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The constant exposure of the liver to gut derived foreign antigens has resulted in this organ
attaining unique immunological characteristics, however it remains susceptible to immune
mediated injury. Our understanding of this type of injury, in both the native and transplanted
liver, has improved significantly in recent decades. This includes a greater awareness of the
tolerance inducing CD4+ CD25+ CD127low T-cell lineage with the transcription factor FoxP3,
known as regulatory T-Cells (Tregs). These cells comprise 5-10% of CD4+ T cells and are
known to function as an immunological “braking” mechanism, thereby preventing immune
mediated tissue damage. Therapies that aim to increase Treg frequency and function have
proved beneficial in the setting of both autoimmune diseases and solid organ transplantations.
The safety and efficacy of Treg therapy in liver disease is an area of intense research at present
and has huge potential. Due to these cells possessing significant plasticity, and the potential
for conversion towards a T-helper 1 (Th1) and 17 (Th17) subsets in the hepatic
microenvironment, it is pre-requisite to modify the microenvironment to a Treg favourable
atmosphere to maintain these cells’ function. In addition, implementation of therapies that
effectively increase Treg functional activity in the liver may result in the suppression of immune
responses and will hinder those that destroy tumour cells. Thus, fine adjustment is crucial to
achieve this immunological balance. This review will describe the hepatic microenvironment
with relevance to Treg function, and the role these cells have in both native diseased and
transplanted livers.
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INTRODUCTION

The tissue damage that occurs in many liver diseases results from immunologically mediated
mechanisms (1). This may occur spontaneously, due to the breakdown of self-tolerance, or because
of an immune response to a foreign antigen. The major mechanism by which the human body
attains self-tolerance is via clonal deletion of high affinity self-reactive T-cells in the thymus,
however some CD4 T cells escape this process and additional suppressive mechanisms in the
periphery are required (2). If both the central and peripheral mechanisms fail, autoimmune disease
occurs (3). The liver is unfortunately the site of peripheral tolerance breakdown in several
autoimmune liver diseases (AILD). Chronic hepatitis from autoimmune liver diseases can lead to
org October 2021 | Volume 12 | Article 7199541
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cirrhosis and eventually end-stage liver failure. These conditions
include autoimmune hepatitis (AIH), primary biliary cholangitis
(PBC), primary sclerosing cholangitis (PSC) and IgG4 mediated
hepatitis. In addition, the parenchymal injury that occurs in
several chronic viral infections is thought to be the result of
an individuals unchecked immune response rather than direct
cytotoxic effects of the viruses (4). One of the major challenges in
solid organ transplantation is the prevention of immunological
rejection. The transplanted liver is susceptible to both cellular
and antibody mediated immune injury. Our understanding
of the immune mechanisms involved in AILD, chronic
inflammatory liver diseases and transplantation has continued
to grow over last two decades. An increase in the effectiveness of
modern immunosuppressants has translated into better outcomes
for these medical conditions and solid organ transplantation
(5). The most desirable therapy for autoimmune liver disease
and liver transplant recipients is to induce a tolerogenic state,
without suppressing other essential protective pathways of the
immune system.

A subset of CD4+ T-cells proposed to have suppressive abilities
was first identified by Nizuzhuka and Sakakura in 1969,
subsequently Ghershon and Kondo (1971) demonstrated that
thymus derived lymphocytes are required for tolerance induction
(6–8). Many decades of further research defined this tolerance
inducing T-cell lineage as CD4+ CD25+ with the transcription
factor FoxP3 and known as regulatory T-Cells (Treg) (8, 9). The
role of Treg in different autoimmune diseases and autoimmune liver
diseases has been the focus of ongoing research inmany laboratories
including our own, with Treg-directed therapies aimed at
augmenting Treg frequency and function undergoing clinical
trials in humans (10–15). Treg comprise between 5-10% of CD4+

lymphocytes in the systemic circulation and their suppressive effects
on effector T-cells comes from several different mechanisms (16–
19). Enhancement of Treg function may be beneficial in
autoimmune disease, chronic inflammation and transplant
tolerance. In contrast, due to an individual’s immune response
having a pivotal role in removing tumour cells, Treg inhibition may
have anti-oncogenic effects (2).

Tregs have been demonstrated to be present within the
liver in different disease states (16). However, the role of
intrahepatic Tregs is proving more difficult to delineate and
is likely influenced by cells and substances within the hepatic
microenvironment (20). If Tregs are considered the suppressive
T-cell lineage, T-helper 17 (Th17) and T-helper 1 (Th1) cells
have the opposing role of being pro-inflammatory or
regenerative due to their IL-17, IL-22, IFN-g, and TNF-a
secretion (21). Treg cells have been shown to exhibit plasticity
and can be converted to an IL-17 secreting phenotype when
exposed to inflammatory environments (22). This phenomenon
creates additional challenges for Treg cell therapy to be beneficial
rather than harmful. Chronic inflammatory cell infiltrate, fibrous
tissue deposition and a distorted microcirculation are changes
that occur within the liver parenchyma as cirrhosis develops (23).
Therefore, the efficacy, mechanisms and sequalae of Treg therapy
is likely different in this microenvironment as Treg mediated
induction of effector T-cell anergy may promote oncogenesis.
Frontiers in Immunology | www.frontiersin.org 2
Immunotolerance of a transplanted liver is highly desirable as it
would avoid the negative effects of immunosuppressive drugs
and the morbidity associated with graft rejection. Treg cell
therapy has been demonstrated to be safe in liver transplant
recipients, but the efficacy has not been demonstrated
consistently (10, 11, 24). This review will describe the current
understanding of the liver’s microenvironment and its impact on
intrahepatic Treg function in chronic liver disease and
liver transplantation.
REGULATORY T-CELLS

The process of Treg generation occurs in both the thymus and
periphery, resulting in thymus derived Tregs (tTregs) and
induced Tregs (iTregs) respectively (25). T cell receptor (TCR)
signalling in the thymus appears to mediate the generation of
tTregs whereas the generation of iTregs can be mediated by
numerous mechanisms including exposure to foreign antigens or
the type 1 interferon family (25, 26). The process of tTreg
generation from thymocytes is enhanced by CD28 co-
stimulation as it increases the intensity and duration of TCR
signalling (27). The de-novo generation of FoxP3+CD4+CD25+

iTregs from naïve CD4+CD25+ T cells in the periphery has been
demonstrated to occur with persistent exposure to a low dose of a
foreign peptides (28) in the presence of TGF-b. A proportion of
iTregs are known as T regulatory type 1 cells (Tr1) which are
characterised by the co-expression of CD49b and lymphocyte-
activation gene 3 (LAG-3), with the ability to secrete high levels
of IL-10 and TGF-b (25, 29, 30). In contrast to other types of
Tregs which constantly express FoxP3, Tr1 type cells only
express FoxP3 temporarily upon activation (29).

As described above, the Treg cell population can be split based
on the site of origin but the subpopulations can also be based on
phenotype and function as described by Miyara et al. (2009) (31).
These authors described three functionally different subpopulation
based on FoxP3 and CD45 staining; CD45RA+FoxP3lo (resting or
naive, rTregs), CD45RA−FoxP3hi (activated, aTregs) and cytokine-
secreting CD45RA−FoxP3lo (cytokine-secreting non-Treg cells)
(31). The majority of the aTregs originate from rTregs. Once
stimulated the rTregs increase their expression of proliferation
marker Ki-67 and FoxP3 (31). The aTregs are terminally
differentiated and are short-lived whereas the rTregs have a long
lifespan in their resting state. The cytokine-secreting non-Treg
cells secrete the largest amount of IL-17 and have the greatest
potential to transform into Th-17 cells (31).

In the peripheral blood of healthy humans, Wang et al.
demonstrated CD45RA+ and CD45RO+ comprised 23.9% and
63.6% of CD4+ CD25+ FoxP3+ Tregs (32). These two markers
(CD45RA+ and CD45RO+) have been reported to be mutually
exclusive (33). In liver transplant recipients on calcineurin inhibitor
(Tacrolimus) therapy, the frequency of CD45RA+FoxP3lo and
CD45RA−FoxP3hi was decreased in comparison to healthy
controls, but CD45-FoxP3lo were similar (34). These authors
concluded that a limited availability of IL-2 was responsible for
Treg cell death. Furthermore, CD45RA+ Tregs have been
October 2021 | Volume 12 | Article 719954
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demonstrated to be present in the peripheral circulation at a higher
frequency in paediatric liver transplant recipients that have
developed graft tolerance in comparison to recipients that have
not developed tolerance (35). Data on the frequency of each subset
within the liver is more limited, however Zhang et al. reported
CD45RA+ Tregs to comprise approximately 50% of ICOS- Tregs
within livers explanted from children with biliary atresia (19).

To effectively maintain peripheral tissue immune homeostasis,
Tregs are required to maintain a stable, anergic and immuno
suppressive phenotype (36). The anti-inflammatory and
immunosuppressive effects of Tregs have been attributed to both
direct and indirect mechanisms (Figure 1) (25). Mechanisms
Frontiers in Immunology | www.frontiersin.org 3
include CTLA-4 on Treg leading to trans-endocytosis of CD80/
86 molecules on antigen presenting cells, depriving effector T-cells
of IL-2 by competitive consumption, depletion of extracellular
ATP via the release of adenosine through the CD39 molecule on
Tregs, secretion of immunosuppressive cytokines (IL-10, IL-35
and TGFb) and cytotoxic enzymes Granzyme and Perforin to kill
T effector cells (25, 37). These functional mechanisms of Tregs can
vary depending on given immune scenario, the stimulus and
corresponding microenvironment (25, 38, 39). For example, in a
murine model of acute liver injury an alleviation of inflammation
occurred with adoptive transfer of Tregs and this was associated
with increased IL-10 levels within the liver (40, 41).
FIGURE 1 | Mechanisms by which Regulatory T cells (Tregs) suppress the immune response. Demonstration of both the direct and indirect mechanisms of Tregs.
aLAG-3 involvement most characteristic of T-regulatory type 1 cells. DC, Dendritic cell; LAG-3, Lymphocyte activation gene 3; IDO, Indolamine-2,3-dioxygenase.
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THE HEPATIC MICROENVIRONMENT

The liver is the largest internal organ and has a frontline
immunological role due to it being positioned to receive
gastrointestinal tract derived antigens in the portal venous blood
(42, 43). These antigens comprise both pathogenic and non-
pathogenic molecules and therefore the liver is required to initiate
and amplify an immune response, in addition to displaying a level of
tolerance to non-pathogenic organisms (42). The liver
microenvironment is comprised by the different cells and
molecules that are resident in the liver or transiting through, it is
organised to ensure that multidirectional signalling can
occur between its different components (44). For example,
TGF-b is a strong immunosuppressive cytokine that induces
CD4+CD25+FoxP3+ Tregs (45). However, if high levels of IL-6
are also present, this combination (IL-6 and TGF-b) results in
generation of IL-17 producing Th17 cells and suppression of Treg
induction (45). Therefore, the outcome of an immune response is
influenced by the local hepatic microenvironment and
understanding how this environment changes in disease states is
essential (46). The cellular alterations that take place in liver
cirrhosis are summarised in Figure 2.
Frontiers in Immunology | www.frontiersin.org 4
Blood Supply
The liver is unique in that it has a dual blood supply (42, 47). In
health, 70% of the blood volume delivered to the liver arrives via
the portal vein which represents the intestinal venous outflow,
the remaining 30% comes via the hepatic artery (47). Aberrations
in portal vein flow influence the hepatic artery via hepatic arterial
buffer response (HABR) (48). This response entails a
compensatory increase in hepatic artery flow if portal flow
decreases, and vice versa (48). However, this relationship is
unidirectional due to the relatively fixed flow in the portal vein
which cannot increase to compensate for a fall in arterial flow.
The space of Mall surrounds the terminal branches of the portal
venules and hepatic arterioles, between the portal tract stroma
and the hepatocytes (49, 50). Adenosine accumulation in the
space of Mall is thought to occur in the setting of reduced portal
flow, resulting in arterial vasodilation. The HABR has significant
implications for certain pathological conditions, such as post
hepatectomy liver failure and liver transplantation (51).

Hepatic Microcirculation
The hepatic microcirculation has been defined as the intrahepatic
vessels that have an internal diameter ≤300 mm (52).
FIGURE 2 | Altered cellular function in liver cirrhosis. ECM, Extracellular matrix; DAMPs, Danger associated molecular patterns. 1. Yang F et al. Int
Immunopharmacol. 2021 Aug 18;99:108051 2. Marra F et al. Gastroenterology. 2014 Sep;147(3):577-594. 3. Poisson J et al. J Hepatol. 2017 Jan;66(1):212-227.
4. Matsumoto S et al. Liver. 1999 Feb;19(1):32-8 5. Kumar S et al. Adv Drug Deliv Rev. 2021 Jul 16:113869.
October 2021 | Volume 12 | Article 719954
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These largely comprise the portal venules, hepatic
arterioles, lymphatics, sinusoids and central venules. The
immunosurveillance role of the liver is facilitated by the
specific arrangement and function of these vessels (42). Both
the hepatic arterioles and portal venules deliver blood via short
side branches into the hepatic sinusoids, the principal site of flow
regulation and molecular exchange in the liver (52). The flow of
blood in the sinusoids is approximately 50% slower than in
capillaries elsewhere in the body, this allows additional time for
pathogen identification (42). Liver sinusoidal endothelial cells
(LSECs) comprise 15-20% of the cells in the liver and are integral
for many functions of the liver, forming a permeable barrier
between the sinusoidal lumen and the space of Disse (53). Their
fenestrated arrangement, lack of both a diaphragm and basement
membrane result in them being the most permeable endothelial
cells in the human body (53, 54). LSECs regulate hepatic vascular
resistance and blood flow at the sinusoids via release of nitric
oxide (NO in response to shear stress (54). Kruppel-like factor 2
is an endothelial specific transcription factor that initiates the
synthesis and release of NO and other vasodilating substances
(53). Antigen processing and presentation is another role of
LSECs and they have demonstrated the ability to prime both
CD4+ and CD8+ T cells in vitro and in vivo using murine models
(46, 55). LSECs facilitate leucocyte adhesion via the expression of
ICAM-1 and Vascular Adhesion Protein-1 (VAP-1) (53). Trans
endothelial migration is enhanced under inflammatory
conditions by increased expression of ICAM-1, VCAM-1 and
CD31. The common lymphatic endothelial and vascular
endothelial receptor (CLEVER-1) has been demonstrated to be
present on LSECs in normal liver and this receptor promotes
trans endothelial migration of CD4+ T cells, specifically Tregs
(56). On the abluminal side of the LSEC is the space of Disse
which is bounded by hepatocytes on one side, and the basal
surface of the LSEC on the other (53, 57). It contains extracellular
matrix, hepatic stellate cells (HSC) and substances that have
migrated from the sinusoidal lumen (57, 58). Laminin proteins
(a, b, g) and reticular collagen type IV are the predominant
proteins of the extracellular matrix (ECM) in the space of Disse
(57). The composition of the ECM in the space of Disse alters in
disease and this change results in activation of HSC (59, 60).
TREGS AND CHRONIC LIVER DISEASE

Tregs are known to be actively involved in the immune response
within both secondary lymphoid tissue and peripheral organs
(61). The frequency of Tregs within the liver, known as liver
infiltrating Tregs (TregsLIT), is higher in livers from patients with
autoimmune, alcoholic and viral related liver diseases in
comparison to healthy livers (61). TregsLIT have demonstrated
the ability to suppress T-cell activation in the setting of chronic
liver disease, however they have also been associated with
reduced matrix metalloproteinases and inhibiting the clearance
of fibrosis (61–63). In addition, the suppressive effects TregLIT
have on CD8+ T-cell responses has been proposed to contribute
to reduced clearance of hepatotrophic viruses (63). Therefore,
Frontiers in Immunology | www.frontiersin.org 5
therapeutic intervention that aims to increase TregsLIT frequency
or function must balance these opposing effects. In chronic liver
disease, the impact Tregs have on inflammation, fibrosis, antigen
clearance and oncogenesis must be considered (Figure 3).

TregLIT have been shown to localise in close proximity to
intrahepatic dendritic cells (DCs) and CD8+ T-cells within the
diseased liver and the lymph nodes in the hepatic hilum (61). The
TregsLIT leave the hepatic sinusoids through trans-endothelial
migration via binding with CXCR3 ligands (CXCL9, 10, 11)
expressed on the LSEC (61). Our group (2010) demonstrated that
in human livers with seronegative hepatitis the TregsLIT were
predominantly in the hepatic parenchyma or lobules, whereas the
portal tracts had the highest TregLIT frequency in PBC, chronic
hepatitis C virus hepatitis (HCV) and alcoholic related liver disease
(ArLD) cirrhosis (61). The different locations of TregsLIT in the
acutely inflamed livers with unknown aetiology (seronegative
hepatitis) suggests that the role and effect of TregsLIT in acute and
chronic liver disease may also differ. Alternatively, it may just reflect
the location of the greatest amount of ongoing injury. The latter
rationale is supported by the findings of Sasaki et al. (2007) who
demonstrated a greater amount of TregLIT at sites of chronically
inflamed portal tracts, in comparison to non-inflamed portal tracts
in both PBC and HCV diseased liver (64).

Chronic hepatitis from different aetiologies contributes to the
development of fibrosis and subsequent cirrhosis (65). Therefore,
therapies that can reduce the chronic inflammatory process may be
beneficial in reducing the development of end stage liver disease. In
chronically diseased liver, TregLIT frequencies are increased and a
higher proportion are proliferating cells expressed by Ki67 (65, 66).
The proposed stimulus is damage associated molecular patterns
(DAMPs) such as IL-33 being released from injured hepatocytes
(65). In murine experimental models, TregLIT depletion resulted in
the enrichment with pro-fibrotic and inflammatory Ly-6Chigh

CCR2highmonocytes andgreater collagendeposition in the liver (65).
One of the main driver of inflammation and regeneration within

the liver is orchestrated by Th17 which secrete interleukins IL-17A,
IL17-F and IL-22 (67). Chronic inflammatory tissue damage occurs
with ongoing Th17 stimulation and IL-17 stimulates type 1 collagen
release from HSC (67). Liver resident immune cells, especially
Kupffer cells, also secrete IL-17 (68). Furthermore, the
inflammatory activity of numerous liver diseases has been shown
to correlate with IL-17A concentrations (69). The Th17/TregLIT
balance is influenced by the local cytokines and environmental
conditions such as hypoxia (68). As an example, IL-10 suppresses
Th17 differentiation (68). Chronic hypoxia induces hypoxia
inducible factor 1a (HIF-1a), this favours the RORgt
transcription factor and Th17 production (68). Mou and
colleagues (2019) demonstrated that the frequency of Th17 cells
in the peripheral blood was increased in patients with cirrhosis and
chronic HBV, in comparison to healthy controls. In addition,
haematoxylin and eosin staining of the liver from the group with
cirrhosis or chronic HBV demonstrated more fibrosis,
inflammatory cell infiltrate and hepatocyte necrosis (70). This
suggests that Th17 cells are implicated in the process of liver
injury in HBV. Lan et al. (2019) demonstrated that a peripheral
blood Treg : Th17 ratio in favour of Th17 cells was an independent
October 2021 | Volume 12 | Article 719954
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predictor of HBV related liver disease progression (71).
Therapeutic strategies that alter the balance, by either increasing
Tregs or decreasing Th17 cells, may ameliorate the chronic
inflammation and subsequent fibrogenesis.

The immune system is also required to clear infectious
pathogens and tumour cells from within the liver. Following
infection with HBV or HCV, T-cell responses are important in
resolving the acute phase of infection and preventing chronic
infection (72). Elimination of a particular virus is reliant on a
virus specific T-cell response that may be suppressed by Tregs
and result in the persistent infection (72). However, much of the
liver damage that results fromHBV and HCV viral infection may
be a result of the host immune response and Tregs may be
Frontiers in Immunology | www.frontiersin.org 6
protective from this aspect (72, 73). Treg frequency in early HBV
infection is similar to that of healthy controls, however higher
Treg frequency has been demonstrated in those with chronic
HBV infection (HBeAg +) (74, 75). Despite a higher frequency of
peripheral Tregs in a group of individuals with chronic HBV
infection in comparison to healthy controls, Niu et al.
demonstrated that the Treg : Th17 ratio was lower in the
group with chronic HBV infection (73). Therefore, the
increased frequency of deleterious Th17 cells in chronic HBV
infection surpasses that of Tregs.

TGF-b levels have been shown to correlate with peripheral
Treg frequency in chronic HBV infection and is a proposed
mechanism for FoxP3 induction (74). In a recent study utilising a
FIGURE 3 | Tregs in the setting of transplantation, end stage liver disease and oncogenesis. AILD, Autoimmune liver disease; DAMPs, Danger associated molecular
patterns; APC, Antigen presenting cells; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus. 1. Sánchez-Fueyo A et al. Am J Transplant. 2020 Apr;20(4):1125-1136.
2. Bashuda H et al. J Clin Invest. 2005 Jul;115(7):1896-902. 3. Todo S et al. Hepatology. 2016 Aug;64(2):632-43. 4. Yu J et al. Liver Transpl. 2021 Feb;27(2):264-280.
5. Gao Q et al. Journal of clinical oncology.2007;25(18):2586-93. 6. Eksteen B et al. Seminars in liver disease. 2007;27(4):351-66. 7. Ikeno Y et al. Frontiers in
immunology. 2020;11:584048. 8. Sasaki M et al. Journal of clinical pathology. 2007;60(10):1102-7. 9. Tang R et al. Experimental and therapeutic medicine. 2020;20
(4):3679-86. 10. Losikoff PT et al. Virulence. 2012;3(7):610-20. 11. Shi C et al. OncoTargets and therapy. 2019;12:279-89. 12. Sachdeva M et al. EXCLI journal.
2020;19:718-33. 13. Huang Y et al. Journal of gastroenterology and hepatology. 2014;29(4):851-9. 14. Lee JC et al. Science immunology. 2020;5(52).
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murine model, Tang et al. (2020) demonstrated that HBeAg may
directly be responsible for converting naïve CD4 T-cells into
Tregs. Taken together, these two mechanisms suggest that HBV
manipulates the immune system to create a TGF-b and Treg rich
microenvironment that is anti-inflammatory, allowing viral
persistence (75). Effective clearance of HCV is associated with
intense HLA class I CD8+ and HLA class II CD4+ T-cell
responses to both structural and non-structural viral proteins
(76). These responses are not maintained in those who develop
chronic infection and the reason for this includes induction of
FoxP3+ Tregs, CD4+ T cell anergy, CD8+ T cell exhaustion and
impaired DC function. Tregs have been demonstrated to be
present at an increased frequency in the blood of humans
chronically infected with HCV, in comparison to those that
have cleared the virus and healthy controls (76). In addition,
Tregs isolated from chronically infected HCV individuals have
been shown to supress this virus specific CD8 T cells response
(76). Abnormal dendritic cell function as a result of chronic
HCV infection is proposed to contribute to the maintenance of
the HCV specific Treg response (76).
TREGS AND CHRONIC LIVER DISEASE
COMPLICATED BY ONCOGENESIS

Treg activation may negatively impact antitumour responses via
various mechanisms, including CTLA-4 upregulation and
suppression of antigen presenting cell (APC) activity (77).
Hepatocellular carcinoma (HCC) is a known consequence of
chronic liver disease. Survival in the setting of HCC has been
associated with the extent of tumour immune cell infiltration
(78). Working in synergy with innate immune mechanisms and
CD4 T-cells, an effective cytotoxic response from CD8+ T-cells
eliminate cells displaying malignant potential, and therefore Treg
mediated suppression may result in favourable tumour
conditions (79). A systematic literature review on the
prognostic effect Tregs have in cancer found that the presence
of tumour infiltrating Tregs in HCC heralds a poorer prognosis
(80). Interestingly, a higher density of the pro-inflammatory
Th17 cells also was associated with worse overall survival (81).
The enhanced oncogenesis that may result with Treg directed
therapies is a risk that needs considering (Figure 3).

An inflammatory microenvironment within the liver is
associated with development of HCC (79). A lower Th17:Treg
ratio was found in the tumour compared to the peri-tumour liver
by Huang and colleagues (79). These authors suggested that
there was an immunosuppressive state within the tumour and
this may facilitate immune escape of malignant cells to invade
the surrounding peritumour liver (79). Other authors have
proposed that Tregs result in further invasion by malignant
hepatocytes through a TGF-b mediated transition from an
epithelial to a mesenchymal phenotype (82). In a study that
examined HCC resection specimens, Gao et al. (2007)
demonstrated that a high level activated CD8 cytotoxic T-cells
and a low Treg level was associated with both improved overall
and disease-free survival (83). These mechanisms, in addition to
Frontiers in Immunology | www.frontiersin.org 7
the fact that Tregs are known to inhibit T-cell responses, suggests
that Treg depletion may prove beneficial in the treatment of
HCC. Greten et al. (2010) trialled cyclophosphamide in patients
with advanced HCC in attempt to deplete Treg frequency and
restore anti-tumour immune responses (78). These authors
measured alpha fetoprotein (AFP) specific T cell responses
before and after Treg depletion. The results demonstrated that
an anti-AFP immune response was present in 6/13 patients
following Treg depletion with cyclophosphamide (78).
Interestingly, metastatic spread of cancers from other organs to
the liver has recently been reported to suppress anti-tumour
immunity on a systemic basis (84). This tolerance to the
malignant cells was demonstrated to be Treg induced and Treg
depletion augmented the response to anti-PD-1 therapy (84).
The oncogenic nature of chronic liver disease presents additional
challenges to the implementation of Treg therapy in this setting.
TREG AND LIVER TRANSPLANTATION

The ability to remove an entire diseased liver and replace it with a
non-diseased organ from another individual has prevented a
significant amount of premature death, and effectively cured
many liver and metabolic diseases. Pharmacological
immunosuppression to prevent rejection in the recipient has
progressed significantly over the last five decades, however both
graft rejection and medication side effects are significant causes of
morbidity (5, 85). Therefore, a therapy that can induce tolerance of
the graft without immunosuppression has been referred to as a ‘holy
grail’ of transplantation by many (24, 86, 87).

Role of Treg in Maintaining Liver
Allograft-Tolerance
Tregs have shown the ability to induce graft tolerance in animal
models and have been demonstrated to be present at a higher
frequency within liver grafts of spontaneously tolerant humans
(88–90).

Immunological rejection of the liver graft occurs when non-self-
antigens on the transplanted graft are processed by antigen-
presenting cells and recognised by recipient T cells (91). Several
different recognised pathways for graft rejection exist (direct,
indirect and semidirect), with the main difference being the origin
of the APC (92). Primed CD8+ T-cells are themain effector cells that
respond and induce the damage to the graft (91). An inflammatory
microenvironment, such as that which occurs with preservation-
reperfusion injury, has been associated with an increased incidence
of rejection (93). The induction of MHC II expression on
hepatocytes, LSEC and cholangiocytes by inflammation may
provide the mechanistic explanation of this phenomenon (91).
The proposed immunosuppressive mechanism of TregsLIT in the
setting of transplantation does not differ to that proposed in other
disease states with IL-2 deprivation, chemokine secretion and direct
inhibition of APCs reported (94).

Human trials of Treg therapy in the organ transplantation
arena have yielded mixed results (10–12, 24). The greatest
promise was shown by Todo et al. (2016) in which early
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operational tolerance was achieved in 7 out of 10 subjects
following the administration of a Treg-containing cell product
that comprised ex-vivo expanded recipient Tregs, that had been
co-cultured with irradiated donor lymphocytes (10). This trial
was terminated early due to rejection occurring in three subjects
that were transplanted for autoimmune liver diseases, however
the high rate of operational tolerance achieved at such a short
time interval from transplant was viewed as a step forward. The
participants in this study had undergone living donor liver
transplantation (LDLT) and therefore access to donor tissue
antigens was possible ahead of the transplant operation, an
option not possible in many countries with predominantly
deceased liver transplant programs. During long term follow
up of the seven patients with Treg induced tolerance, Todo et al.
(2018) demonstrated a variation in peripheral Treg frequency
and responsiveness to donor antigens (95). Despite all seven
subjects having grafts without evidence of rejection on biopsy,
three demonstrated a significant immune response to donor cells
on mixed lymphocyte response analysis several years post-
transplant (95). Treg frequency in the peripheral blood
increased gradually in three, increased then decreased in three,
and remained static in one (95). This suggests the changes in the
peripheral blood compartment may not accurately reflect cell
interactions within the liver graft.

In the ThRIL trial, Sanchez-Fueyo et al. (2020) assessed the
donor specific alloimmune response in liver transplant recipients
that received an autologous polyclonal Treg infusion post liver
transplant (11). This trial was different that by Todo et al. in that it
was in the context of deceased donor liver transplantation, as
opposed to living donation. Nine liver transplant recipients
received polyclonal autologous Treg between 83 to 481 days post-
transplant. These authors showed that in the participants that
received the higher dose of Tregs (4.5 million/kg), the T-cell
response against donor cells was diminished. This effect was not
seen to third party cells and therefore suggests tolerance induction
specifically to donor antigens. The details and results of subsequent
Treg trials in liver transplantation have been extensively compared
and contrasted in reviews by others (24, 94). The role of Tregs in
liver transplantation is summarised in Figure 3.

Maintaining an immunosuppressive phenotype and function is
one of the challenges when expanding Tregs for cellular therapy
(96). In a murine experimental model, Li et al. demonstrated that
Tregs can be converted into IL-17 producing cells and that IL-1b
was required for this to occur both in-vitro and in vivo (97). This
conversion has also been demonstrated with human Tregs but IL-2
and IL-15 were thought to be the key to this process (98). However,
both rapamycin and cyclosporin A have been shown to inhibit the
generation of IL-17 producing cells in a murine model (99). These
authors also demonstrated an additional benefit of rapamycin over
cyclosporin A was its ability to promote the generation of FoxP3+

cells (99). Therefore, Tregs used in the ThRIL trial were expanded in
the presence of Rapamycin and IL-2, and this resulted in superior
suppressive abilities of the final cell population (96).

Increasing Treg frequency or function within the liver is essential
for the tolerance inducing benefits, given the aforementioned
mechanisms. In an animal model, Fujiki et al. demonstrated that
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CD4+CD25+FoxP3+cellshadan increased frequency in the liver and
spleen of tolerant liver transplant recipients, in comparison to the
non-tolerant animals (88). Extraction of these cells showed in-vitro
suppression of T cell proliferation, and transfer to another animal
prolonged the survival of an additional heart graft (88). Intravenous
administration of Tregs to achieve tolerance following liver
transplantation relies on these cells travelling through the
peripheral circulation to reside within the liver. Tracking of
intravenously administered Tregs via indium labelling was
performed by Oo et al. (2019) and these authors demonstrated that
only 22-30% of the administered cells are present in the liver at 24
hours post administration in those individuals with a functioning
spleen (100). Subsequent assessment at 72 hours demonstrated the
proportion of cells within the liver had fallen (100). Functional
asplenism resulted in a higher proportion of cells (44.8%) residing
in the spleen at 24 hours (100). Once Tregs have migrated out from
the hepatic sinusoids, chemokine gradients influence their position
and they can reside around the portal tracts or parenchyma
depending on the microenvironment (61, 101). Therapeutic
efficacy of Tregs in liver transplantation may be enhanced if
homing mechanisms can be optimised, enabling these immune
modulating cells to exert their direct effect within the graft.
Administration of cell therapy directly into the graft prior to
implantation may be a novel and worthwhile approach, as the
utilisation of ex-situ machine preservation devices are becoming
more common. Utilisation of these devices as a platform to deliver
Tregs or modulating therapies would avoid the issues of cell homing
and minimise the potential for undesirable systemic effects.

Tregs in Acute Graft Rejection
The assessment of Treg frequency and function post-transplant is
confounded by the additional introduction of pharmacological
immunosuppression. In addition to suppressing effector cell
activity, non-specific immunosuppressant therapies also affect the
Treg population (102). Treg frequency in the peripheral blood has
been demonstrated to be higher in patients with liver disease
awaiting transplantation than healthy controls (103). A reduction
in peripheral blood Treg frequency has been observed immediately
post-transplant, with a subsequent increase over the first
postoperative year but never returning the pre-transplant level
(102, 103). The Treg frequency at 12 months post-transplant was
reduced in patients that had experienced acute rejection (103). Han
et al. (2020) demonstrated that the activated Treg frequency on day
7 was significantly lower in those that developed biopsy proven T-
cell mediated rejection (TCMR) (102). A Treg/CD4 frequency of
less than 4.7% on post-transplant day 7 was shown to predict biopsy
proven TCMR with a sensitivity and specificity of 100%and 91.4%
respectively. Furthermore, these authors demonstrated that the
expression of the anti-apoptotic molecule Bcl-2 was reduced on
Tregs collected on day 7 post-transplant from patients that
experienced rejection, in comparison to non rejectors (102).
Therefore, apoptotic Treg death may explain the reduced
frequency of Tregs in acute rejection. In a study of paediatric liver
transplant recipients, the frequency of Tregs was significantly lower
and the frequency of Th17 cells significantly higher in blood
samples taken in patients experiencing rejection in comparison to
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non-rejectors and healthy controls (104). The frequency of both
Th17 and Tregs was reduced by the init iat ion of
immunosuppression (104). Treg cell-based therapy administered
at the onset of acute rejection or in treatment resistant cases have
not been trialled in humans but represents an interesting concept.

Tregs in Chronic Graft Rejection
As time progresses from transplant, acute TCMR becomes
less frequent as this most commonly occurs in the first 6 weeks
post-transplant (5). However, a chronic form of rejection can
substantially contribute to graft dysfunction and loss (105, 106).
Chronic rejection is characterised by ≥50% loss of bile ducts and
≥25% loss of arteriole within the portal tracts, perivenular
bridging fibrosis and fibro-intimal hyperplasia of the large
perihilar arteries (107). The indirect pathway is proposed to be
responsible for chronic rejection (106, 107). Wan et al. (2012)
demonstrated the dominance of Th2 cytokines, particularly IL-
10, in an animal model of chronic rejection. These authors
proposed that the Th2 response accelerates the production of
alloreactive antibodies (106). Minimal literature exists describing
Treg frequency, localisation and function in human liver graft
recipients with chronic rejection. In recipients of renal grafts,
patients with chronic rejection have a significantly lower
peripheral blood frequency of CD25highCD4 Tregs than
healthy controls and tolerant patients (108). At present, there
is no specific therapy for chronic rejection of a liver graft that will
reverse the pathological changes. If organ function is significantly
compromised, re-transplantation is the only option. The effect of
augmenting Treg frequency and function in the setting of
chronic rejection remains unknown at present.
TREG INDUCING OR MODULATING
THERAPIES

An alternate strategy to administering ex-vivo expanded Tregs,
in both chronic liver disease and transplantation, is in vivo
induction. Modulating the native Tregs via promoting cellular
expansion or increasing their immunosuppressive potency may
prove beneficial in numerous different types of liver disease.
Administration of Interleukin-2 (IL-2), a cytokine that has been
demonstrated to control the development of CD4+ T cell subsets
including Tregs, is an example of this strategy and has been
investigated in both liver disease and transplantation (109). The
main role of IL-2 was initially proposed to be the development of
effector T-cells; however it was later demonstrated to be the
activation and maintenance of Treg cells, especially as low
dose IL-2 selectively stimulates Tregs. The diseased liver
microenvironment has previously been demonstrated to be
deficient in IL-2 (110).

The effectiveness of IL-2 therapy in liver disease has been
investigated in animal models and human subjects with
autoimmune liver disease. Buitrago-Molina et al. (2021)
utilised a murine model of autoimmune hepatitis to investigate
the effect of co-administering IL-2 with anti-IL-2, the rationale
for including the latter was to reduce the non-Treg cellular
Frontiers in Immunology | www.frontiersin.org 9
impact of IL-2 (111). These authors demonstrate a significant
increase in the frequency of Tregs both in the blood and liver
compartment following IL-2 administration. In addition, this
resulted in a reduction in both the aspartate transaminase and
the inflammatory gene profile of the treated animals (111). In a
clinical trial that included patients with various autoimmune
disease, two with AIH and four with PSC, demonstrated
consistent increase in Tregs across the different diseases (15).
This study was designed to determine the appropriate dose of IL-2
and its safety, rather than therapeutic efficacy (15). In various non-
liver experimental transplant models, IL-2 therapy has been
shown to increase graft or recipient Tregs (112, 113). The ability
of IL-2 therapy to restore operation tolerance of the liver allograft
is currently under investigation in the LITE trial, assessing the
ability of low dose IL-2 to allow complete discontinuation of
immunosuppressive therapy following liver transplantation. The
results of this trial and those of investigators in the United States
(NCT02739412) performing a phase II trial are highly anticipated.
CONCLUSION

The prospect of manipulating Tregs to protect the liver from
immunologically mediated damage in chronic liver disease or
transplant setting is being met with excitement in the scientific
community. Intense research is being undertaken in many
different centres to further understand Treg cell biology and
potential therapeutic applications. Due to the numerous different
cell populations in the liver, the effect of Tregs is undoubtedly
influenced by this microenvironment and crosstalk with other
immune cells. Further detailed understanding of Treg biology in
chronic liver disease is required before proceeding from early
phase trial to Phase II clinical trial. Therapeutic application of
Tregs in the setting of liver transplantation has progressed to
phase I trials and has yielded mixed results. Safety of therapeutic
Tregs has been demonstrated in select transplant recipients,
however the efficacy data on ability to reliably withdraw
immunosuppression without immune rejection is yet to be
demonstrated consistently.
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