
 International Journal of 

Molecular Sciences

Review

Furnishing Wound Repair by the Subcutaneous Fascia

Dongsheng Jiang 1 and Yuval Rinkevich 1,2,*

����������
�������

Citation: Jiang, D.; Rinkevich, Y.

Furnishing Wound Repair by the

Subcutaneous Fascia. Int. J. Mol. Sci.

2021, 22, 9006. https://doi.org/

10.3390/ijms22169006

Academic Editor: Carla Stecco

Received: 2 July 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Lung Biology and Disease, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich,
Germany; dongsheng.jiang@helmholtz-muenchen.de

2 Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31,
81377 Munich, Germany

* Correspondence: yuval.rinkevich@helmholtz-muenchen.de; Tel.: +49-89-31874685

Abstract: Mammals rapidly heal wounds through fibrous connective tissue build up and tissue
contraction. Recent findings from mouse attribute wound healing to physical mobilization of a
fibroelastic connective tissue layer that resides beneath the skin, termed subcutaneous fascia or
superficial fascia, into sites of injury. Fascial mobilization assembles diverse cell types and matrix
components needed for rapid wound repair. These observations suggest that the factors directly
affecting fascial mobility are responsible for chronic skin wounds and excessive skin scarring. In this
review, we discuss the link between the fascia’s unique tissue anatomy, composition, biomechanical,
and rheologic properties to its ability to mobilize its tissue assemblage. Fascia is thus at the forefront
of tissue pathology and a better understanding of how it is mobilized may crystallize our view of
wound healing alterations during aging, diabetes, and fibrous disease and create novel therapeutic
strategies for wound repair.
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1. Introduction

The Fascia Research Society [1] defines fascia anatomically as: “a sheath, a sheet,
or any other dissectible aggregations of connective tissue that forms beneath the skin to
attach, enclose, and separate muscles and other internal organs”. Fascia is an uninterrupted
viscoelastic connective tissue (fibroelastic) that extends and interconnects between tissues
and organs throughout the body [2]. It bridges muscles, bones, nerves, and internal organs,
in a unifying system of connective tissues termed broadly as the “fascial system” [3,4].
A broader terminology of the “fascial system” therefore extends to all fibroelastic soft,
collagen containing, loose and dense fibrous connective tissues that permeate the body. It
includes elements such as superficial and deep fascia, epineurium, joint capsules, meninges,
myofascial expansions, periostea, retinacula, septa, visceral fascia, adventitia and neurovas-
cular sheaths, aponeuroses, and all the intramuscular and intermuscular connective tissues
including endo-, peri-, and epimysium [1].

As one of the primary connective tissues of the mammalian body plan, fascia originates
during embryogenesis from the embryonic mesoderm [5]. However, the exact mesodermal
origins of the fascial system are unclear, as is the question of whether it has single or
multiple origins. This is an important distinction because rather than a single homogeneous
connective tissue layer, the fascial system encompasses various layers at different depths,
forming a mechanical matrix that stabilizes and maintains tissue and organ strength and
pliancy. Fascia equally regulates extracellular fluid flow [6,7]. The fascial system uniquely
acts as a physically compliant interface between adjacent more dense connective tissue
layers due to its areolar structure and viscous properties and low dynamic modulus.
Cadaveric and animal studies and in vivo trials suggest that these attributes enable fascia
to serve as a primary mechanotransduction system of the body’s soft tissues.
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2. Anatomy of Subcutaneous Fascia

Three major types of fasciae are described, based on tissue location: (1) the subcu-
taneous fascia that is present underneath the skin, (2) the visceral fascia that envelopes
internal organs, and (3) the muscle fascia that envelops and interconnects between muscle
fibers.

The subcutaneous fascia, also known as superficial fascia, is composed of a single or
several layers of loose areolar connective tissues, depending on the anatomic skin location.
The different layers of the subcutaneous fascia are further interconnected to the skin and
to the deep fascia by perpendicularly oriented fibrous septa called retinacula [8]. The
fascial tissues that extend from the superficial fascia toward the hypodermis and dermis
are termed as retinaculum cutis superficialis, and those fascial tissues that extend toward
more deep fascia are termed as retinaculum cutis profundus [9]. The subcutaneous fascia
and its associated retinacula form a three-dimensional network that mechanically link the
skin, subcutaneous layer, and deeper muscle layer, to provide a dynamic anchor to the
skin [10–12]. Subcutaneous fascia is an elastic layer of connective tissue, formed by loosely
packed interwoven collagen fibers mixed with abundant elastic fibers [6,8], making it a
unique fibroelastic layer that is easily stretched in various directions and then returned to
its initial state.

The subcutaneous fascia plays a critical role in maintaining skin integrity and support-
ing and sustaining subcutaneous structures including, but not limited to, blood vessels,
lymphatic vessels, nerve bundles, and adipose tissue [13,14]. Thick retinacula cutis divide
fat into little lobules and anchor the skin to the superficial fascia [8]. Fascia also facilitates
the sliding of the dermal layers over the underlying muscle and bone [5].

In loose-skinned mammals such as rodents, cats, dogs, horses, and whales, there is
a layer of striated muscle (panniculus carnosus) underneath the subcutaneous fat layer
(panniculus adiposus). The subcutaneous fascia resides underneath both the adipose and
the panniculus carnosus muscle layers. This muscle layer is absent or minimally present
in humans and in pigs. In these species, the subcutaneous fascia is directly underneath
and continues within the subcutaneous adipose tissue without an intervening muscle layer
(Figure 1). In humans, depending on the different anatomic locations, a single or several
layers of superficial fascial bands can be found within the subcutaneous fat tissue [8,15].
It has been described that in abdominal and pelvic subcutaneous tissues, the superficial
fascia separates the abdominal adipose tissue into superficial adipose tissue and deep
adipose tissue [8,16]. Superficial fascia in healthy juvenile rodents has minimal adipocytes
and is easily separable from deep fascia of the skeletal muscle [13,17], whereas human
subcutaneous fascia tightly interdigitates subcutaneous fat. When superficial fascia splits
into two sublayers, fat lobules are found enveloped inside the superficial fascia [8,15]. It
has been shown that in rat hind limbs, adipose cells have a subcutaneous fascial origin.
Adipose precursor cells are presumed to be derived from fascial cells, expressing markers
similar to subcutaneous adipose-derived stem cells, and undergo spontaneous adipogenic
differentiation in vivo during development [18]. However, a formal proof of a cell lineage
relationship between fascial cells and adipocytes has not been performed.

Subcutaneous fascia also provides a structural scaffold for subcutaneous vascular and
nerve networks. Fascia splits into two sublayers to envelop larger long vessels that are
parallel to the skin surface and connects the vessel walls by attaching to their adventitia [8].
The vertical smaller vessels follow the fascial extensions (retinacula) to cross the subcuta-
neous fat and dermal connective tissue layers. The retinacula provide protection to these
smaller vessels and prevent vessel displacement when the skin is stretched [8]. Similarly,
lymphatic vessels also cross the subcutaneous tissue along the retinacula and are often
completely enveloped by the fibrous septa that provide good support to their thin walls.
The subcutaneous fascia has a high density of nerve endings belonging to the autonomic
sympathetic system [19], where it provides a pathway for long tracts of larger nerves and
protects the larger nerves from excessive stretching.
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Figure 1. Subcutaneous fascia of mouse and human. (a) Macroscopic photo of mouse back skin subcutaneous fascia.
(b) Macroscopic photo of human back skin subcutaneous fascia. The dotted circles indicate the subcutaneous fascia of
mouse and human. (c), Masson’s trichrome staining of back skin of an adult mouse including all skin layers, subcutaneous
fascia, and skeletal muscle wrapped with deep fascia. Collagen fibers are stained in blue. (d) Fluorescence microscopic
image of back skin from a fibroblast lineage specific transgenic mouse line (En1Cre; R26mTmG) showing subcutaneous fascia
is enriched with En1 lineage positive scar-forming fibroblasts (GFP+). pc, panniculus carnosus; s.c., subcutaneous; sk.,
skeletal. Scale bars: 500 µm. The images are derived from our work and are not published elsewhere before.

3. Composition of Subcutaneous Fascia

The functional properties of fascia come from its various stromal cells that are em-
bedded in a gelatinous extracellular matrix rich in glycosaminoglycans, proteoglycans,
polysaccharides, and high in water content [5,8]. Such a composition makes subcuta-
neous fascia highly deformable. The number of layers of the subcutaneous fascia and the
amount of extracellular matrix they contain depend on age, gender, species, and anatomic
locations [13,20].

The stromal cell composition of the fascia includes fibroblasts, pericytes, and adipocytes,
which represent the cellular foundation of the subcutaneous fascia. Cohabiting with these
stromal populations are immune cells such as resident dendritic cells, macrophages, mast
cells, and lymphocytes [21].

Subcutaneous fascia constantly changes its length in response to stretch and com-
pression. Here, fascial fibroblasts play a key role in managing such tension by rapidly
remodeling their cytoskeleton without activating a fibrogenic program or turning into
myofibroblasts [7]. Such homeostatic cytoskeletal responses appear to be specific to fascial
tissue and do not occur in more densely packed dermal fibroblasts [12]. Fascial fibroblasts
are positive for vimentin, fibroblast-specific protein 1 (FSP1; S100A4), CD26, and Sca1 and
are negative for monocytic marker CD68, demonstrating their fibroblastic nature [22,23].
Recent single-cell RNA-sequencing studies have revealed two additional fascial fibroblast
markers: GPX3 (encoding Glutathione peroxidase 3) [24,25] and MSX1 (encoding Msh
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homeobox 1) [26] that mark the fibroblasts of mouse subcutaneous fascia. Fascial fibroblasts
further express specific sets of integrin complexes such as integrin α5β1 and αvβ3, which
allow them to be connected to the extracellular matrix and sense the surrounding mechani-
cal forces. The integrin-mediated intracellular signaling in fascial fibroblasts enables the
fascia to adapt its mechanical responses with metabolic behaviors to ensure physiologic
functions [27].

Physiological functions of subcutaneous fascia is ensured by additional tasks taken up
by its resident fibroblasts including: (1) balancing extracellular matrix production and its
modification by modulating matrix metalloproteinases (MMPs) and their inhibitors—tissue
inhibitors of metalloproteinases (TIMPs) [3]; (2) maintaining stromal cell homeostasis by
releasing growth factors such as connective tissue growth factor (CTGF/CCN2), trans-
forming growth factor-beta (TGF-β), and fibroblast growth factor (FGF) [8]; (3) controlling
inflammatory responses by interacting with and providing a niche for recruited immune
cells [28]; and (4) maintaining balanced interstitial fluid pressure by regulating fluid pres-
sure and flow that permeate through the fascia. When the fascial fibroblast undergoes a
strain, the water inside is expelled toward the extracellular matrix. As soon as physical
extension is complete, the fibroblasts return to their original size and re-establish contact
with the extracellular matrix through the integrins, reabsorbing the water [7].

The origin and functional diversities of fibroblasts attract increasing attention in the
field (reviewed in [29–31]). However, the heterogeneity of fascial fibroblasts is relatively
understudied. A more recent study into the heterogeneity of fibroblasts within human
deep fascia has identified at least two morphologically distinct fibroblastic types (reviewed
in [32]). The transcriptomic profile and the exact physiological functions of different
fibroblastic subsets in fascia requires further investigation using techniques such as single
cell-RNA sequencing and genetic lineage tracing.

Subcutaneous fascia is composed of loosely packed interwoven fibers, unlike the fiber
bundles of the dermis, and is rich with various collagen fibers of types I, III, IV, V, VI, XI,
XII, XIV, and XXI. This amalgam of collagen types forms a unique structure that provides
compliance [2] and resistance to tension and stretch, which commonly occurs in fascial
tissues. As stated above, subcutaneous fascia has a unique orientation and architecture of
collagen fibers that is vastly different from that found in dermis, tendons, ligaments, or
aponeurotic sheets. The subcutaneous fascia also includes elastin fibers [2], which makes
the young healthy fascia elastic. With age, the fascia and their retinacula extensions lose
their elasticity however [8].

Subcutaneous fascia is rich in glycosaminoglycans, with a prevalence of hyaluronic
acid, which plays a key role in providing hydration and viscosity to the fascial tissue,
since it has the unique capacity of binding large quantities of water [7,33,34]. Extracellular
hyaluronic acid is synthesized predominantly by fascial fibroblasts, as evidenced by Alcian
blue staining, anti-hyaluronic acid binding protein (HABP) immunohistochemistry, trans-
mission electron microscopy, and the expression of hyaluronan synthase 2 (HAS2) [20,22,35].
Fascial hyaluronic acid levels remain constant throughout life [35]. This contrasts with
the dermis, where hyaluronic acid decline with aging, associated with skin dryness and
reduced scarring [33]. Such a difference implies that a specific level of hyaluronic acid is
required for normal physiological functions of superficial fascia [36]. Significant changes in
hyaluronic acid levels may indicate an underlying pathology. The molecular mechanism
of how fascia tissue maintains a relative constant level of hyaluronic acid requires further
investigation.

Approximately two thirds of the volume of fascial tissues is composed of water [37].
The viscoelastic nature of fascia can only be observed in hydrated tissue. In healthy fascia,
a large percentage of water is arranged in liquid crystals [38]. This is an ordered and
structured form of H3O2

− water molecule at the hydrophilic surface. During massage,
subcutaneous fascia absorbs physical pressure, and that pressure has been shown to build
up the liquid crystalline water that is necessary for healthy physiological function [38].
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4. Wound Repair by Subcutaneous Fascia

Traditionally, the wound healing process has been divided into four distinct but
overlapping stages, namely hemostasis, inflammation, proliferation, and remodeling [39].
Wound repair has hitherto been thought to occur when the wound provisional matrix is
formed as blood clots during hemostasis. In this theory, after the infiltration of inflamma-
tory cells, the collagen-based extracellular matrix starts to rebuild the new tissue during the
proliferation stage of fibroblasts. It was posited that the dermal fibroblasts from adjacent
skin migrate into the fibrin-based provisional matrix, proliferate, and differentiate into
myofibroblasts to form granulation tissue. Myofibroblasts express contractile alpha smooth
muscle actin (α-SMA) that contracts and closes wounds [40]. Other series of experiments
had indicated that granulation tissue was not necessary for wound contraction and closure
by showing that wound closure was not impaired after repeated removal of the granulation
tissue from wounds [41–43]. Instead, the excision of the wound edge caused immediate
unwinding of skin contraction [42,44], suggesting that the contraction occurs from outside
(wound edges), but not from inside (granulation tissue). Furthermore, studies by Harris
and colleagues showed that the traction force of individual fibroblasts in wounds was
significantly more than the force needed for cell movement and hypothesized that the extra
force was used for dragging matrix fibers [45]. The recent findings of the pivotal role for
subcutaneous fascia support these earlier findings [29,46].

The subcutaneous fascia responds to deep skin injuries by physically mobilizing into
wounds, where it establishes a provisional wound scar [23]. The mobilized fascia tissue
contains not only extracellular matrix, but also fascial fibroblasts, embedded blood vessels,
macrophages, and peripheral nerves, which are needed for the initial wound repair. Fascial
matrix serves as the provisional matrix in the wound bed, to accommodate and attract
inflammatory cells from blood. By contrast, the dermal matrix remains immobile and
refrains from physically mobilizing into wounds. This mobilization of a connective tissue
assemblage is therefore unique to fascial connective tissue.

Using genetic lineage tracing, anatomical fate mapping, and live imaging, we found
that fascia-resident fibroblasts orchestrate the mobility of the connective tissue into wounds.
Fascial mobility is directed by a single fibroblastic cell lineage termed Engrailed-1 lineage
positive fibroblasts (EPFs), which is the profibrotic lineage fibroblasts responsible for skin
scarring [47–49]. This specialized fibroblast type physically drags the fascia into the wound
bed and subsequently into the skin surface in mice (Figure 2a). Genetically depleting fascial
EPFs was performed by crossing the transgenic mice expressing Cre recombinase under the
En1 promoter with the inducible diphtheria toxin receptor (DTR) transgenic mice, thereby
restricting DTR to EPFs. Local delivery of diphtheria toxin into the subcutaneous fascia
resulted in depletion of fascial EPFs. This genetic ablation strategy of fascial fibroblasts
abolished the incorporation of fascial matrix into wounds and resulted in delayed wound
healing. Furthermore, a porous film placed beneath the skin to prevent fascial fibroblasts
from migrating upwards led to chronic open wounds that failed to close [23].

Our follow-up studies further support Harris’s fibroblast traction theory. We found
that in response to injury, the expression of N-cadherin adherens-junctions [50] and Con-
nexin 43 gap-junctions [51] were elevated specifically in fascial EPFs. These junctional
structures transduce mechanical information, small molecules, and electrical activity, such
as Ca2+ oscillation signals [52,53]. The adhesion and communication between fascial EPFs
resulted in coordinated collective cell migration of fascial EPFs from wound edges toward
the wound epicenter (Figure 2b). Therefore, fascial EPFs act as conveyor belts for dragging
fascial matrix and plugging wounds.



Int. J. Mol. Sci. 2021, 22, 9006 6 of 14

Figure 2. Wound repair by subcutaneous fascia. (a) Fluorescence microscopic image of a full-thickness excisional wound
on the back of En1Cre; R26mTmG transgenic mouse at day 7 post-wounding, showing that scar-forming fibroblasts from
the subcutaneous fascia are mobilized into wounds. pc, panniculus carnosus; s.c., subcutaneous. Scale bars: 500 µm.
(b) A scheme of fascial mobilization driven by collective migration of fascial fibroblasts via upregulation of N-cadherin
and Connexin 43. (c) Scheme depicting the stages of wound repair by fascial mobilization. Fascial matrix is mobilized
by resident fibroblasts to plug wounds with provisional matrix, initiate wound repair, and establish mature scars. (b) is
adapted from a schematic figure in Jiang and Rinkevich, 2021 [29] with modifications. (c) is extensively modified from a
schematic figure in Correa-Gallegos et al., 2019 [23].

Additional proof of the beneficial role for fascia in wound repair derives from its
clinical use in surgery. For instance, aponeurotic fascia (deep fascia of the trunk) and fascia
lata (deep fascia of the thigh) are often used as a surgical patch by plastic surgeons [54]. In a
recent study, Yang and colleagues showed a method combining a superficial temporal fascia-
free flap with thin split-skin grafting that was effective in promoting early wound closure
in extensively burned patients with deep tissue defects in the posterior talocrural region.
In all eleven patients, the fascial flaps survived, and wounds were repaired completely [55].
Fascial flaps have also been used as an additional treatment of chronic venous ulcers. A
fascial pedunculated flap transferred from the sural area to the perimalleolar area before
a free skin graft in the treated area significantly shortened healing time compared to the
conservative therapy [56].

Several clinical practices target fascia to support wound repair and regeneration. For
example, fascial tensile reduction sutures are used after surgical removal of keloids. The
suturing of fascia in addition to the more superficial dermal sutures significantly relieves
tension at the edges of the wound. This procedure also decreases the inflammation of the
skin and prevents the re-formation of pathological scars after surgery [57,58].

Manipulation of the fascial system by compressing and stretching the subcutaneous
fascia is commonly used by physiotherapists to resolve inflammation and manage pain. In
modern exercise training, fascia stretching practices are becoming as important as aerobics
and strength training. Fascia training helps to restore fiber distribution, orientation and
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alignment, and optimal tissue hydration and resilience. Simple manual pressure has been
shown to cause alterations in the viscoelasticity of fascial tissue via deformation [2]. In
a carrageenan-induced fascia inflammation model in mice, myofascial practices reduced
neutrophil counts and increased levels of interleukin (IL)-4 and TGF-β, indicating an
anti-inflammatory effect by modulating tissue biomechanics [59].

Acupuncture, a key component of traditional Chinese medicine, has been practiced to
accelerate healing of chronic wounds [60] and to treat pathological scars to improve scar
quality and reduce symptoms of pain and pruritus [61,62]. It has been demonstrated by
ultrasonic elastomyography that the insertion and twisting of the acupuncture needles
cause displacement of the subcutaneous fascia [63]. Such physical changes modulate the
activity of fascial fibroblasts [64], which provide scientific evidence for the benefits of
acupuncture to tissue repair.

Based on the observations that (1) depleting subcutaneous fascial fibroblasts or physi-
cally blocking subcutaneous fascial mobilization by placing a film beneath the skin resulted
in chronic open wounds that fail to heal [23], and (2) the subcutaneous fascia becomes thin-
ner with age [65], while the aged population is associated with a significant delay of wound
healing and is subjected to a higher risk of developing nonhealing chronic wounds [66,67],
we hypothesize that the key to understanding and clinically resolving non-healing wounds
lies in modulating fascia mobility. However, at the moment, there is scarce clinical evidence
that directly connects defects in subcutaneous fascia to chronic non-healing wounds, such
as diabetic wounds, pressure ulcers, and venous leg ulcers, mainly because fascial research
in wound healing is only at its infancy.

In healthy feet, the plantar fascia facilitates load sharing of the digits and reduce
plantar pressure, whereas diabetic foot ulcers are often associated with abnormalities in
plantar fascia, which severely compromise the capacity of fascial tissue to reduce focal
plantar pressure [68,69]. Excessive pressure on fascia leads to a higher incidence of ulcer
recurrence, since selective plantar fascia release has been shown to be effective in preventing
and management of diabetic foot ulcers [70]. Further investigation of subcutaneous fascia in
diabetic mouse models are expected to shed light on the cellular and molecular mechanisms
underlying how defects in fascia impede chronic skin wounds from healing.

Necrotizing fasciitis is another typical example showing the involvement of fascia in
skin wounding. These skin wounds and blistering are directly caused by bacterial infection
of the subcutaneous and deep fascia. Necrotizing fasciitis is caused by one or more bacteria,
with up to a third of cases involving methicillin-resistant Staphylococcus aureus (MRSA) [71].
Necrotizing fasciitis can start from a relatively minor injury, such as a small cut scratch on
the skin, but becomes worse quickly with swelling and redness in the affected area and
develops into fluid-filled blisters. If left untreated, the infection can spread quickly through
the body and can be life threatening [72].

5. Fibrotic Outcomes of Fascia Repair

In mammals including humans, wound closure and scarring are two affixed outcomes
of wound repair. The subcutaneous fascia functions not only as a prefabricated ready-to-
use wound patch, but also as a repository of mobile scar tissue that closes wounds while
simultaneously furnishing scar tissue.

We have found that the collective migration of fascial fibroblasts enables the fascial
matrix to be mobilized into open wounds, and subsequently the mobilized fascial matrix
undergoes substantial modifications into mature scars in wounds [50,51]. This process may
be mediated by fascial matrix losing its elastic and hydrated properties and becoming a
rigid fibrotic scar (Figure 2c). By contrast, wounds in oral mucosa and genital skin, where
subcutaneous fascia is absent, heal with minimal scars [50,73]. The “dartos fascia” beneath
genital skin has a striated carnosus muscle origin, and is not bona fide fascial tissue, further
affirming that skin scarring is connected with the abundance and distribution of fascial
tissue. Moreover, in the African spiny mice (genus Acomys), skin injuries are healed by
scarless regeneration of the dermis, epidermis, and skin appendages including hairs, arrec-
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tor pili muscles, sebaceous glands, adipocytes, and panniculus carnosus muscles [74,75].
Subcutaneous fascial tissue in the Acomys back-skin is remarkably thinner than that of the
laboratory mice (Mus musculus) [74]. Acomys back-skin also exhibits lower skin biome-
chanics and wound tissue stiffness [76,77] as compared to the laboratory mice, which is
equitable with its diminished fascial tissue. The above indicate that the abundance of the
skin’s subcutaneous fascia may explain the diversity seen in the skin’s wound responses to
injury, namely scarring or regeneration, across anatomic skin location and species.

The arrangement and thickness of subcutaneous fascia also vary with age and gender.
The subcutaneous fascia becomes thinner during aging [65], consistent with aged popu-
lations being at higher risk of developing non-healing wounds and having lower risk of
extreme scarring [66,78]. Superficial fascia is constantly thicker in women compared to men
at various anatomical sites. For instance, female subcutaneous fascia at back is 15% thicker
than male (0.16 mm vs. 0.14 mm) [13], while back skin in women is 55% thinner than in
men (1.5 mm vs. 2.3 mm) [46]. The combination thicker subcutaneous fascia and thinner
skin implies that injury of female skin more easily breaches the fascial compartment. This
will mobilize matrix more often in women and inflict more pathological scars. This is the
case with hypertrophic scars and contractures that are more prevalent in women [78].

Therefore, fascia-specific strategies may be a promising novel therapeutic landscape
on which to prevent scars and enhance wound repair. One possible strategy will be to
target fascial fibroblasts, which display molecular and functional features that are different
from papillary and reticular dermal fibroblasts [29,46]. Fascial fibroblasts possess higher
potency in proliferation and in collagen lattice contraction in vivo and hence are profi-
brotic and more active than dermal fibroblasts [79]. Fascial fibroblasts resemble features
of fibroblasts derived from hypertrophic scars and keloids, including high expression of
NOV (nephroblastoma overexpressed, or CCN3), CD26 (DPP4), and FAP (fibroblast acti-
vating protein) [23] to produce more of the proteoglycan versican [80] but less collagenase
(MMP1) [81]. This strategy is supported by the experimental evidences that depletion of
fascial cells [23] or fascial EPFs [50] by genetic ablation remarkably reduced scar sizes after
full-thickness excisional wounds in juvenile mice.

The second strategy is targeting fascial movement. Since a complete blockage of
subcutaneous fascial mobilization results in chronic wounds [23], it will not be a thera-
peutic option for scarless repair. Nevertheless, partial inhibition of fascial mobilization by
targeting N-cadherin or Connexin 43 with chemical inhibitors or genetic ablation in fascial
EPFs have shown promising effects on reducing scarring in mice [29,50,51]. These treat-
ments significantly reduce the amount of fascial matrix in wounds, resulting in reduced
fascia-derived collagen content and infiltrated macrophages, and leading to substantially
reduced scar size.

The third strategy is to prevent the undesired fibrotic modification of fascial matrix
after its mobilization in wounds. However, thus far, little is known about the biochemical
processes involved in fascial matrix fiber cross-linking, maturation, and degradation in
the wound microenvironment. The matured scar matrix contains less elastin fibers than
the fascial matrix, which makes scar tissue rigid [82]. The increased matrix stiffness and
increased tissue strain promote excessive scar formation [83]. Further investigation will
be required to establish whether the degradation of elastic fibers is one of the matrix
modifications after fascial mobilization.

Whereas humans and mammals employ fascia primarily for scarring and tissue
contraction, in lower vertebrates, fascial tissue is crucial for tissue regeneration after
wound repair. For instance, in Xenopus laevis froglets, subcutaneous fascial cells have
been shown to contribute to scarless skin regeneration. By performing transplantation
and cell-fate tracing using chimeric froglets that have GFP-negative skin and GFP-labeled
subcutaneous fascial tissues, Otsuka-Yamaguchi and colleagues found that subcutaneous
fascial cells became blastema-like cells with activated Prrx1 limb enhancer, and contributed
to regenerating the skin, especially the dermis, after an excision injury [84]. Recently,
Prrx1+ fibroblasts have been shown to be responsible for scar formation of the ventral skin
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in mice [85], but a determinant of a successful limb regeneration in Xenopus laevis [86].
Therefore, understanding the key similarities and differences in fascial fibroblasts between
mammals and lower vertebrates may provide molecular and cellular insights into scarless
wound healing.

6. Implication of Fascia in Fibrotic Diseases

Conditions that alter subcutaneous fascia such as trauma, surgery, diabetes, and
aging [87], expose patients to a higher risk of developing wound healing alterations.

Hypertrophic scars and keloids are a typical example. Tension is a factor predisposing
the onset of pathological scars. Injury or abnormalities of subcutaneous fascia alters the
dynamics distribution of tissue tension. In consequence, the peripheral tension at the
margins is considerably elevated. In keloids, the major recorded force lines are found
outside of the scar and result in constant pulling and expansion of the tissue [88,89].
Furthermore, subcutaneous fascia has a high density of sympathetic nerve endings. In
response to the stimuli of anomalous tension upon injuries, nerve endings in subcutaneous
fascia release large amounts of neuropeptides such as substance P, neurotrophin 3, and
neurotrophin 4 [3]. This process provokes a release of neuropeptides from other cell
types including fascia fibroblasts, triggering a neuroinflammatory reflex arc [3,88,90].
This evidence well explains the clinical observation that an increase of nerves and an
accumulation of neuropeptides are found in hypertrophic scars and keloids [89].

In addition, the fascial tissue itself can undergo fibrosis during pathologic conditions,
such as in Dupuytren’s disease [91] and in eosinophilic fasciitis [92]. Dupuytren’s disease
is characterized by fibrosis of the fascia underlying the skin of the palm and fingers [91].
The etiology of Dupuytren’s contractures has been unclear until a recent scRNA-seq study
uncovered a unique fibroblast subset expressing intercellular adhesion molecule 1 (ICAM1)
isolated from Dupuytren’s nodules. The ICAM1+ fibroblasts secrete high levels of IL-6 and
IL-8 and exhibit a direct chemotactic activity. Fascial fibroblasts in Dupuytren’s nodules
are key drivers of inflammation, whose feedback further sustains fibroblastic activation
and fibrosis [93].

Eosinophilic fasciitis also features with dense fibrosis, marked thickening and inflam-
mation of subcutaneous fascia and deep fascia in the epicenter of the lesion. Fibrosis can
extend from the fascia to the dermis, eventually resulting in painful swelling, erythema,
and progressive contracture of skin at affected areas [94]. The fascia also accumulates
eosinophils, lymphocytes, and other plasma cells [95]. Eosinophilic fasciitis is thought to be
caused by abnormal allergic or inflammatory reaction, including elevated serum IL-5, but
the exact etiology is unknown. Recently, it was shown that the fascial fibroblasts of affected
areas have increased gene expression of TGFB1 and CCN2 (CTGF), which is correlated with
higher expression of type I collagen and fibronectin and increased production of TIMP-1,
an inhibitor MMP-1 (collagenase) [95].

These examples clearly demonstrate that fascial abnormalities contribute to pathologi-
cal fibrosis. Multiple factors within fascial tissue are involved in fibrotic processes, such as
defects in tension loading, dysregulated release of neuropeptides, inflammatory mediators,
growth factors, and matrix modifying enzymes.

7. Perspective in Organ Fibrosis

The fascial system consists of sensing tension and load. Subcutaneous fascia is con-
nected to and a part of the fascial system. It has been shown that the local injury that
changes the tension in subcutaneous fascia could spread the fibrotic responses by activat-
ing quiescent fibroblasts via mechanotransduction in otherwise remote locations [96] and
potentially affect the health status of the visceral organs and the entire body. Many chronic
conditions, such as heart failure and chronic obstructive pulmonary disease (COPD), often
show fibrotic alterations in the fascial system.

Similar to the subcutaneous fascia underlying the skin, the loose connective tissues
directly beneath the mesothelium of the viscera are defined as visceral fascia [97]. Visceral
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fascia surrounds organs in cavities, including liver, heart, lung, kidney, esophagus, parietal
peritoneum, and parietal pleura. The healing process undergone by the internal organs,
for example, after surgery, is the same as that observed for the skin. There are a variety
of organ systems that demonstrate chronic pathologic fibrotic response to injury and al-
ways associate with alterations in visceral fascia, such as heart failure following ischemic
insult, COPD, and idiopathic pulmonary fibrosis. One remarkable example is the surgical
adhesions, which are the result of lack of sliding between the various fascial layers. This
absence or reduction of movement causes an inflammatory environment, which creates
adhesions [98]. Recent studies have clearly demonstrated that surgical adhesions are cica-
tricial events driven by mesothelium and the associated visceral fascia [99–101]. Therefore,
it is plausible that there is a universal mechanism underlying the fascia associated fibrotic
event. Dissection of molecular details in future investigations of fascial system will provide
a promising therapeutic target to prevent, ameliorate, and treat skin scarring and organ
fibrosis.

8. Concluding Remarks

The discovery of subcutaneous fascial mobilization signifies a newly found and piv-
otal role for fascia in wound repair and regeneration, with two critical factors, collective
migration of fascial fibroblasts, and mobilization of fascial matrix. The in vivo experimen-
tal in mice provide cellular and molecular basis supporting Gross’s model that wound
contraction and healing is driven by fascial fibroblast migration from edges of wounds
toward wound centers, and Harris’s model wherein fascial fibroblasts exert traction on
the fascial connective tissue to enact mobilization into wounds. The recent findings that
fascia is a major source of wound provisional matrix and of scars rather than de novo
produced matrix, reconfigure our traditional view of wound repair. This new wound
pathomechanism offers a novel therapeutic space to curtail pathological wound repair
and fibrotic responses and induce scarless regenerative healing across a range of medical
settings.
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