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Abstract
The incubation period and generation time are key characteristics in the analy-
sis of infectious diseases. The commonly used contact-tracing–based estimation
of incubation distribution is highly influenced by the individuals’ judgment on
the possible date of exposure, and might lead to significant errors. On the other
hand, interval censoring–based methods are able to utilize a much larger set of
traveling data but may encounter biased sampling problems. The distribution of
generation time is usually approximated by observed serial intervals. However, it
may result in a biased estimation of generation time, especially when the disease
is infectious during incubation. In this paper, the theory from renewal process is
partially adopted by considering the incubation period as the interarrival time,
and the duration between departure fromWuhan and onset of symptoms as the
mixture of forward time and interarrival time with censored intervals. In addi-
tion, a consistent estimator for the distribution of generation time based on incu-
bation period and serial interval is proposed for incubation-infectious diseases.
A real case application to the current outbreak of COVID-19 is implemented. We
find that the incubation period has amedian of 8.50 days (95% confidence interval
[CI] [7.22; 9.15]). The basic reproduction number in the early phase of COVID-19
outbreak based on the proposed generation time estimation is estimated to be
2.96 (95% CI [2.15; 3.86]).
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1 INTRODUCTION

In epidemiology, incubation period is the time between
the infection of an individual by a pathogen and the man-
ifestation of symptoms, while generation time is defined
as the time between the infection of a primary case and
its secondary cases (Fine, 2003; Svensson, 2007). Both
are vital clinical characteristics that depict an epidemic
and are essential for policy making. For example, a good

understanding of incubation period offers an optimal
length of quarantine, and a good understanding of genera-
tion time is essential in estimating the transmission poten-
tial of a disease measured by the basic reproduction num-
ber 𝑅0 (Farewell et al., 2005; Wallinga and Lipsitch, 2007;
Nishiura, 2010).
In most of literature, such as Li et al. (2020) and

Guan et al. (2020), the distribution of incubation period is
either described through a parametric model, for example,
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log-normal and Weibull, or, its empirical distribution
based on the observed incubation period from contact-
tracing data. However, contact-tracing data are usually
difficult to obtain, and can be highly influenced by the indi-
vidual’s judgment on the possible date of exposure rather
than the actual date of exposure, which, in turn, might not
be accurately monitored and determined leading to signif-
icant errors (Cowling et al., 2007).
An alternative approach to study incubation period is

to take advantage of the mechanism of truncation or cen-
soring. Lui et al. (1988), De Gruttola and Lagakos (1989),
Struthers and Farewell (1989), and Kuo et al. (1991) esti-
mated incubation distribution of contagious diseases using
external truncation or censoring information. Kuk andMa
(2005) studied the incubation period of SARS by decon-
volution, but the proposed method was only feasible for
the disease that is noninfectious during incubation period,
which is not the case for COVID-19. It also assumed that
the ability of infectiousness is uniform during the infec-
tious period, which is a strong assumption. In the stud-
ies of Lessler et al. (2009) and Reich et al. (2009), double
censoring was used to characterize the problem caused by
daily reports rather than continuous observed symptoms
onset time. Nishiura and Inaba (2011) used 72 confirmed
imported cases that traveled to Japan from Hawaii during
the early phase of the 2009 H1N1 pandemic to estimate the
incubation by addressing censoring and infection age.
For COVID-19, Backer et al. (2020) and Linton et al.

(2020) used confirmed cases detected outside Wuhan to
estimate the distribution of the incubation by interval-
censoring likelihood. In their studies, for each selected
case, a censored interval for incubation period was
obtained by travel histories and dates of symptoms onset,
and the distribution of incubation was then estimated by
fitting censored intervals into Weibull, Gamma, and log-
normal.However, such estimationsmay lead to biased esti-
mations of incubation period due to the biased sampling
issues. Qin et al. (2020) adopted the theory from renewal
process and carefully selected the studying cohort to over-
come the biased sampling problems but fitted a continu-
ous parametricmodelwith discrete observations, while the
discreteness of data is in fact a sort of interval censoring
caused by daily reports.
To the best of our knowledge, generation time is usually

directly estimated by the time difference between symp-
toms onset of successive cases in a chain of transmis-
sion rather than the actual time of infection, that is, the
serial interval. This is because it is challenging to obtain
both the corresponding infection dates of the primary
case and its secondary cases in a chain of transmission,
while the dates of symptoms onsets are relatively easier to
obtain. However, the distribution of serial interval may be
biased for estimating generation time, especially when the

disease is infectious during incubation, in which the vari-
ance could be overestimated (Britton and Scalia Tomba,
2019). As a result, the subsequent quantities estimated
based on the generation time is biased. For example, the
basic reproduction number, indicating the spreading abil-
ity of an infectious disease, would be underestimated. Note
that COVID-19 is incubation-infectious, hence the estima-
tion of generation time simply based on observed serial
intervals is not consistent.
To overcome the issues aforementioned, in this paper

we estimate the distribution of incubation period using
the well-studied renewal process where there exists a cen-
soring event within the incubation period. Vardi (1982a,
1982b, 1989) discussed nonparametric maximum likeli-
hood estimation based on length-biased sampling and
renewal process with incomplete renewal data, and fur-
ther the multiplicative censoring problem. A brief review
can be found in Qin (2017). Issues related to the length-
biased sampling and interval-censoring sampling are both
taken into consideration in the estimation of incubation
distribution in this study. We have shown that under
mild assumptions, parameters in the incubation distri-
bution are identifiable and enjoy desirable asymptotic
properties. Furthermore, a consistent estimator for the
distribution of generation time is also proposed based
on incubation period and observed serial interval for
incubation-infectious and incubation-noninfectious dis-
eases, respectively. Our approaches increase available sam-
ple size and utilize censored information in the early phase
of an epidemic outbreak.
The rest of this paper is organized as follows. Sec-

tion 2 describes the motivation data. In Section 3, we pro-
pose algorithms to estimate the distribution of incubation
period and show that under mild assumptions the model
parameters are identifiable and enjoy desirable asymptotic
properties. In Section 4, we propose algorithms to estimate
the distribution of generation time. Simulation studies are
performed in Section 5, and the analyzed results to the
current outbreak of COVID-19 in China are shown in Sec-
tion 6. Further discussion is given in Section 7.

2 MOTIVATING DATA

The COVID-19 outbreak in Wuhan, China, has attracted
worldwide attention (Huang et al., 2020; Tu et al., 2020;
Wang et al., 2020). Publicly available data were collected
from provincial and municipal health commissions in
China and ministry of health in other countries and areas.
The following details were collected on each confirmed
case: case ID, region, age, gender, date of symptoms onset,
date of diagnosis, history of travel, or previous residency
in Wuhan, and, if available, related information regarding
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contact historywith other confirmed cases. As ofMarch 31,
2020, a total of 14,829 lab-confirmed COVID-19 cases were
reported outside Hubei Province by the National Health
Commission of China.
In the collected data, 645 chains of transmission were

found in the collected data, and 𝑛 = 198 of them have
their dates of symptoms onset available, which can be used
to calculate serial intervals (You et al., 2020). These 198
observed serial intervals, {𝑠𝑗, 𝑗 = 1, … , 𝑛}, range from −13
to 21 days, with amean of 4.6 days and quartiles of 1, 4, and
7 days. The same subset of the data used in Qin et al. (2020)
is considered in this study for the estimation of the incu-
bation period. This subset includes the confirmed cases
that left Wuhan between January 19 and January 23, 2020,
and excludes cases that developed symptoms before leav-
ing Wuhan. There is a total of 𝑚 = 1211 cases that meet
such criteria in the collected data. These 1211 observed
durations between departure from Wuhan and symptoms
onset outside Hubei Province, {𝑡𝑗, 𝑗 = 1, … ,𝑚}, range from
0 to 22 days with a mean of 5.4 days and quartiles of 2, 5,
and 8 days. It is worth noting that Bi et al. (2020) reported
that 191 travelers developed symptoms 4.9 days on average
after arriving in Shenzhen (Guangdong Province, China).
It is arguable that people who left Wuhan might have

higher chance to be infected on the day of departure since
it is easier to be exposed to the human-to-human transmit-
ted virus in a crowded environment. Hence in our dataset,
there might be two types of individuals: (a) those who
got infected during their stay in Wuhan and developed
symptoms outside Hubei Province, and (b) those who got
infected at the time of leaving Wuhan, for example, at the
airport, railway station, or on the way fromWuhan to their
destinations. Thus, the observed durations between depar-
ture from Wuhan and symptoms onset are from a mix-
ture of two distributions: the time between departure from
Wuhan and symptoms onset (forward time), and the com-
plete incubation period. Note that the selected cohort is
length-biased since the ones with shorter incubation peri-
ods who got infected were less likely to be captured as
they had higher chance to develop symptoms before leav-
ingWuhan. The length-biased issue cannot be tested easily
in the data but has naturally arisen from the data collection
process, since only those who developed symptoms after
departure fromWuhan can be collected.

3 ESTIMATION OF INCUBATION
PERIOD

In this section, the distribution of incubation is estimated
through theory of renewal process and interval censoring
with a mixture distribution. Here we have to assume that
the distribution of incubation period is same between the

Wuhan residents who had a schedule to leave Wuhan and
the general population. Furthermore, given an individual
who got infected in Wuhan and developed symptoms out-
side Wuhan, it is reasonable to assume that the event of
departing fromWuhan is independent of the event of infec-
tion and manifestation of symptoms. Hence, we can con-
sider the incubation period as a continuous random vari-
able, 𝐼, as the sum of forward and backward times, and
the duration between departure fromWuhan and onset of
symptoms as the forward time 𝑉 in renewal process (see
Figure 1 as an illustration). Suppose that 𝐼 and𝑉 are contin-
uous and let 𝑓𝐼(⋅) be the probability density function (pdf)
of incubation period, and ℎ(⋅) be the pdf of forward time.
According to Qin (2017) and Qin et al. (2020), we have

ℎ(𝑡) =
𝑆(𝑡)

𝐸(𝐼)
=

∫ +∞
𝑡

𝑓𝐼(𝑦)𝑑𝑦

∫ +∞
0

𝑦𝑓𝐼(𝑦)𝑑𝑦
, 𝑡 > 0, (1)

where 𝑆(⋅) is the survival function and 𝐸(𝐼) is the expecta-
tion of 𝐼.
Note that 𝐼 is not observable in our dataset but 𝑉

is observable with observations of {𝑡𝑗}, 𝑗 = 1, … ,𝑚. From
Equation (1), we can see that the forward time 𝑉 should
have a monotonically decreasing density. However, the
observed density of {𝑡𝑗} does not seem to be monotone (see
Figure 3). A possible explanation toward it would be that
{𝑡𝑗} are not observations of 𝑉 only but mixture of 𝑉 and
𝐼. As aforementioned, due to the nature of a human-to-
human infectious disease, it is easier to get infected at the
airport/train station or on the flight/train/bus, namely, the
infection occurs at the departure. In such case, the dura-
tion between departure from Wuhan and onset of symp-
toms is no longer the forward time, but the complete incu-
bation period. Taking such possibility into account, let𝜋 be
the (unknown) probability of getting infected at the depar-
ture time from Wuhan, and 1 − 𝜋 be the probability of
getting infected before departure. Therefore, the duration
between departure from Wuhan and symptoms onset fol-
lows a mixture distribution with density

𝑄(𝑡; 𝜽, 𝜋) = 𝜋𝑓𝐼(𝑡; 𝜽) + (1 − 𝜋)ℎ(𝑡; 𝜽), 𝑡 > 0, (2)

where 𝜽 is the model parameter in 𝑓𝐼(⋅) and ℎ(⋅).
Accounting for the error caused by daily reports, we can

simply let 𝑡+
𝑗
= 𝑡𝑗 + 0.5 and 𝑡−𝑗 = 𝑡𝑗 − 0.5. The estimates of

𝜽 and 𝜋 can be estimated by directly maximizing the like-
lihood function with interval censoring, that is,

𝐿(𝜽, 𝜋; 𝑡1, … , 𝑡𝑚) =

𝑚∏
𝑗=1

[
𝜋{𝐹𝐼(𝑡

+
𝑗
; 𝜽) − 𝐹𝐼(𝑡

−
𝑗
; 𝜽)}

+ (1 − 𝜋){𝐻(𝑡+
𝑗
; 𝜽) − 𝐻(𝑡−

𝑗
; 𝜽)}

]
, (3)
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F IGURE 1 Illustration of complete incubation period and forward time Note. Red circle: getting infected; blue column: departure from
Wuhan; red cross: symptoms onset. The shaded area is the period during which our cohort sample departed fromWuhan. This figure shows
five types of individuals. Only those who departed fromWuhan in the shaded area were collected in our cohort. (A) Symptoms onset in
Wuhan, not in our cohort; (B and C) captured in our cohort with infection before departure; (D) captured in our cohort with infection at
departure;
(E) infection outside Wuhan, not in our cohort. This figure appears in color in the electronic version of this paper, and any mention of color
refers to that version.

where 𝐹𝐼 and 𝐻 are the cumulative distribution func-
tions (cdf) of 𝐼 and 𝑉, respectively. We denote the
maximum likelihood estimate of (𝜽⊤, 𝜋)⊤ by (𝜽⊤, 𝜋)⊤ =
arg sup𝜽,𝜋 𝓁(𝜽, 𝜋), where𝓁(𝜽, 𝜋) = log 𝐿(𝜽, 𝜋; 𝑡1, … , 𝑡𝑚). In
Web Appendix B, we will provide an alternative interpre-
tation for the likelihood function.
In general, it is difficult to derive asymptotic proper-

ties of the estimator for interval-censoring cases (see Gen-
tleman and Geyer, 1994; Lehmann and Romano, 2006).
However, the asymptotic properties can be proved under
our particular setting, in which we have identical inter-
val lengths for all observations, namely 𝑡+

𝑗
− 𝑡−

𝑗
= 1 for

𝑗 = 1,… ,𝑚. Let (𝑡−
𝑗
, 𝑡+
𝑗
) for 𝑗 = 1,… ,𝑚 be independently

and identically distributed observations from the mixture
model (2). Define a pseudo-pdf for themixedmodel (2) as

𝑄𝑝(𝑡𝑗; 𝜽, 𝜋) = 𝜋{𝐹𝐼(𝑡
+
𝑗
; 𝜽) − 𝐹𝐼(𝑡

−
𝑗
; 𝜽)}

+ (1 − 𝜋){𝐻(𝑡+
𝑗
; 𝜽) − 𝐻(𝑡−

𝑗
; 𝜽)}. (4)

It is straightforward to show that ∫ +∞
−∞

𝑄𝑝(𝑡; 𝜽, 𝜋)𝑑𝑡 = 1

by the Fubini theorem. For notational sim-
plicity, let 𝐹𝐼(𝑡

+
𝑗
; 𝜽) − 𝐹𝐼(𝑡

−
𝑗
; 𝜽) = 𝑓

𝑝
𝐼 (𝑡𝑗; 𝜽) and

𝐻(𝑡+
𝑗
; 𝜽) − 𝐻(𝑡−

𝑗
; 𝜽) = ℎ𝑝(𝑡𝑗; 𝜽). The corresponding

pseudo-log-likelihood (loglik) for the mixed model is

𝓁(𝜽, 𝜋) =

𝑚∑
𝑗=1

log{𝜋𝑓
𝑝
𝐼 (𝑡𝑗; 𝜽) + (1 − 𝜋)ℎ

𝑝(𝑡𝑗; 𝜽)}. (5)

Define two likelihood ratio functions:

𝑅1(𝜽, 𝜋) = 2{sup
𝜽,𝜋
𝓁(𝜽, 𝜋) − 𝓁(𝜽, 𝜋)} = 2{𝓁(𝜽, 𝜋) − 𝓁(𝜽, 𝜋)},

𝑅2(𝜋) = 2{sup
𝜽,𝜋
𝓁(𝜽, 𝜋) − sup

𝜽
𝓁(𝜽, 𝜋)} = 2{𝓁(𝜽, 𝜋)

− sup
𝜽
𝓁(𝜽, 𝜋)}.

Let (𝜽⊤0 , 𝜋0)
⊤ be the true parameter value. For nota-

tional simplicity, let 𝑔(𝑡; 𝝋) denote the density in (4) with
𝝋 = (𝜽⊤, 𝜋)⊤, that is, 𝑔(𝑡; 𝝋) = 𝑄𝑝(𝑡; 𝜽, 𝜋). In addition, let
𝑞𝜽 denote the dimension of 𝜽, ∇𝝋 = 𝜕∕𝜕𝝋 and ∇𝝋𝝋⊤ =
𝜕2∕(𝜕𝝋𝜕𝝋⊤). The upcoming expectations are taken with
respect to the true density 𝑔(𝑡; 𝝋0), where 𝝋0 = (𝜽⊤0 , 𝜋0)

⊤.
To establish the asymptotic result, we make the following
regularity condition.

Condition 1. Let 𝑇 ∼ 𝑔(𝑡; 𝝋0), and

(a) 𝐸‖∇𝝋 log{𝑔(𝑇; 𝝋0)}‖ < ∞;
(b) 𝑈 = −𝐸[∇𝝋𝝋⊤ log{𝑔(𝑇; 𝝋0)}] is finite and nonsingular;
(c) 𝐸[∇𝝋𝝋⊤ log{𝑔(𝑇; 𝝋)}] is continuous for 𝝋 in a neighbor-

hood of 𝝋0.

The nonsingularity of 𝑈 in Condition 1(b) excludes the
cases where at least one of 𝜽 and 𝜋 is not identifiable. The-
orem 1 shows the asymptotic properties of the estimator
(𝜽⊤, 𝜋)⊤ if the true parameter value is an interior point in
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the parameter space, while Theorem 2 shows the case if 𝜋0
is at the boundary.

Theorem 1. Suppose that 𝑔(𝑡; 𝝋) and 𝝋0 satisfy Con-
dition 1, and that (𝜽⊤0 , 𝜋0)

⊤ is an interior point in the

parameter space. As𝑚 → ∞, (a)
√
𝑚(𝜽⊤ − 𝜽⊤0 , 𝜋 − 𝜋0)

⊤
𝑑
'→

𝑁(0,𝑈), where
𝑑
'→ means convergence in distribution; (b)

𝑅1(𝜽0, 𝜋0)
𝑑
'→ 𝜒2𝑞𝜽+1

; (c) 𝑅2(𝜋0)
𝑑
'→ 𝜒21 .

We partition 𝑈 as 𝑈 = (𝑈𝑖𝑗)1≤𝑖,𝑗≤2, where 𝑈11 is a
𝑞𝜽 × 𝑞𝜽 matrix. Let 𝑥+ = max(𝑥, 0), 𝑥− = min(𝑥, 0), 𝑌1 ∼
𝑁(0, 𝐼𝑞𝜽 ), and 𝑌2 ∼ 𝑁(0, 1) such that 𝑌1 and 𝑌2 are inde-
pendent of each other.

Theorem 2. Suppose that 𝑔(𝑡; 𝝋) and 𝝋0 satisfy
Condition 1, and that 𝜽0 is an interior point in the
parameter space of 𝜽 and 𝜋0 = 1. As𝑚 → ∞,

(𝑎)
√
𝑚

(
𝜽 − 𝜽0
𝜋 − 𝜋0

)
𝑑
'→

(
𝑈
−1∕2
11 𝑌1 − 𝑈

−1
11 𝑈12(𝑈22 − 𝑈

⊤

12𝑈
−1
11 𝑈12)

−1∕2(𝑌2)−
(𝑈22 − 𝑈

⊤

12𝑈
−1
11 𝑈12)

−1∕2(𝑌2)−

)
;

(b) 𝑅1(𝜽0, 𝜋0)
𝑑
'→

1

2
𝜒2𝑞𝜽 +

1

2
𝜒2𝑞𝜽+1

; and (c) 𝑅2(𝜋0)
𝑑
'→

1

2
𝜒20 +

1

2
𝜒21 .
If 𝜋0 = 0, then in the right-hand side of the formula in (a)

(𝑌2)− should be replaced with (𝑌2)+.

The proof of Theorems 1 and 2 is given in Web
AppendixC.We can easily verify that the interval-censored
mixture distribution (4) for Gamma,Weibull (except when
shape parameter of Gamma or Weibull is 1, ie, the expo-
nential distribution), or log-normal distribution satisfies
Condition 1 and thus the above two theorems hold for our
estimates.

4 ESTIMATION OF GENERATION
TIME

In this section, we study the estimation of generation time
based on serial interval and incubation time under proper
assumptions. The estimation of generation time only sub-
jects to symptomatic population. Suppose an infector got
infected at calendar time 𝑇0 and showed symptoms at
𝑇1. This infector infected an infetee at calendar time 𝑇2,
and the infectee showed symptoms at 𝑇3. Let 𝐺 = 𝑇2 − 𝑇0
denote the generation time, 𝑆 = 𝑇3 − 𝑇1 denote the serial
interval, 𝐼1 = 𝑇1 − 𝑇0 and 𝐼2 = 𝑇3 − 𝑇2 be the incubation

period of infector and infectee, respectively. It is straight-
forward to see that 𝐺 = 𝑆 + 𝐼1 − 𝐼2.
If a disease is noninfectious during the incubation

period (eg, SARS; Lipsitch et al., 2003), then we can natu-
rally assume 𝐼1 ⟂⟂ 𝑆 and 𝐼2 ⟂⟂ 𝐺. Then it follows that 𝑓𝐺 =
𝑓𝑆 , where 𝑓𝐺 and 𝑓𝑆 are the pdfs of 𝐺 and 𝑆, respectively,
and the generation time can be estimated by serial interval
without inducing bias. However, such case does not apply
for COVID-19 as there were reported asymptomatic infec-
tions (Rothe et al., 2020). Instead, we assume 𝐼1 ⟂⟂ 𝐺, 𝐼2
⟂⟂ 𝐺, 𝐼1 ⟂⟂ 𝐼2. The first part states that the incubation
period of the primary case is independent of its gen-
eration time. This is true if the disease is infectious
during incubation period, and in addition, the ability
to pass the pathogens to susceptible host is indepen-
dent of whether the symptoms are being developed.
The rest is straightforward due to the standard assump-
tion of independence between individuals. In addition,
we assume that the distribution of incubation period,
generation time, and serial interval is homogeneous
among all individuals. Furthermore, to ensure that the
observed serial intervals could reflect the serial inter-
val of general population, we assume that the missing-
ness (failure of establishing contact-tracing) was inde-
pendent of the length of serial interval. Hence, we
obtain that

𝑓𝐺 ∗ 𝑓−𝐼 ∗ 𝑓𝐼 = 𝑓𝑆, (6)

where the symbol ∗ represents convolution, 𝑓𝐺 . 𝑓𝑆 , 𝑓𝐼 ,
and 𝑓−𝐼 are the pdfs of 𝐺, 𝑆, 𝐼, and −𝐼, respectively.
Thus, 𝑓𝐺 is identifiable through characteristic function
(chf) (or Fourier transformation). The chf of 𝐺 is 𝜙𝐺(𝑡) =
𝜙𝑆(𝑡)∕𝜙𝐼(𝑡)𝜙−𝐼(𝑡), where 𝜙𝑆(𝑡), 𝜙𝐼(𝑡) and 𝜙−𝐼(𝑡) are the
chf of 𝑆, 𝐼, and −𝐼, respectively. By the continuous inver-
sion formula (Durrett, 2019), the pdf of the generation
time is

𝑓𝐺(𝑦) =
1

2𝜋 ∫
+∞

−∞

𝑒−𝑖𝑡𝑦
𝜙𝑆(𝑡)|𝜙𝐼(𝑡)|2 𝑑𝑡, (7)

where 𝑖 =
√
−1, 𝜙𝐼(𝑡) can be approximated through the

estimated distribution of 𝐼 introduced in previous sec-
tion, and 𝜙𝑆(𝑡) can be estimated by the observed serial
intervals, {𝑠1, … , 𝑠𝑛}, along with a proper kernel 𝐾(⋅),
that is,

𝜙𝑆(𝑡) = ∫
∞

−∞

𝑒𝑖𝑡𝑦
1

𝑛ℎ𝑛

𝑛∑
𝑗=1

𝐾

(
𝑦 − 𝑠𝑗

ℎ𝑛

)
𝑑𝑦 =

1

𝑛

𝑛∑
𝑗=1

𝑒𝑖𝑡𝑠𝑗𝜙𝐾(𝑡ℎ𝑛),

(8)
where ℎ𝑛 is the bandwidth. Note that 𝐺 must be positive,
so to account for the boundary bias, Karunamuni (2009)
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proposed to use boundary kernel 𝐾𝑐(𝑡; 𝑦) = 𝑎0(𝑦)𝐾(𝑡) +
𝑎1(𝑦)𝐾

′(𝑡) with

(
𝑎0(𝑦)

𝑎1(𝑦)

)
=

⎛⎜⎜⎜⎝
∫ 𝑦∕ℎ𝑛
−∞

𝐾(𝑡)𝑑𝑡 ∫ 𝑦∕ℎ𝑛
−∞

𝐾′(𝑡)𝑑𝑡

∫ 𝑦∕ℎ𝑛
−∞

𝑡𝐾(𝑡)𝑑𝑡 ∫ 𝑦∕ℎ𝑛
−∞

𝑡𝐾′(𝑡)𝑑𝑡

⎞⎟⎟⎟⎠
−1(

1

0

)
.

at the point 𝑦 > 0. Denote the Fourier transformation
𝜙𝐾𝑐 (𝑡) = ∫ ∞

−∞
𝑒𝑖𝑡𝑢𝐾𝑐(𝑢)𝑑𝑢. Hence, a consistent estimator

for 𝑓𝐺 is defined as

𝑓𝐺(𝑦) =
1

2𝑛𝜋

𝑛∑
𝑗=1

∫
𝑀𝑛

−𝑀𝑛

Re 𝑒𝑖𝑡(𝑠𝑗−𝑦)
𝜙𝐾𝑐 (𝑡ℎ𝑛)|𝜙𝐼(𝑡)|2 𝑑𝑡, (9)

where 𝑀𝑛 → ∞, ℎ𝑛 → 0 as 𝑛 → ∞, and Re is the opera-
tor taking the real part of a complex value. This estimator
is consistent at any interior point in the support of 𝐺, pro-
vided that the model for incubation period 𝐼 is correctly
specified (Liu and Taylor, 1989). It is equivalent to specify-
ing a kernel density or a kernel chf, and possible choices
are the Vallée Poussin (Fejér) kernels or Cesàro kernels
(Devroye, 1989; Anastassiou, 2000). Note that the genera-
tion time must be positive. To correct the bias for devon-
volution at the boundary 𝐺 = 0, a second-order correction
to remove the boundary effect was proposed by Karuna-
muni (2000, 2009). The density function 𝑓𝐺 can also be
obtained by imposing a parametric model on generation
time and fit the density for serial interval, which relies
heavily onmodel specification.More details about the con-
ditions and properties of deconvolution is shown in Web
Appendix D.

5 SIMULATION STUDY

In this numerical study, we assess the performances of our
proposedmethod and the followingmethods in estimation
of incubation period:

1. The renewal process based mixture model in Qin et al.
(2020), which is denoted as Qin’s method hereafter,
note that the original method in Qin et al. (2020) is
not suitable to be applied in our simulation as the mix-
ture proportion 𝜋 was prefixed, hence we alter their
method by estimating 𝜋 simultaneously, as a result the
Qin’s method here is actually an improved version of
the method in Qin et al. (2020) and the only difference
between Qin’s method and our method would be treat-
ing the observed 𝑡𝑗s with censored intervals.

2. The interval censoring–based method in Backer et al.
(2020) and Linton et al. (2020), which is denoted as IC
method hereafter.

In order to produce simulation settings similar to the col-
lected dataset of COVID-19, we consider three simulation
settings for incubation period in the following numerical
examples: the incubation period 𝐼 follows (a) Gamma dis-
tribution Γ(5, 0.8), (b) Weibull distribution 𝑊(2, 8), and
(c) log-normal distribution 𝐿𝑁(1.8, 0.42). The density func-
tions of these distributions are given in Web Appendix A.
For each setting,wemimic the length-biased sampling pro-
cess by letting the time from infection to departure𝐶 follow
uniformdistribution on (0,30) and recording the time from
departure to symptoms onset (forward time) 𝑉 = 𝐼 − 𝐶 if
𝐼 > 𝐶, until the designated sample size is achieved. The
simulated values of 𝑉 are then rounded up to the nearest
integers. We vary the sample size 𝑚 over 600, 1200, and
1800, and 𝜋 over 0 and 0.2. Each setting is repeated for
1000 times.
Table 1 summarizes the estimates of parameters in

incubation distribution using the Qin’s method, interval-
censoring method, and our proposed method. We can see
that when 𝜋 = 0, our proposed method and Qin’s method
provide similar results. For 𝜋 = 0.2, our approach has
smaller bias inWeibull setting. Due to the fact that the log-
lik is too flat near themaximum, the estimatesmay be a lit-
tle biased in finite sample.With larger sample size, the bias
is getting smaller. The IC method does not perform well in
our simulation as it does not take the length-biased sam-
pling issue and the cross infection probability 𝜋 into con-
sideration.
For generation time estimation, we assume that both

generation time and incubation period follow Gamma
distributions. The mean and variance of these two peri-
ods are listed in Figure 2. We generate 200 serial inter-
vals. Note that it is possible that some serial intervals
are negative. We choose the kernel chf 𝜙𝐾(𝑡) = (1 − 𝑡2)3+,
and according to Karunamuni (2009), 𝜙𝐾𝑐 (𝑡; 𝑦) = {𝑎0(𝑦) −
𝑖𝑎1(𝑦)𝑡}(1 − 𝑡

2)3𝐼(|𝑡| ≤ 1), where

(
𝑎0(𝑦)
𝑎1(𝑦)

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ 𝑦∕ℎ
−∞

48[𝑡(𝑡2−15) cos(𝑡)+3(5−2𝑡2) sin(𝑡)]

𝜋𝑡7
𝑑𝑡

− ∫ 𝑦∕ℎ
−∞

48[5𝑡(2𝑡2−21) cos(𝑡)+(𝑡4−45𝑡2+105) sin(𝑡)]

𝜋𝑡8
𝑑𝑡

∫ 𝑦∕ℎ
−∞

48[𝑡(𝑡2−15) cos(𝑡)+3(5−2𝑡2) sin(𝑡)]

𝜋𝑡6
𝑑𝑡

− ∫ 𝑦∕ℎ
−∞

48[5𝑡(2𝑡2−21) cos(𝑡)+(𝑡4−45𝑡2+105) sin(𝑡)]

𝜋𝑡7
𝑑𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

×

(
1
0

)
.

The results are displayed in Figure 2. The cyan line is the
fitted Gamma density using observed positive serial inter-
val data. The red line is the estimated generation time den-
sity by deconvolution. We can see that the estimated den-
sity of generation time by deconvolution is more close to
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TABLE 1 Estimation of incubation distribution in simulation

(a) Gamma incubation 𝒇𝑰(𝒕; 𝜽) = 𝜷𝜶𝒕𝜶−𝟏𝒆−𝜷𝒕∕𝚪(𝜶); 𝜶 = 𝟓, 𝜷 = 𝟎.𝟖
Proposed method Qin’s method IC method

𝝅 𝒎 𝜶 (SE) 𝜷 (SE) 𝝅 (SE) 𝜶 (SE) 𝜷 (SE) 𝝅 (SE) 𝜶 (SE) 𝜷 (SE) 𝝅 (SE)
0 600 4.43 0.76 0.11 4.47 0.76 0.10 9.79 1.07 0

(1.22) (0.14) (0.14) (1.13) (0.13) (0.12) (1.24) (0.14) (0)
1200 4.47 0.76 0.09 4.49 0.76 0.08 9.72 1.06 0

(0.94) (0.10) (0.11) (0.89) (0.10) (0.09) (0.88) (0.10) (0)
1800 4.55 0.77 0.07 4.54 0.76 0.07 9.70 1.06 0

(0.77) (0.08) (0.09) (0.75) (0.08) (0.08) (0.82) (0.08) (0)
0.2 600 5.36 0.83 0.20 5.37 0.83 0.19 9.61 1.00 0

(1.64) (0.17) (0.15) (1.62) (0.17) (0.14) (1.21) (0.13) (0)
1200 5.33 0.83 0.19 5.33 0.82 0.18 9.51 0.99 0

(1.28) (0.13) (0.11) (1.29) (0.13) (0.11) (0.83) (0.09) (0)
1800 5.25 0.82 0.19 5.25 0.82 0.19 9.49 0.99 0

(1.08) (0.10) (0.10) (1.10) (0.11) (0.10) (0.67) (0.07) (0)
(b) Weibull incubation 𝒇𝑰(𝒕; 𝜽) = 𝒌(𝒕∕𝝀)𝒌−𝟏 𝐞𝐱𝐩{−(𝒕∕𝝀)𝒌}∕𝝀; 𝒌 = 𝟐, 𝝀 = 𝟖

Proposed method Qin’s method IC method
𝝅 𝒎 �̂� (SE) 𝝀 (SE) 𝝅 (SE) �̂� (SE) 𝝀 (SE) 𝝅 (SE) �̂� (SE) 𝝀 (SE) 𝝅 (SE)
0 600 1.92 7.49 0.11 2.00 7.89 0.02 3.49 11.99 0

(0.24) (0.86) (0.17) (0.19) (0.47) (0.05) (0.24) (0.30) (0)
1200 1.93 7.57 0.09 2.00 7.95 0.01 3.57 12.00 0

(0.19) (0.72) (0.14) (0.13) (0.34) (0.03) (0.17) (0.20) (0)
1800 1.93 7.62 0.07 2.00 7.97 0.01 3.56 12.00 0

(0.16) (0.64) (0.12) (0.11) (0.27) (0.02) (0.14) (0.17) (0)
0.2 600 2.07 8.20 0.19 2.18 8.70 0.10 3.48 12.42 0

(0.29) (1.05) (0.19) (0.22) (0.71) (0.11) (0.21) (0.29) (0)
1200 2.04 8.17 0.19 2.17 8.73 0.09 3.46 12.44 0

(0.23) (0.88) (0.15) (0.16) (0.59) (0.09) (0.15) (0.20) (0)
1800 2.03 8.14 0.19 2.17 8.73 0.09 3.45 12.43 0

(0.20) (0.80) (0.14) (0.14) (0.53) (0.08) (0.12) (0.16) (0)
(c) Log-normal incubation 𝒇𝑰(𝒕; 𝜽) = 𝐞𝐱𝐩{−(𝐥𝐨𝐠 𝒕 − 𝝁)𝟐∕𝟐𝝈𝟐}∕

√
𝟐𝝅𝝈𝟐𝒕; 𝝁 = 𝟏.𝟖, 𝝈 = 𝟎.𝟒

Proposed method Qin’s method IC method
𝝅 𝒎 𝝁 (SE) �̂� (SE) 𝝅 (SE) 𝝁 (SE) �̂� (SE) 𝝅 (SE) 𝝁 (SE) �̂� (SE) 𝝅 (SE)
0 600 1.73 0.42 0.08 1.74 0.42 0.07 2.18 0.33 0

(0.10) (0.04) (0.10) (0.10) (0.04) (0.09) (0.02) (0.02) (0)
1200 1.74 0.42 0.06 1.75 0.42 0.05 2.18 0.33 0

(0.08) (0.03) (0.07) (0.07) (0.03) (0.07) (0.02) (0.02) (0)
1800 1.75 0.42 0.05 1.76 0.41 0.04 2.18 0.33 0

(0.07) (0.03) (0.06) (0.06) (0.03) (0.06) (0.01) (0.01) (0)
0.2 600 1.82 0.39 0.18 1.83 0.39 0.18 2.22 0.33 0

(0.11) (0.04) (0.11) (0.10) (0.04) (0.11) (0.02) (0.02) (0)
1200 1.82 0.39 0.19 1.82 0.39 0.18 2.22 0.33 0

(0.08) (0.03) (0.08) (0.08) (0.03) (0.08) (0.02) (0.01) (0)
1800 1.81 0.40 0.19 1.81 0.40 0.19 2.22 0.33 0

(0.06) (0.03) (0.07) (0.06) (0.03) (0.07) (0.01) (0.01) (0)

Note. Estimates and standard error. The first panel is our proposed method: mixture distribution with censoring. The second panel is Qin’s method. The third
panel is the IC method.
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F IGURE 2 Histogram of serial interval data and density of generation time in simulation Note. The expectation and variance of
generation time and incubation period are listed in each subfigure. Black line: true density; cyan line: Gamma fit of 𝑆 by deleting negative
observations; red line: estimated density. This figure appears in color in the electronic version of this paper, and any mention of color refers to
that version.

the true density than fitting the serial intervals, although
the deconvolution estimate may be negative in some area.

6 ANALYSIS RESULTS ON THE
COVID-19 OUTBREAK

In this section, we analyze the real data of COVID-19
outbreak, originated from Wuhan, China. As described
in Section 2, the times between departure from Wuhan

and symptoms onset were collected for the 1211 cases that
got infected in Wuhan and developed symptoms outside
Hubei Province; see Figure 3 for the histogram of the col-
lected observations.
Table 2 summarizes the estimates of model parameters

as defined in Section 3 and quantiles in the incubation
distribution with their 95% confidence intervals (CIs) by
nonparametric bootstrap. The last two columns list the
loglik and goodness-of-fit (GoF) 𝜒2 statistic of each para-
metric distribution of the incubation period, with higher
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F IGURE 3 COVID-19 data analysis result Note. Upper: twice of log-likelihood ratio, 2[max𝜽,𝜋 𝓁(𝜽, 𝜋) − max𝜽 𝓁(𝜽, 𝜋)], versus 𝜋. The
dashed line is at 2.71, the 90% quantile of chi-squared distribution with 1 degree of freedom. In fact, the horizontal ordinate of the crossover
point is the 95% upper bound of 𝜋 by likelihood ratio, since 0.5 + 0.5𝜒2(2.71, 1) = 0.95 (mixed chi-squared distribution), where 𝜒2(⋅, 1) is the
cdf of chi-squared distribution with 1 degree of freedom. Lower: incubation estimation; red line: forward time fit; blue line: incubation period
fit; black line: mixed observed time fit (covered by the red line). This figure appears in color in the electronic version of this paper, and any
mention of color refers to that version.

TABLE 2 Estimation of incubation distribution for COVID-19 data

(a) Gamma incubation
𝜶 𝜷 𝝅 Mean 0.25 Q Median 0.75 Q 0.90 Q 0.99 Q GoF
95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI loglik (𝑷-value)
4.97 0.55 0.00 9.10 6.13 8.50 11.43 14.57 21.17 −3260 13.46
[3.75; [0.45; [0.00; [7.86; [4.97; [7.22; [10.02; [13.22; [19.63; (0.41)
6.25] 0.66] 0.15] 9.66] 6.80] 9.15] 11.98] 15.10] 22.07]
(b) Weibull incubation
𝒌 𝝀 𝝅 Mean 0.25 Q Median 0.75 Q 0.90 Q 0.99 Q GoF
95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI (𝑷-value)
2.04 9.70 0.00 8.60 5.26 8.10 11.39 14.61 20.53 −3260 14.09
[1.72; [7.88; [0.00; [7.03; [3.84; [6.40; [9.52; [12.69; [18.58; (0.37)
2.26] 10.25] 0.27] 9.08] 5.86] 8.67] 11.91] 15.11] 21.38]
(c) Log-normal incubation
𝝁 𝝈 𝝅 Mean 0.25 Q Median 0.75 Q 0.90 Q 0.99 Q GoF
95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI 95% CI loglik (𝑷-value)
2.17 0.39 0.00 9.44 6.70 8.74 11.39 14.46 21.82 −3263 15.44
[2.08; [0.35; [0.00; [8.81; [6.03; [8.02; [10.76; [13.78; [20.59; (0.28)
2.24] 0.43] 0.00] 9.99] 7.33] 9.36] 11.94] 15.02] 22.81]

Note. Model parameter estimates, incubation quantiles (with 95% CIs), log-likelihood, goodness-of-fit statistic in the distribution estimation of incubation period.
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loglik and lower GoF means a better fit of the model. The
number in the bracket of GoF is the 𝑃-value of GoF test,
and all these three models have a good fit. More details
about the GoF test is in Web Appendix E. Likelihood ratio
test about 𝜋 can be conducted based on the mixture dis-
tribution of half 0 and half chi-squared distribution with
1 degree of freedom to infer the magnitude of 𝜋 (Self and
Liang, 1987; Susko, 2013). At significant level 0.05, the crit-
ical value is 2.71. Although the point estimate of 𝜋 is zero,
the loglik is flat in the region 𝜋 ∈ [0, 0.2], which results in
a situationwhere a null hypothesis such as𝐻0 ∶ 𝜋 > 0.1 or
𝐻0 ∶ 𝜋 < 0.1 cannot be reject at significant level 0.05, since
2[max𝜽 𝓁(𝜽, 0) − max𝜽 𝓁(𝜽, 0.1)] < 2.71 (illustrated in Fig-
ure 3). Our model estimated that about 1% of patients have
incubation periods longer than 21 days. This might influ-
ence the length of quarantine period in regions with a
severe epidemic.
Figure 3 plots the twice of loglik ratio,

2[max𝜽,𝜋 𝓁(𝜽, 𝜋) − max𝜽 𝓁(𝜽, 𝜋)], versus 𝜋. The dashed
line is at 2.71, the 90% quantile of chi-squared distribution
with 1 degree of freedom. In fact, the horizontal ordinate
of the crossover point is the 95% upper bound of 𝜋 by
likelihood ratio, since 0.5 + 0.5𝜒2(2.71, 1) = 0.95 (mixed
chi-squared distribution), where 𝜒2(⋅, 1) is the cdf of
chi-squared distribution with 1 degree of freedom.
From the last two columns in Table 2 we can see that

Gammadistribution slightly outperforms among three dis-
tributions, having the smallest GoF statistic. The corre-
sponding incubation period has an estimated mean of
9.10 days andmedian of 8.50 days, and possess a heavy tail.
About 10% infected individuals would develop symptoms
after 14.57 days and 1% after 21.17 days. Although the CI of
𝜋 is relatively wide, variation of the results on the quantiles
of incubation period is not significant as shown in Table 2.
Figure 3 visualizes the estimate on the histogram of the
time between leaving Wuhan and symptoms onset.
For the estimation of the distribution of generation time,

we choose the kernel chf 𝜙𝐾(𝑡) = (1 − 𝑡2)3+ in (9) with
bandwidthℎ = 2. The estimated probability density of gen-
eration time based on the estimated Gamma incubation
period is displayed in Figure 4. We can see that the distri-
butions of generation time hasmuch smaller variance than
the serial interval.
Based on the daily reported new cases from January 20

to January 30, 2020, the early phase of COVID-19 outbreak,
the exponential epidemic growth rate 𝑟 (Malthusian coeffi-
cient) is estimated at 0.275 (SE 0.042) estimated by fitting a
least square line to the daily number of reported new con-
firmed cases in a log-scale outside Hubei Province (since
only by regressing daily new confirmed cases rather than
cumulative ones can the residuals be regarded indepen-
dent). Note that the confirmed cases in Hubei Province
were excluded here because there may be a significant
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F IGURE 4 Estimated generation time density (red line) using
71 observed serial intervals in COVID-19 outbreak Note. The black
line is the density of serial interval data. This figure appears in color
in the electronic version of this paper, and any mention of color
refers to that version.

underestimation of the number of infected individuals in
Hubei Province and the first confirmed case outside Hubei
Province was reported on January 20, 2020 (Imai et al.,
2020; You et al., 2020). Hence the basic reproduction num-
ber can be calculated according to the Euler-Lotka equa-
tion in a moment generating form

𝑅0 =
1

∫ +∞
0

𝑒−𝑟𝑡𝑓𝐺(𝑡)𝑑𝑡
. (10)

The point estimate of the basic reproduction number is
2.96 with 95% CI [2.15; 3.86]. Note that the estimate of 𝑅0
is 2.18 using serial interval data instead of generation time,
which severely underestimates the infectiousness ability of
the disease.

7 DISCUSSION

In this paper, we proposed an estimation for incubation
distribution,which only requires information on travel his-
tories and dates of symptoms onset. Unlike the approach
in Kuk andMa (2005), our estimation of incubation period
is feasible regardless that the disease is infectious or not
during the incubation period. It enhances the estimation
by increasing available sample size and utilizing censored
information. We also took mixture distribution of forward
time and complete incubation period and the interval cen-
soring caused by daily reports into consideration, hence
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the result should be more robust than that in Qin et al.
(2020).
According to the theory of renewal process, the den-

sity of forward time should be a decreasing function as
it is proportional to the survival function of incubation
period. If the density of the observed time between depar-
ture from Wuhan and symptoms onset is unimodal, it
might be because of the fact that (a) the observations come
from amixture of forward time and full incubation period;
(b) the discretized time. Hence, an estimation using mix-
ture distribution together with the censored intervals is
recommended if the observed density is not monotonically
decreasing. Mixture distribution is robust in incubation
analysis in that the potential problem due to the existence
of short-term tourists can be addressed by introducing 𝜋
into the model. In addition, fewer observations of zeros
than ones is still reasonable even if there is no full incuba-
tion period mixed in the cohort (when 𝜋 = 0), as the prob-
ability to be captured in our cohort is reduced by half if the
“scheduled” departure from Wuhan and symptoms onset
occur on the same day, which can be well reflected in the
interval-censoring situation since 𝐹𝐼(0+; 𝜽) − 𝐹𝐼(0−; 𝜽) is
just equal to 𝐹𝐼(0+; 𝜽).
Compared with the estimated incubation period in Li

et al. (2020), Backer et al. (2020), and Linton et al. (2020),
our estimation yields a longer estimate of incubation
period. This is possibly because we avoided the selection
bias by considering a longer follow-up period after depar-
ture from Wuhan and successfully recruiting the cases
with long incubation periods. However, a limitation here
is raised by the possible violation of assumption that the
individuals included in the study were either infected in
Wuhan or on the way to their destination from Wuhan.
Violation of such assumption (eg, a family departed from
Wuhan together and infection occurred inside the fam-
ily at destination) leads to an overestimation of incuba-
tion period.
Furthermore, a consistent estimation of generation time

distribution was proposed under two different scenarios
through deconvolution. The efficiency of deconvolution is
influenced by the choices of kernel function and the cor-
responding bandwidth. For a relatively small sample size,
the estimate of density function can be negative due to the
integration of complex function. The choice of kernel and
bandwidth is ad hoc for finite sample size. One possible
approach to select kernel and bandwidth is by conducting
simulation using prior distribution of generation time.
In the previous studies of the basic reproduction num-

ber of COVID-19, Zhao et al. (2020a, 2020b) estimated 𝑅0
at 2.56 (95%CI [2.49; 2.63]) through the exponential growth
using the distribution of serial interval, whichmight result
in an underestimation due to the use of serial intervals
rather than generation time (the serial intervals of SARS

and MERS were used in their study rather than that of
COVID-19 due to the lack of information). Jung et al. (2020)
estimated 𝑅0 at 2.1 (95% CI [2.0; 2.2]) and 3.2 (95% CI [2.7;
3.7]) also through the exponential growth under two sce-
narios using exported cases. Some other estimation were
based on dynamic models, such as Wu et al. (2020) at 2.68
(95% CI [2.47; 2.86]) and Read et al. (2020) at 3.11 (95%
CI [2.39; 4.13]). Our estimate of 𝑅0 is a little higher than
those estimates obtained by exponential growth ratemodel
that used serial intervals. Note that the recall bias embed-
ded in epidemiology investigation is inevitable as long as
contact-tracing data were used for analysis, which might
affect the estimation for generation time and basic repro-
duction number. It is worth mentioning that there is a
large proportion of asymptomatic infected cases (Li et al.,
2020). Whether the exponential growth rate can reflect the
growth of all infected cases is untestable. If the asymp-
tomatic cases have longer generation time, then the real
distribution of generation timewould bemore variated and
the 𝑅0 would be overestimated.
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