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Abstract: The separation and extraction of chrysin from active ingredients of natural products are
of great significance, but the existing separation and extraction methods have certain drawbacks.
Here, chrysin molecularly imprinted nanofiber membranes (MINMs) were prepared by means of
electrospinning using chrysin as a template and polyvinyl alcohol and natural renewable resource
rosin ester as membrane materials, which were used for the separation of active components in the
natural product. The MINM was examined using Fourier transform infrared (FT-IR) spectroscopy,
scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption perfor-
mance, adsorption kinetics, adsorption selectivity, and reusability of the MINM were investigated in
static adsorption experiments. The analysis results show that the MINM was successfully prepared
with good morphology and thermal stability. The MINM has a good adsorption capacity for chrysin,
showing fast adsorption kinetics, and the maximum adsorption capacity was 127.5 mg·g−1, conform-
ing to the Langmuir isotherm model and pseudo-second-order kinetic model. In addition, the MINM
exhibited good selectivity and excellent reusability. Therefore, the MINM proposed in this paper is a
promising material for the adsorption and separation of chrysin.

Keywords: chrysin; electrospinning; molecular imprinting membrane; adsorption

1. Introduction

In recent years, with the development of analytical methods (high-performance liquid
chromatography, ultra-high-performance liquid chromatography, electrochromatography,
etc.) and extraction techniques (membrane separation, semi-bionic extraction, high-speed
countercurrent chromatography, etc.), pharmacologically active natural products have
gained unprecedented popularity [1,2]. Most of them have had profound effects on our
lives. Chrysin is chemically known as 5,7-dihydroxy flavone. It is a natural flavonoid
and is the main bioactive component isolated from traditional Oroxylum indicum [3–5].
Chrysin exhibits anti-oxidative [6], anti-viral, immunomodulatory, and anti-inflammatory
effects [7,8]. Numerous studies have indicated that chrysin inhibits tumor cell proliferation
and induces tumor cell apoptosis, restrains tumor angiogenesis, and reverses tumor cell
multi-drug resistance [9–12]. It is a natural active ingredient with an anti-tumor effect.
Therefore, the extraction and utilization of chrysin are of great economic importance.

According to several reviews of the literature, methods such as high-performance liq-
uid chromatography (HPLC) [13], column chromatography [14], chromatography [15,16],
adsorption [17–19], water-methanol [20,21], and ultrasonic/microwave-assisted extrac-
tion [22–24] have been developed for the analysis and separation of chrysin in Oroxylum
indicum. However, most methods, such as column chromatography and other traditional
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methods, have a low separation effect on the structural analogs of chrysin. After extraction,
further separation and purification are required. An efficient, low-cost material for chrysin
extraction and purification is currently lacking.

In recent years, molecular imprinting technology [25–27] has been generally used
for separating and purifying the effective constituents from various natural products.
Compared to other methods, the molecular imprinting method has the advantages of
stronger affinity and recognition ability. However, molecularly imprinted polymers are
usually prepared as a whole material, resulting in most imprinted cavities lying deep within
the polymer matrix. Due to these factors, it will have the disadvantages of poor imprinted
loci accessibility, incomplete removal of the template, and weaker binding capacity [28–30].

Molecularly imprinted film is an effective material used to control templates located
at the surface of imprinted materials; a typical example of this surface imprinting, which
is carried out by immobilizing template molecules at the surface of suitable substrates,
forming thin imprinted films [31,32]. Researchers have used grafting, coating, electrostatic
deposition, electrostatic spinning, and other methods to prepare molecularly imprinted
membranes (MIMs) to increase membrane flux [33–36]. Electrospinning nanofiber mem-
branes have the characteristics of a large specific surface area, high porosity, and easy
modification [37–39]. They have been widely used in tissue engineering, drug delivery,
catalysis, wound dressings, and other fields [40–45]. Sueyoshi et al. [46] used optically
active glutamic acid (Zd-Glu and Zl-Glu) as a template molecule and cellulose acetate as the
base membrane to prepare molecularly imprinted membranes by means of electrospinning.
The results show that the imprinted membranes prepared by electrospinning had higher
permeability and flux than molecularly imprinted membranes prepared by other methods.

In this article, a molecularly imprinted material with excellent recognition and selective
absorption for chrysin was prepared. We used polyvinyl alcohol (PVA) fiber as a supporting
material and rosin ester as an auxiliary material to fabricate a molecularly imprinted
nanofiber membrane (MINM). A detailed examination of MINM adsorption and selective
recognition was conducted through the analysis of their kinetics, their isotherms, and their
selective adsorption performances.

2. Experimental Section
2.1. Materials

Chrysin (480-40-0) was purchased from Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China). Chloramphenicol (56-75-7) and oxytetracycline (79-57-2)
were obtained from Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai, China).
Polyvinyl alcohol (PVA, 9002-89-5), N,N-dimethylformamide (DMF, 68-12-2), and acetic
acid were obtained from Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai,
China). Methyl alcohol (67-56-1) was obtained from Chengdu Cologne Chemicals Co.,
Ltd. (Chengdu, China). Methacrylic acid (MAA, 79-41-4) and azobisisobutyronitrile
(AIBN, 78-67-1) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Ethylene glycol dimethacrylate (EGDMA, 97-90-5) was purchased from Alfa Aesar
(Qingdao, China). Ethylene glycol maleic rosinate acrylate (EGMRA) was provided by
Wuzhou Sun Shine Forestry & Chemicals Co., Ltd. (Guangxi, Wuzhou, China).

2.2. Preparation of Molecularly Imprinted Membranes
2.2.1. Preparation of Molecularly Imprinted Composite Membrane

The molecularly imprinted composite membrane (MICM) was prepared by means
of electrospinning after mixing the molecularly imprinted polymer (MIP) and membrane
material. The precipitation polymerization method was used for the preparation of the
MIP microspheres. Accurately weighing chrysin (0.0675 g) with an electronic balance
(Practum124-1cn, Sartorius, Göttingen, Germany), in a 250 mL three-necked flask, chrysin
was dissolved in 100 mL of methanol. MAA (0.1825 g), EGDMA (1.6848 g), EGMRA
(0.4200 g), and AIBN (0.0453 g) were dissolved in the solution and used an ultrasonic
cleaner (KQ-800E, Kun Shan Ultrasonic Instruments Co., Ltd., Kunshan, China) to sonicate
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the raw materials to fully dissolve them. Hence, nitrogen was immediately added to the
mixture, and it was degassed for 10 min. A condenser, thermometer, and stirring rod
were then inserted into the three-necked flask, which was placed into a 70 ◦C constant-
temperature water bath to heat and a constant-temperature reaction for 10 h under the
condition of setting the stirring rate to 50 rpm. The molecularly imprinted polymer (MIP)
was collected, and the template molecules and non-polymerized compounds were extracted
simply from MIP microspheres by cleaning with a methanol/acetic acid mixture (9:1, v/v).
Then, it was air-dried at 60 ◦C in an oven (FD115, Binder, Tuttlingen, Germany) for 12 h and
stored in a desiccator. The non-imprinted polymer (NIP) microspheres were also prepared
with the same procedure without the template molecule added to the reaction mixture.

For the encapsulation of MIP microspheres in electrospinning nanofibers, we heated
8% polyvinyl alcohol (PVA/water, w/v) in a water bath at 90 ◦C for 1 h to completely
dissolve the PVA solution, then added 0.2% MIP to the methanol solution and ultrasonically
dispersed it for 1 h to make it uniformly suspended in methanol. Then, PVA and MIP
solutions of the same volume were mixed and stirred in a 60 ◦C water bath for 1 h to obtain
a uniformly dispersed electrospinning solution. After that, the mixture was electrospun,
the voltage was set to 20 kV, the speed was set to 1 mL·h−1, and the iron plate collector
was positioned 15 cm from the tip of the syringe. After 10 h of spinning, a molecularly
imprinted composite membrane (MICM) was obtained. A non-imprinted composite mem-
brane (NICM) was also prepared under the same conditions, except that the MIP in the
electrospinning solution was replaced by NIP.

2.2.2. Preparation of Molecularly Imprinted Nanofiber Membranes

Molecularly imprinted nanofiber membranes (MINMs) were directly prepared by the
electrospinning technique. PVA (1.2000 g), EGMRA (0.1200 g), and the template molecule
chrysin (0.0375 g) were dissolved in a DMF/water solution (2:1, v/v). The mixture was
continuously agitated in a closed vial for at least 2 h until no phase separation was observed.
The solution was transferred to a 10 mL syringe installed with a metal needle that had an
inner diameter of 0.8 mm. After that, the mixture was electrospun, the voltage was set to
20 kV, the speed was set to 1 mL·h−1, and the iron plate collector was placed 15 cm from
the tip of the syringe. After 10 h of spinning, the fibrous nanofibers were collected on the
iron plate collector. After methanol-solvent extraction, nanofibers were inspected with
UV–Vis spectrometers (UV-2700, Shimadzu, Kyoto, Japan) to determine that the template
molecule chrysin was no longer detectable from the washing solvent. Afterward, these
nanofibers were kept in a vacuum chamber for 24 h to eliminate trace solvents, then stored
in a desiccator. In comparison, the non-imprinted nanofiber membranes (NINMs) were
also spun in the same way without adding chrysin.

2.3. Characterization

The surface morphology of MINM and NINM after the samples were sprayed with
gold was observed using a scanning electron microscope (SEM, SUPRA 55 Sapphire, Carl
Zeiss Jena, Jena, Germany) under low vacuum conditions. Fourier transform infrared (FT-
IR, MAGNA-IR550, Thermo Fisher Scientific, Waltham, MA, USA) spectra of membranes
were measured with an infrared spectrometer with a wavenumber range of 4000–400 cm−1.
The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) studies were
performed using a thermal gravimetric analyzer (STA449F3, Netzsch-Gerätebau GmbH,
Selb, Germany) [47]. The temperature was increased from 25 to 700 ◦C under a nitrogen
atmosphere with a heating rate of 10 ◦C min−1.

2.4. Adsorption Experiments
2.4.1. Adsorption Kinetics

To research the adsorption kinetics of membranes for chrysin, we dispersed 20 mg
of the adsorbent samples into 20 mL of chrysin methanol solution (3.9333 mM), which
was oscillated for 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240, and 300 min at room
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temperature. At each set time points, the concentration of chrysin in the solution was
measured, and the adsorption mass of chrysin was calculated. The binding capacities of
membranes were calculated according to the formula [48]:

Qt =
(C0 − Ct)× V

m
(1)

where C0 (mM) is the initial chrysin concentration and Ct (mM) is the concentration of
chrysin solution at time t (min). V (mL) is the volume of chrysin solution, and m (g) is the
mass of membranes.

2.4.2. Adsorption Isotherm

To understand the controlling mechanisms and to quantify the maximum adsorption
capacity of adsorbents, 20 mg of each of the membranes was added to 20 mL of chrysin
solution with different concentrations and oscillated for 5 h, in which the initial concen-
trations were various (0.7867, 1.5733, 2.3600, 3.1467, and 3.9333 mM). We measured the
concentration of chrysin in the solution after the adsorption was over. The equilibrium
adsorption capacity was calculated using the following equation [49]:

Qe =
(C0 − Ce)× V

m
(2)

where C0 (mM) is the initial chrysin concentration, and Ce (mM) is the equilibrium chrysin
concentration. V (mL) is the volume of chrysin solution, and m (g) is the mass of membranes.

2.5. Adsorption Selectivity

To investigate the selectivity of membranes to chrysin, chloramphenicol and oxytetra-
cycline were chosen as the compared molecules. The methanol solutions (3.9333 mM) of
chrysin, chloramphenicol, and oxytetracycline were prepared, respectively, and then 20 mL
of the solution was added to an Erlenmeyer flask, and then 20 mg of the adsorbent sample
was added for 5 h at room temperature with shaking. Measure the concentration of chrysin,
chloramphenicol, or oxytetracycline in the different solutions after the adsorption was over.
The calculation formula of equilibrium adsorption capacity was the same as Formula (2).

2.6. Adsorption Reusability

After the adsorbent sample completed the adsorption process, the saturated sample
was obtained by filtration. The filtered samples were washed with methanol and dried to
obtain the regenerated MINM. The regenerated MINM was reused for the next adsorption
test. Under the same conditions, the adsorption-desorption cycle was repeated 6 times, and
the adsorption amount was measured and calculated each time.

2.7. Mechanical Properties

The mechanical properties of the MINM were measured by using an electromechanical
universal testing machine (JDL-10000N, Yangzhou Tianfa Testing Machinery Co., Ltd.,
Yangzhou, China) at room temperature. The MINM was cut into strips (20 mm × 10 mm),
and its thickness was measured at different locations with a micrometer. The MINM was
clamped at both ends and stretched along its length at a certain tensile rate until broken.
By averaging the results of three parallel experiments, the tensile strength and elongation
at rupture of the MINM were determined. The tensile strength was the load per unit area
when the sample was broken on the tensile machine, expressed in P, which was defined as
follows [50–53]:

P =
F
S

(3)

where P (MPa) is the tensile strength of the MINM, F (N) is the force on the fractured section
when the MINM broke, and S (mm2) is the area of the fracture surface of the MINM.
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3. Results and Discussion
3.1. Optimization of Preparation Conditions of MINM

To investigate the effects of template molecule content, rosin ester content, and electro-
spinning voltage on the adsorption capacity of nanofiber membranes, different single-factor
optimization experiments were carried out.

First, different MINMs were prepared by changing the content of template molecules
(chrysin) in the spinning solution to determine the optimal content of template molecules,
while the other preparation processes remained the same. As can be seen from Figure 1a, it
could be found that with the increasing concentration of chrysin in the spinning solution,
the MINM has an increased adsorption capacity to chrysin. When the usage content
of chrysin was 0.25%, the optimum adsorption capacity of the MINM was successfully
prepared, which should be attributed to the production of numerous imprinting cavities
and recognition loci. There was, however, an obvious decrease in the adsorption ability of
the MINM after increasing the chrysin content in the spinning solution continuously, which
could be because the competitive synthesis loci of chrysin occurred when the amount of
the chrysin was in excess, resulting in the decrease in the imprinting effect.
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Figure 1. (a) Effect of different content of chrysin on the adsorption capacity of MINM; (b) effect
of different rosin ester content on the adsorption capacity of MINM; (c) effect of different spinning
voltage on the adsorption capacity of MINM.

Second, to acquire the optimal concentration of rosin ester in the preparation of the
MINM, MINMs with different rosin ester contents were prepared with the other conditions
unchanged. As observed in Figure 1b, the MINM prepared with different contents of rosin
ester showed different adsorption capacities. The adsorption capacity of the prepared
MINM increased as the content of rosin ester increased. An appropriate amount of rosin
ester enhanced the rigidity and mechanical properties of the MINM and maintained the
spatial structure and cavity of the MINM, thereby improving the specific binding ability to
the imprinted loci. When the content of rosin ester reached 10%, the adsorption capacity
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reached the maximum. However, superabundant rosin ester will increase the viscosity,
resulting in a decrease in the pore size of the prepared MINM and membrane flux, which
will make it difficult for chrysin to reach the binding cavities in the MINM, resulting in a
decrease in adsorption capacity. Therefore, the MINM with a 10% addition of rosin ester
had the best adsorption capacity of all the MINMs.

Third, the effect of the electrospinning voltage on the adsorption capacity during the
preparation of MINMs was then studied by ranging the voltage from 15 kV to 30 kV. It
can be seen in Figure 1c that MINMs prepared with different spinning voltages exhibited
different adsorption capacities. As shown, when the voltage reached 20 kV, the optimum
adsorption capacity of the MINM toward chrysin was achieved; however, continuing
to increase the voltage reduces the adsorption capacity. This could be because as the
voltage increased, the structure of the prepared nanofiber membrane became more uniform,
meaning that the surface of the membrane adsorbed chrysin more easily. In contrast, when
the voltage was applied over 20 kV, the adsorption capacity of the MINM toward chrysin
reduced gradually. Therefore, the optimal voltage in the spinning process was 20 kV.

3.2. Morphology of MINM

The surface characteristics of the membranes were investigated by SEM, and the
results are shown in Figure 2a,c,e. The SEM photographs illustrate that the MINM and
NINM had an appreciable difference in morphology and fiber diameter. The MICM had
microsphere particles embedded in the fibers. The diameter distributions of the MINM,
NINM, and MICM are shown in Figure 2b,d,f; the average diameter of 80 of the randomly
selected nanofibers in the MINM was about 489 nm. However, the average diameter of the
nanofibers in the NINM was nearly 246 nm. The average diameter of the nanofibers in the
MICM was 205 nm. The MINM provides an excellent surface area and porosity to enable
the transport of the chrysin molecules through the membranes. This network structure of
membranes supports the easy diffusion of chrysin molecules across the membrane surface,
which provides a high potential for chrysin recognition applications. According to these
results, the different recognition behaviors of the MINM toward chrysin are caused by the
efficient footprints and not the morphological differences.

To provide evidence for the process of the imprinting of chrysin, the MINM, NINM,
and unwashed MINM were compared, as shown in Figure 2g. The FT-IR of the washed
MINM and NINM exhibited the semblable shapes, which indicated that these membranes
had a similar backbone. The peak at 3274 cm−1 in the infrared spectrum belongs to the
stretching vibration of the hydroxyl group (-OH) in the PVA, and the peak at 2945 cm−1

belongs to the stretching vibration of the methylene group (-CH2-) in the PVA. Infrared
spectroscopy analysis was performed on the unwashed MINM and the washed MINM to
study the interaction between PVA and chrysin. As shown in Figure 2g, after chrysin was
added, a vibration stretch peak appeared at 1617 cm−1, which represents the stretch peak
of the benzene ring skeleton on the chrysin, but the corresponding peak did not appear
in the MINM after washing, indicating that the chrysin was successfully washed. The
infrared comparison between the MINM and NINM after washing showed that there was
a displacement at 1734 cm−1, which may be caused by the formation of hydrogen bonds
between PVA and chrysin. These results indicated that the combination of chrysin and the
membrane material was successful, and chrysin was removed successfully with methanol
solution. The FTIR of the MICM, the peak at 3274 cm−1 belongs to the stretching vibration
of the hydroxyl group (-OH) in the PVA, and the peak at 2945 cm−1 belongs to the stretching
vibration of the methylene group (-CH2-) in the PVA. The peak at 1734 cm−1 belongs to the
stretching vibration of the carbonyl group (C=O) in the molecularly imprinted polymer.
Combined with SEM and FTIR of the MICM, it can be seen that the molecularly imprinted
polymer was successfully incorporated into the MICM.
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The thermostability of the MINM and MICM was tested by TGA analysis, as shown
in Figure 2h. The MINM began to decompose at approximately 275 ◦C, the decomposition
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rate reached the maximum level when the temperature was about 361 ◦C, and at the end
of the thermal decomposition process, the temperature reached 480 ◦C. However, the
MICM began to decompose at approximately 255 ◦C, the decomposition rate reached the
maximum level when the temperature was about 345 ◦C, and at the end of the thermal
decomposition process, the temperature reached 500 ◦C. The reason for decomposition was
mainly ascribed to the scission of the main chain and the scission of cross-linked bonds.
The TGA results show that the MINM had excellent thermostability. This was ascribed to
the characteristic hydrocarbon-based phenanthrene rings of the EGMRA, which raised the
thermostability of the MINM.

3.3. Adsorption Kinetics

In order to clarify the adsorption rate control mechanism of the adsorption process,
the adsorption kinetics experiment was carried out on the MINM, NINM, MICM, and
NICM under the condition of the initial concentration of chrysin solution of 3.9333 mM,
and the results of the experiment are shown as Figure 3a. In the four adsorbent samples,
the adsorption capacity was raised with the increase in time. The adsorption capacity
of the MINM for chrysin was significantly greater than that of the NINM, MICM, and
NICM, while the adsorption capacity of the MICM was significantly greater than that of the
NICM. In the first 90 min, the adsorption was in the rapid adsorption stage, the adsorption
capacity reached about 80% of the maximum adsorption capacity, and the adsorption
reached equilibrium after 120 min, the maximum adsorption capacity of the MINM was
127.5 mg·g−1, and the adsorbed chrysin amounts in this study were much higher than those
reported previously [54]. It was because, in the early stage of adsorption, the concentration
of chrysin was higher, and the molecular diffusion rate was faster. Numerous binding loci
on the surface of the MINM and MICM quickly and specifically adsorbed chrysin. When
the binding loci on the surface reached saturation, the adsorption rate gradually slowed
down. There were no imprinting binding loci matching with chrysin in the NINM and
NICM, so the adsorption rate was relatively slow, and the adsorption capacity to chrysin
was low. In comparison to the MICM, the MINM exhibited higher adsorption capacity.
because, in the MICM, the chrysin access to imprinted loci was much more difficult. Many
MIP particles were not on the surface of the fibers but inside and so less accessible.

Moreover, pseudo-second-order and pseudo-first-order models were used for fitting
kinetic curves to study adsorption mechanisms, such as physical adsorption and chemical
adsorption [55].

The pseudo-first-order kinetic model was calculated by the equation:

ln(Qe − Qt) = lnQe −
k1

2.303
t (4)

The pseudo-second-order kinetic model was calculated by the equation:

t
Qt

=
1

k2Q2
e
+

t
Qe

(5)

where Qt (mg·g−1) is the adsorption quantity at time t (h), Qe is the amount of chrysin ab-
sorbed at equilibrium, and k1 and k2 are the equilibrium rate constant of two kinetics models.

The fitting curves of the two kinetic models are shown in Figure 3b,c. The pseudo-
first-order kinetic theory predicts that adsorption loci occupancy is proportional to the
unoccupied loci, whereas, in the pseudo-second-order kinetic model, the adsorption rate
is determined by chemisorption between the template molecule and the adsorbent. The
corresponding parameters of the two kinetic equations are determined and exhibited in
Table 1.
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Figure 3. (a) The adsorption kinetics of MINM, NINM, MICM, and NICM; (b) the pseudo-first-order
kinetic model of MINM and MICM; (c) the pseudo-second-order kinetic model of MINM and MICM.

Table 1. Kinetic data of pseudo-first-order kinetic model and pseudo-second-order kinetic model.

Samples
Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

k1 (min−1) R2 k2 (g·mg−1 min−1) R2

MINM 0.0349 0.9538 0.24 × 10−3 0.9984
MICM 0.0541 0.9524 0.48 × 10−3 0.9998

The correlation coefficient of the MICM’s pseudo-second-order kinetic model (R2 = 0.9998)
is larger than that of the pseudo-first-order kinetic model (R2 = 0.9524). It indicates that
the adsorption process was more in line with the pseudo-second-order kinetic model,
and the adsorption rate was affected by the binding ability of chrysin and the quantity
of imprinting binding loci, which indicates that chemical interaction plays a leading role
in the chrysin adsorption process. Similarly, the pseudo-second-order kinetic model’s
correlation coefficient (R2 = 0.9984) of the MINM was higher than that of the pseudo-first-
order kinetic model (R2 = 0.9538) of the MINM. These results indicate that physical and
chemical adsorption existed in the adsorption process, but chemisorption was prevailing.
These results correlate with the high surface area and porosity of the MINM, the effective
molecularly imprinted cavities due to chrysin on the surfaces of the MINM, and the non-
covalent interaction between the MINM and chrysin.

3.4. Adsorption Isotherm

In order to measure the adsorption behavior of molecularly imprinted nanofiber
membranes and molecularly imprinted composite membranes, the isotherms studies were
performed, as shown in Figure 4a. With an increasing chrysin concentration, equilibrium
adsorption capacity increased. It was indicated that molecularly imprinted membranes’
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binding capacity was better than that of non-molecularly imprinted membranes in the same
situation, which implied the existence of abundant recognition loci and affinity capacity
for template molecular (chrysin) on the surface of the molecularly imprinted membranes.
However, under the same conditions of two kinds of molecularly imprinted membranes,
the binding capacity of the MINM was significantly higher than that of the MICM. It may
be because there were more recognition loci on the surface.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 4. (a) The adsorption isotherms of MINM, NINM, MICM, and NICM; (b) the Langmuir iso-

therm model of MINM and MICM; (c) the Freundlich isotherm model of MINM and MICM. 

Two kinds of adsorption isotherm for the MINM and MICM are shown in Figure 

4b,c. Additionally, various kinds of isotherm parameters are shown in Table 2. It is ob-

served that the MINM and MICM had correlation coefficients of 0.9976 and 0.9999, re-

spectively, for the Langmuir adsorption isotherm, while MINM and MICM had correla-

tion coefficients of 0.9921 and 0.9926, respectively, concerning the Freundlich adsorption 

isotherm. The results show that, in the studied concentration range, the adsorption of 

chrysin matches the Langmuir model better than the Freundlich model. Meanwhile, both 

MINM and MICM had a 1/n value in the range of 0.5–1, illustrating that the two kinds of 

membranes are excellent adsorption materials for chrysin. 

Table 2. Parameters of Langmuir adsorption model and Freundlich adsorption model. 

Samples 

Langmuir Isotherm Freundlich Isotherm 

k3 

(mM−1) 
R2 

Qm 

(mg g−1) 

k4 

(mM−1) 
R2 1/n 

MINM 0.7500 0.9976 173.611 71.1059 0.9921 0.5057 

MICM 0.2133 0.9999 128.700 22.4646 0.9926 0.7304 

3.5. Adsorption Selectivity 

The adsorption selectivity is an essential characteristic for the application of MIMs. 

Thus, to examine the selectivity of MIMs to chrysin, chloramphenicol and oxytetracycline 

were chosen as comparative substrates in the selective adsorption test. These two mole-

cules have similar structures and functional groups to chrysin. The selectivity research 

was carried out on chrysin and its comparative substrates at the concentration of 3.9333 

mM. As shown in Figure 5a, the MINM had adsorption capacity for all three substances, 

but the adsorption capacity of the MINM for chrysin was significantly higher than for 

Figure 4. (a) The adsorption isotherms of MINM, NINM, MICM, and NICM; (b) the Langmuir
isotherm model of MINM and MICM; (c) the Freundlich isotherm model of MINM and MICM.

In addition, adsorption equilibrium data of membranes used two typical isotherm
models for adsorption [48]. The Langmuir isotherm model assumes the existence of
monolayer adsorption onto a surface with a limited number of binding loci, and the
Freundlich isotherm model assumes the exponential distribution of adsorption loci on the
multilayer adsorption. The two isotherm models were mathematically described as follows:

Langmuir isotherm:
1

Qe
=

1
Qm

+
1

k3Qm
× 1

Ce
(6)

Freundlich isotherm:
lnQe = lnk4 +

1
n

lnCe (7)

where Qm (mg·g−1) is the greatest adsorption quantity, Qe (mg·g−1) is the chrysin adsorp-
tion quantity at different initial concentrations, Ce (mM) is the equilibrium concentration, k
is the constant, and 1/n is the heterogeneity factor indicating adsorption intensity.

Two kinds of adsorption isotherm for the MINM and MICM are shown in Figure 4b,c.
Additionally, various kinds of isotherm parameters are shown in Table 2. It is observed that
the MINM and MICM had correlation coefficients of 0.9976 and 0.9999, respectively, for
the Langmuir adsorption isotherm, while MINM and MICM had correlation coefficients
of 0.9921 and 0.9926, respectively, concerning the Freundlich adsorption isotherm. The
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results show that, in the studied concentration range, the adsorption of chrysin matches the
Langmuir model better than the Freundlich model. Meanwhile, both MINM and MICM
had a 1/n value in the range of 0.5–1, illustrating that the two kinds of membranes are
excellent adsorption materials for chrysin.

Table 2. Parameters of Langmuir adsorption model and Freundlich adsorption model.

Samples
Langmuir Isotherm Freundlich Isotherm

k3
(mM−1) R2 Qm

(mg·g−1)
k4

(mM−1) R2 1/n

MINM 0.7500 0.9976 173.611 71.1059 0.9921 0.5057
MICM 0.2133 0.9999 128.700 22.4646 0.9926 0.7304

3.5. Adsorption Selectivity

The adsorption selectivity is an essential characteristic for the application of MIMs.
Thus, to examine the selectivity of MIMs to chrysin, chloramphenicol and oxytetracycline
were chosen as comparative substrates in the selective adsorption test. These two molecules
have similar structures and functional groups to chrysin. The selectivity research was
carried out on chrysin and its comparative substrates at the concentration of 3.9333 mM.
As shown in Figure 5a, the MINM had adsorption capacity for all three substances, but
the adsorption capacity of the MINM for chrysin was significantly higher than for other
molecules. Although the adsorption capacity of the MICM for chrysin was also better than
the compared molecules, the adsorption capacity was lower than that of the MINM. The
NINM and NICM had poor adsorption capacity for the three substances, and there was not
much difference. All of the above results indicate that chrysin was able to selectively adsorb
the MINM and MICM due to the imprinting cavities formed during the preparation in the
presence of chrysin, which led to the formation of affinity binding loci along with access in
the MINM and MICM. The shape, size, and functional group of these recognition loci form
complementary structures to chrysin. It is profitable that the MINM and MICM have an
affinity for binding chrysin. However, the NINM and NICM do not have the related loci
and the recognition capability coming from the imprinting effect. It is, therefore, possible
to conclude that the imprinting loci on the surface of the MINM and MICM have excellent
selectivity for chrysin, and the recognition ability is provided by the imprinting loci, and
compared with two printing membranes, the MINM has a stronger selective recognition
ability for chrysin. The results of this study not only have better selectivity but also higher
chrysin adsorption capacity compared to previous reports [56,57].

3.6. Adsorption Reusability

Besides selectivity, stability and reusability are also important indexes to evaluate the
performance of the MINM. To evaluate the capacity of the MINM to be regenerated and
reused, the adsorption performance after repeated cycles was investigated. After each
binding experiment, the MINM was washed with methanol/acetic acid solution (9:1, v/v)
to remove the adsorbed molecules. Hence, we proceeded to the next adsorption cycle.
The above processes were repeated until the sorption-desorption was accomplished in six
cycles. The results are illustrated in Figure 5b. The results suggest that the MINM exhibited
excellent adsorption capability in all six cycles. After being recycled and reused, the MINM
only lost 12.08% of adsorption capacity. This decrease may be attributed to the reduction
in active binding loci following regeneration and inadequate desorption of the adsorbed
chrysin molecules. It indicates that the MINM could be used repeatedly due to its stability
and reusability.
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3.7. Mechanical Properties of MINM

A special focus was placed on the mechanical properties of the membranes, since
these were related to stress levels experienced during operation. The tensile strength and
elongation at break of the MINM were tested, as shown in Figure 5c. The maximum tensile
strength of the MINM was 6.5 MPa, and the breaking elongation of the MINM was 130%,
while the maximum tensile strength of PVA nanofiber was only 1.58 MPa [58], the MINM
showing excellent mechanical properties. This result indicates that this MINM enables the
higher sustainability of the membrane for use in some special operating environments.

4. Conclusions

In this study, we fabricated a molecularly imprinted nanofiber membrane of chrysin
using an electrospinning method for the selective adsorption of chrysin molecules. Com-
pared with the molecularly imprinted composite membrane (MICM), the prepared MINM
has a larger specific surface area, more binding sites complementary to the template are
generated near the surface of the fiber, showing high adsorption capacity and significant
selectivity, and the performance is generally better than that of the MICM. The adsorption
kinetics suggested that the adsorption process of the MINM was more consistent with the
pseudo-second-order kinetic model, illustrating that the adsorption process was controlled
by chemisorption. The adsorption isotherms illustrated that the adsorption process of
chrysin is in accordance with the Langmuir model rather than the Freundlich model. In
addition, the MINM exhibited good thermal stability and excellent reusability. The con-
spicuous adsorption behavior coupled with the effortless preparation made the MINM a
potential candidate for the adsorption of chrysin. In summary, we consider that this method
provides a low-cost, effective way for efficiently separating and enriching the chrysin.
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