anti-DRGX antibody

(custom-made by Merck GKaA), two rabbits were used

for antibody production by immunization with a purified

recombinant DRGX protein conjugated to keyhole

limpet hemocyanin. Pre-immune sera were collected

from rabbits before protein injections and pooled.

Antibody production was initiated by subcutaneous injec-

tion of recombinant protein and boosted three times at

two-week intervals using the same protein dosage. After

the fourth immunization, antibody production and spe-

cificity were tested using an enzyme-linked immunosor-

bent assay (data not shown). The antibody was generated

against rat DRGX, corresponding to amino acids 92 to

110 (CERGASDQEPGAKEPMAEVT, excluding the

homeobox domain).
L5 DRG sections were pre-incubated in PBS containing

5% normal donkey serum and 0.3% Triton X-100 for

30min, followed by incubation with a rabbit anti-DRGX

antibody (1:1000) at 4�C overnight. Sections were washed in

PBS and then incubated with a secondary antibody labeled

with Alexa Fluor 488 (1:1000; Thermo Fisher Scientific) or

Alexa Fluor 594 (1:1000; Thermo Fisher Scientific) at room

temperature for 1h. Fluorescent images were captured

using a high-resolution digital camera equipped with a com-

puter (Olympus). Specificity of the polyclonal anti-DRGX

antibody was assessed using an antibody-absorption test.
DRGX antiserum (1ml in 1:1000 dilution) was incubated

overnight at 4�C with 10mg of DRGX antigen peptide

(CERGASDQEPGAKEPMAEVT), and then proc-

essed for immunofluorescence, as described above.

Immunoreactivity of DRGX antiserum in L5 DRG

was abolished by pre-absorption of the antiserum

with the antigen peptide (Supplemental Figure 1(a))

and was decreased by DRGX shRNA (Supplemental

Figure 1(b)), indicating specific staining with the

DRGX antiserum.

Adeno-associated virus vector production

pAAV plasmid encoding an enhanced green fluorescent

protein (EGFP) expression cassette was produced by
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replacing the bGH pA sequence in the pAAV-MCS plas-
mid (Agilent Technologies, Santa Clara, CA) with the
B19 promoter and EGFP gene and linearized by PCR.
To express DRGX, the coding sequence of DRGX was
amplified from rat DRG-derived cDNA using forward
(50-CCGGGACCGATCCAGCCTCCATGTTTTATTT
CCACTGCCCGCCAC-30) and reverse (50-GAATTCC
CGCGGAGGCTGGATCATACGCTCTTCTCTCCC
TCGCTC-30) primers, which were attached at the 50 ends
with a 20-bp sequence homologous to the two ends
of the linearized pAAV plasmid. The DRGX coding
sequence was incorporated downstream of the CMV
promoter in the linearized pAAV plasmid using an
In-Fusion HD cloning kit (TaKaRa Bio). To silence
DRGX expression, pAAV-H1 plasmid was produced
by incorporating the H1 promoter with a downstream
Xba I recognition site into pAAV-MCS plasmid that
contains AcGFP sequence (pAcGFP1-N1; Takara Bio)
in the multiple cloning site. A short hairpin RNA
(shRNA) for DRGX was designed using BLOCK-iT
RNAi Designer (https://rnaidesigner.thermofisher.com/
rnaiexpress/) as 50-GATGATGGGTTTCTTAGAAG
A-30. For a negative control, a scrambled shRNA
sequence was designed using siRNA Wizard Software
(https://www.invivogen.com/sirnawizard/index.php) as
5’-GTGATGGGCATAGAATTAGTT-3T. shRNA mol-
ecules were cloned into the Bam HI-Xba I site of the
pAAV-H1 plasmid.

Recombinant serotype 6 AAV vector was generated
by transfection using an adenovirus-free triple transfec-
tion method. pAAV, AAV packaging (pRepCap 6as),30

and helper (pHelper; Takara Bio) plasmids were co-
transfected into 293EB cells at a ratio of 1:1:1 using
polyethylenimine. Culture medium was collected five -
days after transfection and cell debris was removed by
centrifugation at 3000 r/min for 20min at 4�C. AAV
vector was purified using a cesium chloride density-
gradient centrifugation at 30,000 r/min for 2.5 h at
16�C. After dialysis with a Slide-A-Lyzer G2 dialysis
cassette (Thermo Fisher Scientific), the AAV vector
was concentrated using an Amicon Ultra-4 30K filter
(Millipore). Genomic titers of each AAV vector were
determined by quantitative PCR. For use, each AAV
vector was diluted with PBS to �5� 1013 vector
genomes (vg)/ml. AAV vectors (4ml) were slowly
injected into L5 DRG using a microsyringe with a 27-
gauge needle after behavioral tests.

Intrathecal drug administration

Intrathecal catheter for drug administration was
implanted in rats three days before AAV injection, as
previously described.31 Briefly, polyethylene catheter
(PE-10) filled with saline was slowly inserted into the
spinal subarachnoid space from cisterna magna to the

level of the lumbar enlargement of the spinal cord. Rats

without obvious movement disturbances, such as paral-
ysis, were used for further experiments. Seven days after

AAV injection, 10 ml of MMP-9 inhibitor or vehicle fol-

lowed by 10 ml of saline (flush) was intrathecally admin-
istered. MMP-9 inhibitor (Abcam plc, Cambridge, UK)

was dissolved in in a sterile normal saline containing

20% dimethyl sulfoxide at a concentration of 1mg/ml.

Statistical analysis

Values are expressed as mean� standard error of the

mean (SEM). SPSS software (IBM, Armonk, NY) was

used for statistical analyses. Normality of data was
assessed by Shapiro–Wilk test. The paired t-test

was used for normally distributed data sets. If normal

distribution was not assumed, the Mann–Whitney U test
was performed. Equality of variance was assessed by

Levene’s test. Welch’s or unpaired t-test was used if

homoscedasticity was rejected or not, respectively.
For multiple comparisons, normally distributed data

sets were analyzed by two-way repeated-measures

ANOVAs followed by Bonferroni tests. For non-

normally distributed data sets, Mann–Whitney U test
with Bonferroni correction was performed. P< 0.05 was

considered statistically significant.

Results

DRGX was decreased in injured DRG in

neuropathic pain

Paw withdrawal threshold and latency in response to
mechanical and thermal stimuli, respectively, were sig-

nificantly decreased for at least 14 days after SNL

(Figure 1(a) and (b)), indicating the rats had developed
neuropathic pain. Expression of DRGX mRNA was sig-

nificantly reduced in the injured L5 DRG from day 4

after SNL (Figure 1(c)). In contrast, DRGX mRNA

expression was not changed in the L5 DRG seven days
after CFA injection (Supplemental Figure 2), suggesting

that DRGX reduction was specifically caused by

nerve injury.

DRGX was decreased in small DRG neurons in

neuropathic pain

To investigate cell types expressing DRGX, in situ

hybridization for DRGX was first performed in contra-
lateral L5 DRG. DRGX mRNA expression was mainly

observed in small to medium primary sensory neurons,

most of which were nociceptive neurons (Figure 2(a)

and (b)). The percentage of DRGX mRNA-positive neu-
rons was significantly decreased 14 days after

SNL (79.4%� 4.27% for contralateral L5 DRG and
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28.2%� 3.13% for ipsilateral L5 DRG; t-test,
P< 0.0001; n¼ 6 rats per group). DRGX mRNA expres-
sion was decreased in both small and medium
primary sensory neurons, but not in large neurons

(Figure 2(a) and (b)). Similarly, DRGX protein was
mainly expressed in small to medium primary sensory
neurons in contralateral DRG, whereby it was primarily
localized in the nucleus, consistent with its known

Figure 2. Nuclear expression of DRGX protein in small to medium primary sensory neurons was decreased after SNL. (a) and (c)
Representative images of in situ hybridization (a) or immunofluorescence (c) for DRGX mRNA and protein expression, respectively, in L5
DRG from contralateral and ipsilateral sides 14days after SNL surgery. Scale bar¼ 100mm. (b) and (d) Size distribution of DRGX-positive
neurons in L5 DRG on contralateral and ipsilateral sides was assessed by in situ hybridization (b) or immunofluorescence (d) (n¼ 5–6). All
data represent mean� SEM. DRG: dorsal root ganglion; DRGX: Dorsal Root Ganglia Homeobox; L5: lumbar fifth; SNL: spinal nerve ligation.

Figure 1. Reduced DRGX expression in primary sensory neurons following SNL. (a) and (b) Mechanical allodynia (a) and thermal
hyperalgesia (b) were examined on contralateral and ipsilateral sides of rats after SNL (n¼ 6; *P< 0.05, and ***P< 0.001, vs. value on
contralateral side, by Mann–Whitney U test with Bonferroni correction for mechanical allodynia and two-way repeated-measures ANOVA
followed by paired t-test with Bonferroni correction for thermal hyperalgesia). (c) Time course of changes in DRGX mRNA expression in
L5 DRG after SNL surgery (n¼ 5–6; *P< 0.05, vs. value on contralateral side by Mann–Whitney U test with Bonferroni correction). All
data represent mean� SEM. DRG: dorsal root ganglion; DRGX: Dorsal Root Ganglia Homeobox; L5: lumbar fifth; SNL: spinal nerve
ligation.
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nuclear function (Figure 2(c) and (d)). After SNL, total

DRGX protein-positive neurons were also decreased

(75.5%� 4.65% for contralateral L5 DRG and 28.6%�
2.79% for ipsilateral L5 DRG; t-test, P< 0.0001; n¼ 5

rats per group). DRGX protein was mainly decreased in

small to medium primary sensory neurons, consistent with

in situ hybridization (Figure 2(b) and (d)).

DRGX overexpression suppressed neuropathic pain

To assess a potential role for DRGX in pain, we

knocked down DRGX expression specifically in L5

DRG neurons using an AAV vector expressing both

shRNA against DRGX and EGFP, an expression

marker. Seven days after direct microinjection of AAV

vector into intact L5 DRG, EGFP expression was

observed in L5 primary sensory neurons of all cell sizes

(Figure 3(a)), consistent with previous reports.32 DRGX

expression was significantly decreased compared with

control scramble shRNA (Figure 3(b)). DRGX down-

regulation decreased both paw withdrawal threshold and

latency in response to mechanical and thermal stimuli,

respectively (Figure 3(c)). Next, to investigate the

involvement of DRGX downregulation in neuropathic

pain, DRGX was specifically overexpressed in L5 DRG

neurons in neuropathic pain. Seven days after AAV-

DRGX injection, DRGX expression was markedly

increased compared with the control AAV (Figure 3(d)).

Nociceptive responses were unaffected by DRGX induc-

tion itself sevendays after AAV-DRGX vector infection

(Figure 3(e)). DRGX overexpression continuously allevi-

ated mechanical allodynia and thermal hyperalgesia from

Figure 3. DRGX alleviated neuropathic pain. (a) Representative image of EGFP immunofluorescence in the L5 DRG seven days after
control AAV vector injection. Scale bar¼ 100mm. (b) DRGX mRNA expression levels in the L5 DRG seven days after injection of a
control or DRGX shRNA (n¼ 6; *P< 0.05, vs. value of AAV injection encoding control scramble shRNA by unpaired t-test). (c) Paw
withdrawal response to mechanical or thermal stimuli was evaluated on AAV-injected sides. Behavioral tests were performed before and
seven days after injection of an AAV vector encoding control or DRGX shRNA into the L5 DRG of intact rats (n¼ 6; **P< 0.01, vs. value
of AAV injection encoding control shRNA, by Mann–Whitney U test for mechanical allodynia and unpaired t-test for thermal hyperalgesia).
(d) DRGX expression levels in the L5 DRG seven days after injection of AAV-control or AAV-DRGX vectors (n¼ 6; **P< 0.01, vs. value of
AAV-control injection by Welch’s t-test). The vertical axis is shown on a logarithmic scale. (e) Paw withdrawal response to mechanical or
thermal stimuli was evaluated on the ipsilateral side. AAV-control or AAV-DRGX vector was injected seven days before SNL (n¼ 6;
*P< 0.05, **P< 0.01, and ***P< 0.001, vs. value of AAV-control injection, by Mann–Whitney U test with Bonferroni correction for
mechanical allodynia and two-way repeated-measures ANOVA followed by paired t-test with Bonferroni correction for thermal hyper-
algesia). All data represent mean� SEM. AAV: adeno-associated viral vector; DRG: dorsal root ganglion; DRGX: Dorsal Root Ganglia
Homeobox; EGFP: enhanced green fluorescent protein; L5: lumbar fifth; shRNA: short hairpin RNA; SNL: spinal nerve ligation.
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day 4 after SNL, but not at day 1 after SNL (Figure 3(e)),

indicating that DRGX downregulation played an impor-

tant role in the maintenance of neuropathic pain.

DRGX modulated MMP-9 expression in DRG under a

neuropathic pain condition

To explore pain-relevant target genes of the homeobox

transcription factor DRGX, we assessed genes whose

expression was reportedly changed in the forebrain

of DRGX-knockout mice.22 Among them, we focused

on MMP-9 and EP2, both of which were increased in

DRGX-null forebrain and is involved in neuropathic

pain.23,25,26 Expression levels of MMP-9 and EP2 were

increased in L5 DRG after SNL (Figure 4(a) and (b)).

DRGX knockdown by shRNA also increased MMP-9

and EP2 expression in L5 DRG (Figure 4(c) and (d)).
DRGX overexpression suppressed SNL-induced
MMP-9 upregulation (Figure 4(e)), but not EP2 upre-
gulation (Figure 4(f)), in L5 DRG of rats. On the
other hand, an anti-apoptotic Bcl-2 was increased
by DRGX knockdown, while a pro-apoptotic Bax
and an effector caspase of apoptosis, caspase-3, were
unchanged and increased, respectively (Supplemental
Figure 3).

To further explore the MMP-9 involvement in
DRGX-mediated nociceptive modulation, MMP-9
inhibitor was intrathecally administered to rats with
DRGX knockdown by shRNA. After MMP-9 inhibitor
administration, mechanical allodynia and thermal
hyperalgesia were attenuated in rats injected with AAV
vector expressing DRGX shRNA (Figure 5).

Figure 4. DRGX suppressed MMP-9 upregulation by SNL in the L5 DRG. (a) and (b) Expression level of MMP-9 (a) or EP2 (b) mRNA in
the L5 DRG of contralateral and ipsilateral sides 14 days after SNL (n¼ 5; *P< 0.05 and **P< 0.01, vs. value on intact side by paired t-test).
(c) and (d) Expression level of MMP-9 (c) or EP2 (d) mRNA in the L5 DRG seven days after injection of a control or DRGX shRNA AAV
vector (n¼ 6; **P< 0.01, by unpaired t-test). (e) and (f) Expression level of MMP-9 (e) or EP2 (f) mRNA in the L5 DRG fourteen days after
SNL. AAV-control or AAV-DRGX vector was injected seven days before SNL (n¼ 6; *P< 0.05, by Mann–Whitney U test). Values are
expressed as percentages of values for the contralateral DRG as baseline. All data are mean� SEM. AAV: adeno-associated viral vector;
DRG: dorsal root ganglion; DRGX: Dorsal Root Ganglia Homeobox; EP2: prostaglandin E receptor 2; L5: lumbar fifth; MMP-9: matrix
metalloproteinase-9; SNL: spinal nerve ligation.
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Discussion

This study first demonstrates that DRGX, a critical

transcription factor for the development of nociceptive

primary sensory neurons, has a significant role in normal

nociception of adult rats. Moreover, DRGX downregu-

lation in primary sensory neurons led to mechanical

allodynia and thermal hyperalgesia and was involved

in the maintenance of neuropathic pain. Restoration of

DRGX expression alleviated neuropathic pain in associ-

ation with blockade of MMP-9 upregulation.
DRGX modulated nociceptive responses in primary

sensory neurons most likely through transcriptional reg-

ulation of pain-related genes. Both DRGX mRNA and

protein were mainly expressed and significantly down-

regulated after nerve injury in small-to-medium primary

sensory neurons, most of which are thought to be noci-

ceptive neurons. DRGX protein was distributed in the

nuclei of primary sensory neurons, consistent with its

role in transcriptional regulation. However, pain-

related genes modulated by DRGX, a transcription

factor known to repress9,10 or enhance8 transcriptional

activity in a cell-context dependent manner, remain

poorly understood, while mechanisms modulating

DRGX expression (Phox2b, PRDM12, and Tlx3) or

activity (phosphorylation though Tlx3 and conformation-

al change by prolyl isomerase PIN1) have been reported.

However, in the medial prefrontal cortex, amygdala, or

hippocampus of DRGX-null mice, mRNA levels of

dozens of genes were reportedly changed.22 Therefore,
DRGX downregulation-induced pain was most likely
mediated by transcriptional regulation of pain-related
genes. Consistent with this idea, DRGX downregulation
induced upregulation of MMP-9 and EP2 in the DRG, as
well as hyperalgesia. Furthermore, DRGX overexpres-
sion counteracted the neuropathic pain andMMP-9 upre-
gulation induced by SNL, while hyperalgesia induced by
DRGX downregulation was attenuated by MMP-9 inhib-
itor. In contrast, EP2 upregulation after SNL was not
suppressed by DRGX overexpression, suggesting that
other mechanisms such as a cAMP/PKA signaling path-
way33 dominantly mediated the EP2 upregulation. MMP-
9 and EP2 were previously reported to be increased in
small and medium DRG neurons after nerve
injury.23,24,26 MMPs are widely involved in inflammation
and tissue remodeling by cleaving extracellular matrix
proteins, cytokines, and chemokines.34,35 Among them,
MMP-9 upregulation in primary sensory neurons upon
nerve injury leads to spinal microglial activation through
pro-interleukin-1b cleavage, contributing to neuropathic
pain.23 Similarly, EP2, a receptor for prostaglandin E2, is
well known to be involved in neuropathic33 and inflam-
matory36,37 pain through the cAMP/PKA signaling path-
way.26 However, impact of DRGX downregulation on
neuronal activity remains unknown, although functional
connectivity between medial prefrontal cortex and dorsal
hippocampus during behavioral tasks were increased
in DRGX knockout mice.22 Overall, DRGX likely

Figure 5. MMP-9 inhibitor alleviated mechanical allodynia and thermal hyperalgesia induced by DRGX knockdown. Paw withdrawal
response to mechanical or thermal stimuli was evaluated on the AAV-injected side. Behavioral tests were performed before and seven days
after injection of an AAV vector encoding DRGX shRNA into the L5 DRG of intact rats and 1, 3, and 5 h after intrathecal administration of
MMP-9 inhibitor or vehicle (n¼ 5; *P< 0.05, and **P< 0.01, vs. value on vehicle administration, by Mann–Whitney U test with Bonferroni
correction for mechanical allodynia and two-way repeated-measures ANOVA followed by unpaired t-test with Bonferroni correction for
thermal hyperalgesia). All data represent mean� SEM. AAV: adeno-associated viral vector; DRG: dorsal root ganglion; DRGX: Dorsal
Root Ganglia Homeobox; i.t.: intrathecal administration; MMP-9: matrix metalloproteinase-9.
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modulated pain behaviors through transcriptional modu-

lation of pain-related genes.
Roles for DRGX in primary sensory neurons seem to

change throughout cell development. Functional signif-

icance of DRGX in adult primary sensory neurons

has remained speculative, although DRGX was well-

characterized as a crucial transcription factor for

establishment and maintenance of DRG to dorsal

spinal cord circuitry during embryonic development.

DRGX-null mutant mice reportedly show a marked

loss of small-diameter primary sensory neurons and glu-

tamatergic neurons in the superficial spinal dorsal

horn.13,14 Accordingly, DRGX deficiency during devel-

opment exhibits congenital hypoalgesia in adult mice.

However, primary sensory neurons rarely die after

peripheral nerve injury in rats following development,38

despite DRGX downregulation. Consistent with this, a

pro-apoptotic Bax and an anti-apoptotic Bcl-2 were

unchanged and increased rather than decreased in the

adult rat DRG after DRGX knockdown in this study.

On the other hand, an effector caspase of apoptosis,

caspase-3, which is also involved in neuronal plasticity

apart from apoptosis,39 was increased. Therefore, apo-

ptosis or its associated signaling pathway may have a

potential role in DRGX function in pain modulation.

Differences in functional significance during and after

development are commonly observed, especially for neu-

rotrophic factors.40 Notably, mice with a null mutation

for nerve growth factor (NGF), a key neurotrophic

factor for nociceptive primary sensory neurons during

development,41 showed cell death of nociceptive primary

sensory neurons during development and resultant

diminished responsiveness to pain.42 However, after

development, NGF could reportedly attenuate neuro-

pathic pain43 or produce hyperalgesia in naı̈ve animals,44

indicating a developmental change in cellular functions.
In conclusion, we demonstrated the importance of

DRGX for normal nociception in adult rats. Moreover,

DRGX downregulation in primary sensory neurons was

involved in the maintenance of neuropathic pain after

nerve injury, possibly through modulation of MMP-9

expression. Analysis of roles for DRGX in primary sen-

sory neurons after development will provide further

insights into transcriptional regulation of nociception

and neuropathic pain.
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