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It has been known for a few decades that transcripts can be marked by dozens of
different modifications. Yet, we are just at the beginning of charting these marks and
understanding their functional impact. High-quality methods were developed for the
profiling of some of these marks, and approaches to finely study their impact on specific
phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks
to these improvements, the most abundant marks, including N®-methyladenosine, are
emerging as important determinants of the fate of marked RNAs. However, we still lack
approaches to directly study how the set of marks for a given RNA molecule shape
its fate. In this perspective, we first review current leading approaches in the field.
Then, we propose an experimental and computational setup, based on direct RNA
sequencing and mathematical modeling, to decipher the functional consequences of
RNA modifications on the fate of individual RNA molecules and isoforms.

Keywords: RNA modification, m®A, direct RNA sequencing, metabolic labeling, nascent RNA, RNA metabolism,
long reads sequencing, nanopore

INTRODUCTION

More than a 100 RNA modifications have been identified since the 1950s (Boccaletto et al., 2018).
They were first observed in abundant populations of non-coding transcripts (e.g., tRNAs) and in
a second moment, due to the improvement of profiling techniques, their pervasive presence was
confirmed in coding transcripts (Roundtree et al., 2017). Different modifications were found to
co-occur on the same RNA molecule (Jackman and Alfonzo, 2013). In some cases, rather than a
mere stochastic effect due to the modification frequency, their co-occurrence suggested reciprocal
regulation mechanisms (Xiang et al., 2018).

The N®-methyladenosine (m®A) emerged as one of the most abundant modifications of coding
transcripts (Roundtree et al., 2017), and it was shown to be involved in the regulation of various
biological processes, including cellular differentiation (Lin and Gregory, 2014; Wang Y. et al,
2014; Chen et al,, 2015; Geula et al., 2015; Zhang et al., 2017a), meiosis (Bushkin et al., 2019),
heat stress response (Zhou et al., 2015), gametogenesis (Wojtas et al., 2017), and neurons activity
(Engel et al., 2018). Furthermore, aberrant m® A patterning was shown to be associated with diseases
insurgence and progression (Tong et al., 2018; Ianniello et al., 2019; Yang et al., 2019). A number
of effectors were identified that are responsible for m®A deposition (e.g., METTL3 and METTL14)
(Liu et al,, 2014; Ping et al., 2014; Schwartz et al., 2014), recognition (e.g., members of the YTH
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domain family) (Luo and Tong, 2014; Xu et al., 2014; Zhu
et al., 2014; Xiao et al., 2016), and removal (FTO and ALKBH5)
(Jia et al., 2011; Zheng et al.,, 2013), suggesting that this mark
could be dynamically regulated. Genome-wide m°®A profiling,
through immunoprecipitation with m®A-specific antibodies
followed by short-reads RNA sequencing (sTRNA-seq), revealed
the preferential, while not exclusive, association of the mark
with the central adenosine in the RRACH sequence context
around the stop codon of messenger RNAs (R = G or A and
H = A, C, or U) (Dominissini et al., 2012; Meyer et al., 2012).
Notably, m®A marks have been linked to different biological
processes depending on their relative position within a transcript,
suggesting a context-specific role for this mark (Shi et al., 2019).
However, we have only started revealing the rules that determine
the preference of the mark for specific bases, and their impact
on specific downstream biological processes (Yue et al., 2018).
Altogether, m®A was identified as a key determinant of RNA
decay (Wang X. et al., 2014) and translation (Wang et al., 2015),
while discordant reports were published about its involvement
in splicing regulation (Haussmann et al., 2016; Xiao et al., 20165
Bartosovic et al., 2017; Ke et al, 2017; Darnell et al., 2018;
Kasowitz et al., 2018; Louloupi et al., 2018).

RNA metabolic labeling (Dolken et al., 2008) emerged as
a powerful approach that not only allows to characterize the
association of m®A, or other RNA modifications, with nascent
transcripts, but also allows to quantify the impact of these marks
on the dynamics of all key steps of the RNA life cycle, and
specifically on the kinetic rates of RNA synthesis, processing,
and degradation. The application of this technique confirmed the
role of m®A on the regulation of RNA stability, and suggested
its influence on the dynamics of RNA synthesis and processing
(Furlan et al., 2019b).

The application of the current leading approaches for profiling
RNA modifications, such as m®A, generated important findings
about the functional role of these marks (Roundtree et al., 2017).
However, these approaches are heavily based on srRNA-seq, and
are afflicted by a number of downsides: different methods were
developed for various modifications, they only allow to indirectly
map the targeted mark, they are poorly suitable for analyses at
the level of single molecules and isoforms, they cannot be readily
used to profile co-occurring modifications, and they are difficult
to be paired with RNA metabolic labeling. In this perspective,
we discuss how direct RNA sequencing (such as nanopore-based
sequencing of native RNAs) is rapidly emerging as a powerful
alternative approach, which has the potential to overcome these
issues, bursting the field of epitranscriptomics.

EXPERIMENTAL AND COMPUTATIONAL
APPROACHES FOR THE
QUANTIFICATION OF RNA KINETIC
RATES

The state of the art approach to infer the kinetic rates governing
the RNA life cycle - synthesis of premature RNA, its processing
into mature RNA, and the degradation of the latter - is based

on the joint quantitative analysis of total and nascent RNA
(Figure 1). While the former is simply obtained through RNA-
seq, the latter can be profiled through RNA metabolic labeling. In
this technique, a nucleotide carrying an exogenous modification
(e.g., 4-thiouridine, 4sU) is provided in the cells’ medium, and
is incorporated into nascent transcripts during the labeling time.
Thus, the presence of the exogenous modification can be used
for the physical (Dolken et al., 2008) or in silico (Baptista and
Dolken, 2018) separation of newly synthetized transcripts from
pre-existing ones.

Mathematical modeling is then used for the gene-level
quantification of RNA kinetic rates, for example as implemented
and documented in the INSPEcT R/Bioconductor library (de
Pretis et al., 2015; Furlan et al,, 2019a). Briefly, when short
labeling times are adopted (<1 h), the quantification of nascent
RNA for each gene provides a proxy for the rate of synthesis of
premature RNA. Then, total RNA-seq reads are used to measure
the abundance of premature and mature transcripts: reads that
entirely map to one or more exons are used to quantify mature
RNA species, and the remaining mapped reads (entirely, or
partially, covering introns) are used for the quantification of
premature species. Finally, the combination of synthesis rate
and premature RNA abundance is used to quantify the rate of
processing, while the combination of synthesis rate and mature
RNA abundance allows the quantification of degradation rates
(Furlan et al., 2019a).

The joint analysis of the information gained from RNA
metabolic labeling experiments, together with the profiling of
specific RNA modifications, would be extremely powerful for
the study of the functional consequences of these marks on
specific RNA life cycle steps. However, while the application of
metabolic labeling for the profiling of nascent RNA (Dolken
et al, 2008) and for the quantification of the RNA Kkinetic
rates (Dolken et al., 2008; Miller et al., 2011; Rabani et al,,
2011, 2014; de Pretis et al., 2015; Furlan et al., 2019a) is an
established approach, its combination with the profiling of RNA
modifications is more problematic. In fact, the joint profiling of
nascent and modified RNA requires the identification of at least
two RNA modifications: the endogenous mark (e.g., m®A), and
the exogenous modification used for the labeling (e.g., 4sU). As
we discuss in the following sections, this is a complex task that
can be only indirectly implemented through current approaches.

DETECTION OF RNA MODIFICATIONS
THROUGH SHORT-READS RNA
SEQUENCING

Numerous protocols based on srRNA-seq were developed
for the identification of either endogenous (e.g., m°A) or
exogenous (e.g., 4sU) RNA modifications. A first class of methods
is based on the enrichment of modified RNAs before the
sequencing. This relies either on the use of specific antibodies
[e.g., MeRIP-seq for mPA detection (Dominissini et al., 2012;
Meyer et al., 2012)], or the use of enzymes involved in the
metabolism of the modification [e.g., tRNA methyltransferase
DnmA (Muller et al., 2013)], or on the availability of tags such
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(D) Quantification of premature (P), mature (M), and nascent (N) RNA from srRNA-se
kinetic rates in the steady-state limit.
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FIGURE 1 | Quantification of the RNA kinetic rates through RNA metabolic labeling coupled with srRNA-seq. (A) The key steps of the RNA life cycle, and the
corresponding RNA kinetic rates: synthesis (k1) of premature RNA, processing (ko) of premature into mature RNA, and degradation (kg) of mature transcripts.
(B) Incorporation of the uridine analog 4sU into newly synthetized transcripts. (C) Pre-existing and nascent RNA purification and sequencing through srRNA-seq.

q reads. (E) RNA life cycle mathematical modeling and quantification of the RNA

as biotin on the modified residues [e.g., 4sU-based RNA
metabolic labeling (Dolken et al, 2008)]. These techniques
do not provide neither the exact modification site (they are
limited to 100-200 bp resolution), nor a precise quantification
of the proportion of modified transcripts (Molinie et al,
2016), despite the development of ad hoc experimental (Sun
et al, 2012) and computational (de Pretis et al., 2015)
normalization techniques. Indeed, an alternative approach,
mSA-LAIC-seq (Molinie et al, 2016) has been developed
that relies on spike-ins to provide a precise quantification
of the m®A abundance, at the cost of skipping the RNA
fragmentation step and losing positional information on the
mark. A second class of methodologies is based on the
identification of RNA modifications signatures in the retro-
transcribed cDNA. One approach belonging to this class exploits
the early interruption of retrotranscription at the modification
site to produce specific truncation signatures [e.g., ICE-seq for
inosine detection (Sakurai et al., 2010)]. Alternative approaches
were developed to retro-transcribe the modified bases and their
native counterparts to different nucleotides, thus inferring the
site of the modification based on specific mismatches in the
reads alignment (Baptista and Délken, 2018). For example,
SLAM-seq allows the in silico identification of reads derived
from nascent RNAs by inducing the pairing of alkylated 4sU to
guanines (Herzog et al., 2017). These methods markedly increase
the resolution, but are typically semi-quantitative, suffering
from low sensitivity (Neumann et al., 2019). Hybrid techniques

were also developed. For example, methylation induced cross-
linking and immunoprecipitation (miCLIP) combines m°A-
immunoprecipitation with the antibody cross-linking, leading
to conversion and truncation events. Their identification in
the sequencing results allows the mapping of m®A at base-
resolution (Linder et al, 2015). However, this method is
affected by low crosslink efficiency, reducing the sensitivity.
Recently, two novel approaches were developed that do not rely
on immunoprecipitation. MAZTER-seq (Garcia-Campos et al.,
2019) allows the quantitative and base-resolution identification of
m®A marks, relying on the use of a restriction enzyme that cuts
only when the target site is not methylated. As a downside, the
mapping is limited to the identification of m®A marks in specific
context sites (16% of all expected mPA sites in mammals). DART-
seq (Meyer, 2019) recruits APOBECI1 proteins at m°A sites
through readers of the YTH family, allowing the identification
of the marks by the detection of adjacent C to U mutations. It
was used in combination with srRNA-seq, with as little as 10 ng
of total RNA, and with long-reads RNA sequencing (IrRNA-seq),
leading to single transcript m®A detection. The key downside of
this method is the required cells transfection with APOBECI1-
YTH fusion protein. Finally, the ability to quantify the abundance
of m®A marks remains to be established.

A number of computational tools were developed that
are useful for calling RNA modifications on srRNA-seq data,
especially tailored toward the analysis of m®A marks in MeRIP-
seq datasets. exomePeak, while not originally developed for
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this task, is one of the most frequently adopted tools for the
identification of m®A peaks (Meng et al., 2013). Indeed, a detailed
protocol was described for its application on MeRIP-seq datasets
(Meng et al., 2014). This tool adopts a sliding window approach
with a conditional test relying on Poisson distributions. HEPeak
is an HMM-based tool dedicated to the identification of m®A
marks, claiming improved sensitivity and specificity compared to
exomePeak (Cui et al., 2015). From the same authors, MeTPeak
was later proposed that is able to take advantage of the variance
across replicates, and models the reads dependency across a
region (Cui et al., 2016). A number of tools were developed that
are dedicated to differential RNA methylation analysis, including
MeTDiff (Cui et al., 2018), FunDMDeep (Zhang S. Y. et al., 2019),
and RADAR (Zhang Z. et al., 2019). Finally, m®A viewer is a
Java stand alone application that supports detection, analysis, and
visualization of m®A marks, the former relying on the previously
described tools (Antanaviciute et al., 2017).

Besides the specific limitations of each technique, all available
protocols for the profiling of RNA modifications through srRNA-
seq share some key limitations. First, they require specific
reagents for each modification of interest, which currently limits
the profiling to a handful of modifications (Helm and Motorin,
2017). Second, the library preparations, and the sequencing
procedure, remove the RNA marks. As a consequence, most
available approaches for the modifications profiling are indirect,
reducing specificity and sensitivity (Helm and Motorin, 2017).
Third, the reduced length of srRNA-seq reads (50-300 bp) is
a major obstacle for the analysis of individual RNA molecules,
despite the development of methods to infer isoforms expression
from these data (Zhang et al., 2017b). As a consequence, the
assignment of individual or co-occurring modifications to a given
RNA molecule, or even to a given isoform, is not feasible. Fourth,
srRNA-seq protocols are not readily applicable to detect two (or
more) RNA modifications simultaneously.

Although recent interesting technical advances are starting
to appear [e.g., simultaneous detection of N!-methyladenosine,
5-methylcytosine, and pseudouridine (Khoddami et al., 2019)],
these methods highly depend on the specific combination of
marks. The reasons for this limitation are manifolds. Likely,
the methods for the profiling of different modifications should
be consecutively applied, and the output of one method
could be poorly suitable for the subsequent. For the same
reason, a high amount of starting material is likely to be
necessary, to avoid capturing only highly expressed transcripts.
Alternatively, numerous rounds of PCR would be necessary,
introducing amplification biases (Aird et al,, 2011; Kebschull
and Zador, 2015). The limitations in specificity and sensitivity
of each method would combine. Moreover, it would be crucial
and cumbersome to develop normalization procedures for the
comparison of the results from each approach, possibly based on
spike-ins. Finally, it would be hard to keep track of the positional
information of each modification.

Things would get even more complicated when, in addition
to the mark of interest, the dynamics of RNA metabolism
are also of interest, which require the identification of an
exogenous modification as second mark. In this case, to quantify
the RNA Kkinetic rates of modified and unmodified RNAs, it

would be necessary to quantify all four possible combinations:
nascent/modified, nascent/unmodified, pre-existing/modified,
and pre-existing/unmodified transcripts (Figure 2). Currently,
the best approach to jointly identify 4sU and m®A would be
to start by separating nascent and pre-existing RNA using
4sU metabolic labeling and purification (Dolken et al., 2008).
Then, for each of these, the m®A-LAIC-seq protocol could be
applied to separate m®A methylated RNAs from unmethylated
transcripts. At the end, four samples per condition should
be prepared and sequenced. This approach is evidently very
complex and onerous, it would require a lot of starting
material and complicated downstream analyses, including spike-
ins based normalization of the datasets. For all these reasons,
the most common compromise is to profile m®A, and to
perform metabolic labeling through independent experiments
(Li et al, 2017; Furlan et al., 2019b). However, this type of
approach completely compromises the possibility of a direct
quantification of the dynamics of modified and unmodified
transcripts, since it only allows to quantify the dynamics of
the pool of transcripts for each gene, and then combine this
information with the expected degree of modification for that
population. Altogether, approaches based on srRNA-seq are
increasingly inadequate and could hamper the progress in the
field of epitranscriptomics.

LONG-READS DIRECT RNA
SEQUENCING FOR THE
IDENTIFICATION OF MODIFICATIONS IN
NATIVE RNAs

In the last few years remarkable efforts were dedicated to
overcoming the limitations of srRNA-seq based approaches
(Stark et al., 2019) for the identification of RNA modifications
within individual RNA molecules and isoforms. As a result, few
novel sequencing approaches that emerged recently allow rRNA-
seq. One platform, PacBio (developed by Pacific Biosciences),
exploits a sequencing by synthesis approach mediated by an
immobilized polymerase (Eid et al., 2009). Another one, which
will be the main focus in the next sections of this perspective,
was developed by Oxford Nanopore Technologies (ONT), and
consists of an array of thousands of nanopores which allow
a flow of ions across a dielectric membrane, thus generating
a measurable current. The active translocation of a molecule
of nucleic acids (either DNA, cDNA, or RNA) through each
pore, mediated by an engineered motor protein, results in a
sequence-specific perturbation of the measured current. In turn,
this signal can be exploited to infer the corresponding sequence of
nucleotides (Kasianowicz et al., 1996; Smith et al., 2015). IrRNA-
seq approaches were successfully used to study transcriptional
and post-transcriptional regulation in various physiological and
disease conditions (De Roeck et al., 2017; Aneichyk et al., 2018;
Anvar et al., 2018; Nattestad et al., 2018), including single-cells
(Byrne et al., 2017). Focusing on RNAs, these techniques can
produce single reads of up to 10* bases, with an average length of
almost 1 Kb for ONT (Workman et al., 2018). Hence, in a number
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FIGURE 2 | srRNA-seq based approach to quantify transcripts’ expression levels in all the four possible combinations given by the presence or absence of 4sU and
mPA RNA modifications. (A) RNA metabolic labeling, based on the incorporation of 4sU, is applied to separate the nascent portion of the transcriptome from the
pre-existing counterpart. (B) mPA-LAIC-seq is applied for both nascent and pre-existing RNAs to separate methylated from unmethylated transcripts. (C) cDNA
library preparation and sequencing for: pre-existing unmethylated RNAs, pre-existing methylated RNAs, nascent unmethylated RNAs, and nascent methylated
RNAs. (D) In silico reads alignment, counts quantification, and normalization to estimate transcripts’ expression levels across all the four conditions.

of cases, this allows the profiling of full-length RNA molecules,
and the fine characterization of their alternative isoforms. This
is especially true for mature transcripts, whose median length for
human and mouse mRNAs is around 2 Kb [based on the hgl9 and
mml10 UCSC genome releases (Haeussler et al., 2019)]. Instead,
the likelihood of sequencing full-length premature transcripts
is lower. Indeed, their median open reading frame length is in
the 13-18 Kb range, although co-transcriptional splicing could

significantly reduce this figure (it is likely that some intron was
already excised before the completion of RNA synthesis).

The direct RNA sequencing approach developed by ONT
does not go through the conversion of RNA into cDNA, and
does not rely on amplification steps. For these reasons, the RNA
modifications are preserved and can induce specific alterations
in the current registered by the sequencer (Garalde et al,
2018). Altogether, this approach represents a potential solution
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to most of the limitations of sTRNA-seq discussed above, due
to its ability to directly identify any, and possibly multiple,
RNA modification in single, full-length molecules. dRNA-seq
was recently applied to study the transcriptome of viruses
(Moldovan et al,, 2018; Tombacz et al., 2018; Boldogkoi et al,,
2019; Depledge et al., 2019), yeast (Garalde et al., 2018), animals
(Jiang et al., 2019; Roach et al., 2019; Smith et al., 2019), and plants
(Zhao et al., 2019).

However, a number of limitations characterize the young field
of dRNA-seq. First, current dRNA-seq protocols are available
only for the sequencing of targeted, non-polyadenylated RNAs
(Keller et al., 2018; Smith et al., 2019) or polyadenylated RNAs.
This is due to the library preparation protocolos, which typically
targets polyA tails or specific 3’ sequences for ligating sequencing
adapters anchoring the motor protein. This limitation could
be addressed using adapters with random 3’ sequences, with
the risk of introducing a bias for recurrent RNA motifs, or
through in vitro polyadenylation of transcripts devoid of a polyA-
tail (Wongsurawat et al., 2018). Second, while the throughput
of dRNA-seq is rapidly growing, it currently compares to the
low- or mid-end coverage of srRNA-seq experiments. This
could limit the number of detectable transcripts, although,
importantly, the abundance of those that can be detected is well
correlated with high-coverage srRNA-seq data (Garalde et al,
2018). This issue could be solved in the future by improving
the speed of translocation of RNAs across the nanopore, and/or
extending the sequencing time by prolonging the pores’ lifetime.
Noteworthy, given the same throughput in terms of sequenced
bases, I'RNA-seq vs srRNA-seq data have a substantial difference:
while the former allows detecting entire transcripts, the latter
offers a more unbiased sampling of any RNA fragment, thus
also covering a larger portion of the transcriptome (Soneson
et al., 2019). This could in part be obviated by a coarse RNA
fragmentation before the library preparation, and would also
reduce the 3’ coverage bias of dRNA-seq data, whose reads
start from a transcripts 3’ end. A drawback of this approach
is that it would compromise the one-to-one correspondence
between reads and RNA molecules. Third, the accuracy of
base calling on dRNA-seq data is currently significantly lower
than srRNA-seq. When base calling errors occur at sites of
RNA modification, they are likely due to the inability of the
base caller’s to deal with changes in the signal originated by
those marks. However, these errors represent a small fraction
of incorrect base calls, due to the low number of marks per
transcripts (e.g., 2-3 m®A marks per RNA). Hence, reduced
base calling accuracy is not considered a major issue in the
field of RNA modifications but, on the contrary, represents
an opportunity for aiding the identification of modified bases
(Liu et al., 2019). Fourth, there could be limitations on the
detectability of specific RNA modifications. For example, in the
context of RNA metabolic labeling, the ability of dRNA-seq to
identify various (exogenous) modified nucleotides was tested
(Maier et al., 2019). This revealed that 4sU modified nucleotides,
commonly used in metabolic labeling through srRNA-seq, were
not compatible with the nanopores, leading to blockages during
the sequencing, although this issue was not confirmed in a
more recent report (Drexler et al., 2019). Instead, other marks,

such as 5-ethynyluridine (5eU), were found to be suitable for
these experiments.

In conclusion, this is a young and rapidly evolving research
field, based on a highly collaborative research community.
Hence, numerous labs are actively involved to find solutions or
improvements to all these limitations, which are likely to be fully
or partially overcome in the next few years (Rang et al., 2018).

COMPUTATIONAL TOOLS FOR THE
DETECTION OF MODIFICATIONS IN
LONG-READS DIRECT RNA
SEQUENCING

Recent and growing literature is available about the footprints
left by RNA modifications on dRNA-seq data, and how to
exploit them to detect RNA marks (Xu and Seki, 2019).
Differences in current levels between native bases and their
modified counterparts were reported for m®A, m°C, m’G, and
pseudouridine (Garalde et al., 2018; Workman et al., 2018; Smith
et al., 2019). Moreover, the increase of base miscalls frequency
in concomitance to modified sites were observed next to “A-
to-I; 7-methylguanosine and pseudouridine sites (Workman
et al., 2018; Smith et al., 2019). These observations led to the
development of specific computational tools for the detection of
RNA modifications.

Tombo, an official tool provided by ONT, requires a model of
the signal generated by the modification in all possible sequence
contexts, to be used as a baseline for the identification of the
same mark at single molecule resolution within a new dRNA-
seq dataset (Stoiber et al., 2016). Notably, baseline data for 5-
methylcytosine marks are included in the tool (Viehweger et al.,
2019). Alternatively, data for a condition devoid of modifications
can be provided. With a similar approach, Tombo was recently
used to identify m®A in yeast with an accuracy of 69% and
a recovery of 59%, compared with m®A peaks identified with
MeRIP-seq (Liu et al., 2019). Obviating for the need of these
positive or negative baseline data, Tombo can be used to compare
the signal observed for each k-mer with that of any possible
unmodified k-mer, although this approach is affected by high
false positive rates.

EpiNano relies on a support vector machine, and exploits
the increased frequency of alignment errors and the low base
quality caused by the presence of the modification of interest (Liu
et al., 2019). The tool is first trained and tested on two sets of
in vitro transcribed synthetic RNAs that contain either m®A only
or unmodified adenosine only. Its classification performance in
the context of the expected m®A RRACH motif was excellent
(area under the curve up to 0.944). Rather, the performance
decreased when the tool was applied on in vivo yeast data and
benchmarked with MeRIP-seq m®A calls for the same conditions
(accuracy: 87% and recovery: 32%). In terms of downsides,
EpiNano requires prior knowledge on the sequence motif for
the mark of interest, and it cannot achieve single molecule
resolution, since it aggregates the information derived from
multiple reads alignments.
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ELIGOS aims at the unbiased identification of any RNA
modification that would impact bases errors frequencies. It relies
on the comparison between dRNA-seq of native and cDNA-
converted transcripts, the latter used as a reference that is
devoid of any mark due to the retro-transcription to cDNA
(Wongsurawat et al., 2018). ELIGOS was tested on in vitro fully
modified transcripts, rRNAs from various species, and a human
lymphoblastoid cell line. Like Tombo, the main downside of
ELIGOS is in terms of false positive rates.

A further method for m®A identification that was recently
released is called MINES (Lorenz et al., 2019). This software
implements a random forest classifier trained on a set of high
confidence, experimentally defined, m®A sites within canonical
DRACH motifs. This method showed high accuracy and
precision, and also has single-isoform, single-base resolution.
However, MINES can only predict m®A sites within DRACH
motifs, which only comprise a portion of all m°A sites. A further
potential limitation is due to the fact that the classifier was trained
on mC°A sites defined with CLIP and - as such — might suffer of
biases similar to those caused by antibody-based methods.

Nano-ID was recently developed for detecting the
incorporation of the exogenous mark 5eU into nascent
RNA (Maier et al, 2019), implementing the analysis of RNA
metabolic labeling on the ONT platform. This tool relies on a
neural network trained to distinguish dRNA-seq signal of fully
unlabeled from fully labeled RNAs (24 h 5eU labeling time),
to classify reads from nascent transcripts, while no positional
information on 5eU marks is returned. The results achieved by
nano-ID on this test set were very encouraging (area under the
curve 0.95), and the tool was applied to infer the isoform-level
rates of synthesis and degradation in K562 cells, and how they
were affected by heat shock.

Nanocompore is a novel tool recently released, which is based
on the comparison of a condition of interest with a condition
where the writer for a specific mark was depleted or removed
(Leger et al., 2019). The idea is that the removal of the mark
leads to a change in the ONT signal, which could be identified
through statistical tests by comparing the two conditions. As a
result, Nanocompore can provide near base-resolution and single
molecule calls for the mark of interest. Alternatively, analogously
to ELIGOS, if the baseline condition is depleted of multiple or
possibly all marks (e.g., via in vitro transcription), the tool returns
the corresponding changes in the signal to identify all marks
occurrence, while mark-specific calls are not possible. Advantages
and disadvantages of the tools discussed above are reported
in Table 1.

APPLYING DIRECT RNA SEQUENCING
TO QUANTIFY THE DYNAMICS OF
MODIFIED RNAs

The recent surge in the number of tools for the identification
of specific modifications indicates that the field is quickly
progressing. However, a number of improvements are required
for the joint analysis of the patterning of an endogenous
modification, such as m®A, with the quantification of

the corresponding RNA dynamics, via metabolic labeling
and profiling of exogenous modifications such as 4sU or
5eU (Figure 3).

First, the modifications have to be profiled at single molecule
resolution, a prerequisite for the direct matching of the RNA
dynamics with the modification status. This would allow
understanding how the RNA kinetic rates are impacted by the
presence of a modification, and, potentially, by its patterning
(numerosity and position). Notably, the frequency and the
specific position of occurrence of the marks is increasingly
recognized as an important factor. For example, the fate of RNAs
carrying multiple m®A marks was shown to be influenced by a
liquid-liquid phase separation processes driven by the binding
of readers of the YTH family. Eventually, those transcripts were
shown to be targeted to specific cellular compartments, including
stress-granules and P-bodies, with important consequences for
their translation and stability (Ries et al., 2019).

Second, tools based on supervised machine learning could be
preferable in the field, compared to methods for the unsupervised
identification of the marks. In fact, various confounding
factors could potentially affect direct RNA sequencing data,
which could be easier to address in a supervised framework.
However, supervised methods require training on sets of
modified transcripts, which should be built so that they closely
reflect the characteristics of in vivo datasets. For example,
for endogenous modifications, rather than producing in vitro
fully modified transcripts, the level of modification could be
tuned by mixing unmodified and modified nucleotides to
match the expected frequency of the mark. For exogenous
marks, the approach described in Maier et al. (2019) could be
followed, where physiological high-level of incorporation of a
modified nucleotides are obtained by its prolonged availability in
the cells medium.

Third, the current ONT signal (amplitude and dwell time)
is the most direct data type for the identification of the marks,
compared to more indirect measurements, such as the error rate.
While tools, such as EpiNano, showed a good performance by
only using the latter, we would recommend trying to incorporate
information from the former. Indeed, indirect measurements
could be completely or partially originated by unexpected causes,
which could lead to high false positive rates with in vivo datasets.

Fourth, the quantification of RNA dynamics should include
the step of premature RNA processing. This is often neglected,
by assuming the corresponding rate being constant. However,
RNA synthesis and processing are tightly coupled, then when
the former is modulated, which often occurs, the latter is
also expected to be altered (Neugebauer, 2019). Moreover,
recent reports start unveiling the frequency and importance of
changes in splicing dynamics (Rabani et al., 2014; de Pretis
et al., 2015, 2017; Louloupi et al., 2018; Furlan et al., 2019a;
Wachutka et al., 2019). The cost of considering the processing
step is two fold: it markedly increases the complexity of the
underlying mathematical models, and implies the quantification
of the abundance of premature RNA species. The latter is
specifically problematic for the ONT platform. Indeed, the library
preparation procedure expects transcripts with the polyA tail,
which are lacking in premature RNAs. In vitro polyadenylation
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TABLE 1 | Comparing strengths and pitfalls of four software packages for m®A detection from Nanopore dRNA-seq data.

EpiNano ELIGOS MINES Nanocompore
Requires training dataset Yes No Yes No
Requires comparison condition No Yes (cDNA) No Yes
Limited to RACH motifs Yes No Yes No
Single nucleotide resolution Yes Yes Yes No
Isoform resolution Yes Yes Yes Yes
Single molecule resolution No No No Yes
Able to distinguish different modifications Yes No Yes Yes
- A
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FIGURE 3 | dRNA-seq based approach to quantify transcripts’ expression levels in all the four possible combinations given by the presence or absence of 5eU and
mPA RNA modifications. (A) RNA metabolic labeling, based on the incorporation of 5eU, is applied to mark nascent transcripts, before direct RNA sequencing.
(B) Base calling and identification of the two RNA modifications. (C) Reads alignment and in silico separation, according to the presence or absence of each RNA
maodification, to estimate transcripts’ expression levels across all the four conditions.

with m®A could be used for adding mC®A-tails to premature
transcripts. This would allow the sequencing of premature
RNAs, and would preserve the sequencing information about
the endogenous tails of mature transcripts, for studies on their
functional impact on RNA dynamics.

Fifth, reads from premature RNAs would have to be
distinguished from those from mature species. The presence of an
endogenous polyA tail would provide a way to computationally
identifying reads from mature species. However, this approach
would fail for those mRNAs that are not polyadenylated in
their endogenous mature form. An alternative criterion is to
consider the reads containing introns as premature RNA. This

could be problematic in case of intron retention, which in many
organisms, including humans, is not infrequent (Chaudhary
et al., 2019; Monteuuis et al., 2019). The request of more than
one intron in order to classify a read as premature RNA would
probably eliminate this issue. Of course, such a strict condition
would cause the exclusion of those genes that have less than
two introns, which often occurs in some organisms (e.g., yeast
or plants). The best criterion could eventually be a mix of the
proposed approaches, selected according to the biological system
under analysis and the transcripts of interest. For instance, to
study mRNA kinetics in mammalian cells, mature RNA could be
estimated considering fully spliced, polyadenylated transcripts,
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while premature RNA could be quantified from the remaining
reads, possibly requiring the presence of one or more introns.

Once proficient algorithms for the detection of the
endogenous (e.g., m®A) and exogenous (e.g., 5¢U) marks at
single molecule resolution are in place, they could be used, in
series, for the identification of the four possible classes defined by
the presence or absence of each modification. The performance
of such an approach should be tested on a dataset generated
ad hoc. The genesis of reads with both the RNA modifications, or
missing only the exogenous mark, is feasible by using or avoiding
long-time metabolic labeling, respectively. Instead, reads devoid
of both the base analogs can be produced sequencing the
corresponding cDNA. It is more difficult to generate transcripts
that lack only the endogenous modification, which could be
obtained by knocking-out the corresponding writer (for those
marks for which this is known). However, genetic compensation
(El-Brolosy and Stainier, 2017) or writer’s redundancy could lead
to the incomplete depletion of the RNA modification.

ADDITIONAL REMARKS

The study of the impact of RNA modifications on the RNA life
cycle dynamics would largely benefit from the development of a
unified computational framework. This, starting from long reads
dRNA-seq data, should manage the RNA kinetic rates inference,
according to their modification status, at the level of individual
transcriptional units or specific isoforms.

A convenient starting point could be INSPEcT (de Pretis
et al.,, 2015), a tool developed in our lab for the inference of
all RNA kinetic rates (synthesis, processing, and degradation)
from srRNA-seq data. The user should only pay attention to
quantify premature and mature RNA in both nascent and pre-
existing fractions according to the guidelines presented above.
Additionally, if the quantification of dynamics at the level of
specific isoforms is desired, the analysis should be conducted
considering the reads associated with each isoform, rather than
those associated with the whole transcriptional unit. Finally, if
this analysis is applied independently on the set of modified and
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