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Background: Colon adenocarcinoma (COAD), a malignant gastrointestinal

tumor, has the characteristics of high mortality and poor prognosis. Even in

the presence of oxygen, the Warburg effect, a major metabolic hallmark of

almost all cancer cells, is characterized by increased glycolysis and lactate

fermentation, which supports biosynthesis and provides energy to sustain

tumor cell growth and proliferation. However, a thorough investigation into

glycolysis- and lactate-related genes and their association with COAD

prognosis, immune cell infiltration, and drug candidates is currently lacking.

Methods: COAD patient data and glycolysis- and lactate-related genes were

retrieved from The Cancer Genome Atlas (TCGA) and Gene Set Enrichment

Analysis (GSEA) databases, respectively. After univariate Cox regression analysis,

a nonnegative matrix factorization (NMF) algorithm was used to identify

glycolysis- and lactate-related molecular subtypes. Least absolute shrinkage

and selection operator (LASSO) Cox regression identified twelve glycolysis- and

lactate-related genes (ADTRP, ALDOB, APOBEC1, ASCL2, CEACAM7, CLCA1,

CTXN1, FLNA, NAT2, OLFM4, PTPRU, and SNCG) related to prognosis. The

median risk score was employed to separate patients into high- and low-risk

groups. The prognostic efficacy of the glycolysis- and lactate-related gene

signature was assessed using Kaplan–Meier (KM) survival and receiver operating

characteristic (ROC) curve analyses. The nomogram, calibration curves,

decision curve analysis (DCA), and clinical impact curve (CIC) were

employed to improve the clinical applicability of the prognostic signature.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were performed on differentially
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expressed genes (DEGs) from the high- and low-risk groups. Using CIBERSORT,

ESTIMATE, and single-sample GSEA (ssGSEA) algorithms, the quantities and

types of tumor-infiltrating immune cells were assessed. The tumor mutational

burden (TMB) and cytolytic (CYT) activity scores were calculated between the

high- and low-risk groups. Potential small-molecule agents were identified

using the Connectivity Map (cMap) database and validated by molecular

docking. To verify key core gene expression levels, quantitative real-time

polymerase chain reaction (qRT–PCR) assays were conducted.

Results:We identified four distinct molecular subtypes of COAD. Cluster 2 had the

best prognosis, and clusters 1 and 3 had poor prognoses. High-risk COAD patients

exhibited considerably poorer overall survival (OS) than low-risk COAD patients.

The nomogram precisely predicted patient OS, with acceptable discrimination and

excellent calibration. GO and KEGG pathway enrichment analyses of DEGs

revealed enrichment mainly in the “glycosaminoglycan binding,” “extracellular

matrix,” “pancreatic secretion,” and “focal adhesion” pathways. Patients in the

low-risk group exhibited a larger infiltration of memory CD4+ T cells and

dendritic cells and a better prognosis than those in the high-risk group. The

chemotherapeutic agent sensitivity of patients categorized by risk score varied

significantly. We predicted six potential small-molecule agents binding to the core

target of the glycolysis- and lactate-related gene signature. ALDOB and

APOBEC1 mRNA expression was increased in COAD tissues, whereas

CLCA1 and OLFM4 mRNA expression was increased in normal tissues.

Conclusion: In summary, we identified molecular subtypes of COAD and

developed a glycolysis- and lactate-related gene signature with significant

prognostic value, which benefits COAD patients by informing more precise

and effective treatment decisions.

KEYWORDS

colon adenocarcinoma, subtypes, immune microenvironment, prognosis, drugs,
glycolysis, lactate

Introduction

Colon adenocarcinoma (COAD) is the third most prevalent

malignancy and second main cause of cancer-related mortality

globally, and its rapid progression, high mortality and poor

prognosis have emerged as a growing public threat to human

health (Keum andGiovannucci, 2019). Despite many advances in

the available therapeutic strategies for COAD, including surgery,

radiotherapy, chemotherapy, immunotherapy, and adjuvant

therapy, improving the survival of COAD patients remains a

major clinical challenge (Sveen et al., 2020; Xie et al., 2020).

Consequently, an immediate need exists to identify a novel

potential biomarker for prognostication to guide personalized

therapy for the early management of COAD and alleviate the

growing public health burden of this disease.

Substantial research has indicated that the tumor immune

microenvironment is closely related to COAD (Pedrosa et al.,

2019; Chen et al., 2021). To adapt to a complex immune

microenvironment, tumor cells develop dynamic metabolic

heterogeneity, which has been identified as a critical feature of

cancer (Xiao et al., 2019). Glycolysis is one of the most common

metabolic reprogramming pathways, of which the Warburg effect

is the most prominent. The Warburg effect is a metabolic

characteristic of most tumor cells, which display increased

glycolysis to convert glucose to lactate despite the presence of

sufficient oxygen (Fresquet et al., 2021). The accumulation of

lactate during this process creates an acidicmicroenvironment that

promotes the formation and progression of tumors.

PPFIA4 expression attenuates glycolysis and suppresses colon

cancer cell proliferation, migration and invasion via PFKFB3/

ENO2 signaling (Huang et al., 2021). A glutathione-responsive

nano-prodrug has been found to simultaneously block glycolysis in

tumor cells, relieving the immunosuppressive microenvironment

through synergetic effects (Liu et al., 2021). In summary, glycolysis

may be critical for the prognosis and treatment of COAD patients.

As a signaling molecule, glycolysis-generated lactate can be

released into the extracellular environment, which is closely

related to tumor metastasis, poor prognosis and recurrence

(Perez-Tomas and Perez-Guillen, 2020; Liao et al., 2021).

Therefore, identifying highly sensitive and specific biomarkers

related to glycolysis- and lactate-related genes is a promising

therapeutic strategy.
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In this study, we identified four glycolysis- and lactate-related

molecular subtypes and constructed and validated a glycolysis- and

lactate-related gene prognostic signature comprising twelve genes.

Next, we assessed the accuracy and sensitivity of the glycolysis- and

lactate-related gene prognostic signature using nomogram,

calibration curves, DCA, and the CIC. Additionally, based on the

prognostic signature, we investigated the immunological landscape,

immune cell infiltration, somatic mutations, cooccurrence and

mutually exclusive mutations of differentially mutated genes, and

chemotherapeutic drug sensitivity in the two risk groups. Then,

small-molecule drug docking molecular targets with minimal

binding energies were screened. Finally, qRT–PCR assays were

carried out to further verify glycolysis- and lactate-related gene

expression levels. Briefly, we aimed to identify glycolysis- and

lactate-related molecular subtypes and prognostic signature using

bioinformatics and statistical analysis, which are highly significant

for the prognosis and individualized treatment of COAD patients.

Materials and methods

Acquisition and processing of data

We obtained RNA sequencing transcriptome data, mutation

profiles, and related clinical information for COAD patients from

the TCGA database. Supplementary Table S1 provides an overview

of the comprehensive clinical information of COAD patients.

Patients with incomplete survival information were excluded,

leaving 452 COAD patients for inclusion. Supplementary Table

S2 contains a list of 458 glycolysis- and lactate-related genes

extracted from the GSEA database. Thirty-nine genes related to

OS were identified by univariate Cox regression analysis.

Supplementary Table S3 lists thirty-nine OS-related genes, and

their expression data are provided in Supplementary Table S4.

The data processing and analysis flowchart is presented in Figure 1.

Identification of molecular subtypes using
the nonnegative matrix factorization
algorithm

COAD patients were clustered using the nonnegative matrix

factorization (NMF) clustering algorithm. The default “brunet”

option was chosen, and 50 iterations were executed. The number

of clusters (K) varied from 2 to 10, the average contour of the

common membership matrix was calculated using the “NMF” R

package, and the minimum number of subclass members was set

at 10. Using cophenetic, scatter, and silhouette characteristics,

n = 4 was determined as the optimal clustering number.

Analysis of differentially expressed
glycolysis- and lactate-related genes

Based on the “limma” R package, the differentially

expressed genes (DEGs) were identified among the best

FIGURE 1
Study flow chart.
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prognostic C2 and C1/C3 molecular subtypes (|log2 FC| >
1 and FDR < 0.05). Twenty-four genes were identified in the

intersection of the DEGs (Supplementary Table S5).

Establishment and validation of a
glycolysis- and lactate-related gene
prognostic signature

Furthermore, twenty-four differentially expressed

glycolysis- and lactate-related genes were subjected to least

absolute shrinkage and selection operator (LASSO) Cox

regression analysis using the R package “glmnet”. We

established a glycolysis- and lactate-related gene

prognostic signature comprising twelve critical genes.

Next, we calculated the risk score for each COAD patient.

High- and low-risk COAD patients were grouped by the

median risk score. We evaluated the prognostic

performance of glycolysis- and lactate-related gene

prognostic signature using Kaplan–Meier (KM) analysis

and compared them in the high- and low-risk groups.

Using the “timeROC” R package, we plotted time-

dependent receiver operating characteristic (ROC) curves.

Next, the STRING database (https://www.string-db.org/) was

used to construct a protein–protein interaction (PPI)

network, which was visualized by using Cytoscape software

(Version 3.7.1).

Construction and evaluation of clinical
nomogram

A prognostic nomogram was constructed by integrating

the risk score, age, gender, and stage using the R packages

“rms” and “regplot”. The nomogram was used to predict the 1-

, 3-, and 5-year survival rates of COAD patients. We plotted

the calibration curves to evaluate the predictive accuracy of

the nomogram. We evaluated the clinical relevance of the

prognostic signature using decision curve analysis (DCA) and

a clinical impact curve (CIC).

Immune landscape analysis

The proportions of twenty-two immune cell

subpopulations in COAD cohorts were calculated using the

CIBERSORT algorithm. Additionally, we analyzed the

correlation of the cytolytic (CYT) activity score with the

prognostic signature. We conducted single-sample GSEA

(ssGSEA) analyses for each sample to determine its level of

immune cell activity. MHC molecules and immune

checkpoints (ICPs) were compared between the high- and

low-risk groups.

Anticancer immune response analysis

The anticancer immune response in the tumor

microenvironment involves seven steps. We calculated the

activity scores for each step using the Tracking Tumor

Immunophenotype database (TIP; http://biocc.hrbmu.edu.cn/

TIP/). Next, we assessed anticancer immune responses by

comparing the activity scores of the seven steps between the

high- and low-risk groups.

Somatic variant analysis

We used the VarScan platform data from the TCGA-COAD

cohort to analyze the somatic mutation data for each patient.

Next, the “maftools” package was used to visualize the mutations

in the two risk groups. Additionally, a correlation analysis of the

tumor mutational burden (TMB) and the prognostic signature

was performed.

Analysis of chemotherapy drug
susceptibility and identification of small-
molecule drugs

The Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) database was used to predict the

chemotherapy response for COAD patients. To assess the

therapeutic effects of chemotherapy drugs in COAD patients,

the half maximal inhibitory concentration (IC50) was calculated

using ridge regression with the GDSC database and the R package

“pRRophetic”. Based on the DEGs in the high- and low-risk

groups, we uploaded these DEGs to the Connectivity Map

(cMap) database to screen small-molecule agents that might

reverse tumor biological progression. p < 0.05 and enrichment

scores ranging from −1 to 0 indicated potential drugs for COAD

treatment. The structures of small-molecule drugs were obtained

from the PubChem database.

Molecular docking verification

Based on the top ten most significant DEGs, we uploaded the

DEGs to the cMAP database and selected the identifiable genes.

Next, we screened experimentally validated proteins from the

Unified Protein Database (UniProt, https://www.uniprot.org/),

downloaded protein structures from the Protein Data Bank

(PDB, http://www.rcsb.org/pdb) database, and finally obtained

four core molecular targets—DEFA5, CEACAM7, CLCA1, and

ZG16 (Supplementary Table S6). We used Chem3D software

(Version 15.0; Cambridge, MA, United States) to calculate the

protein structure with the lowest binding energy. AutoDock

Tools (ADT) version 1.57 software was used for processing
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and molecular docking. The molecular docking results were

visualized using PyMOL software (https://pymol.org/2/).

Tissue samples and quantitative real-time
polymerase chain reaction (qRT–PCR)

Our study was approved by The First Affiliated Hospital of

Nanchang University Ethics Committee on Medical Research.

We collected COAD specimens and adjacent normal specimens

from the operating room of The First Affiliated Hospital of

Nanchang University. Each patient signed an informed

consent form. qRT–PCR was used to analyze the quantitative

expression of key prognostic genes. Total RNA was extracted

with TRIzol reagent (Invitrogen, Carlsbad, CA, United States).

The FastKing RT Kit (TIANGEN BIOTECH BEIJING CO., Ltd.)

was used for the reverse transcription reaction. Hieff UNICON

Universal Blue qPCR SYBR Green Master Mix (Yeasen

Biotechnology Shanghai Co., Ltd.) was used for the qPCR.

PCR was performed using an Applied Biosystems

QuantStudio 5 cycler (Thermo Fisher Scientific). We

calculated the relative expression levels of genes using the

2−△△Ct method. β-actin was the internal reference. The

sequences of the primers (Sangon Biotech Shanghai Co., Ltd.)

were as follows: ALDOB forward 5′-GTGGAAAACACTGAA
GAGAACC-3′ and reverse 5′-TCCTTGGTCTAACTTGATTCC
C-3′; APOBEC1 forward 5′-TGTCTGCTCTACGAAATCAAG
T-3′ and reverse 5′-CGTAGATCACTAGAGTCACACC-3′;
CLCA1 forward 5′-CTAAGGATGACGGTGTCTACTC-3′ and
reverse 5′-GATGTTCTGCTGAAACACACTT-3′; and OLFM4

forward 5′-CTTGGTAGAGAAGCTTGAGACA-3′ and reverse

5′-GGTGTTTTGATCTTTAGAGGCC-3′.

Statistical analysis

Statistical analysis and graph visualization were carried out

using R software. To determine related genes and their

prognostic value, univariate Cox regression analysis was

performed. Kaplan–Meier survival analysis was performed for

OS. We compared the results between groups using log-rank

tests. Based on Spearman’s correlation analysis, the association

between the prognostic signature and immune score was

identified. A value of p < 0.05 was considered significant.

Results

Identification of glycolysis- and lactate-
related molecular subtypes

Based on the 458 glycolysis- and lactate-related genes

downloaded from the GSEA database, clinical data from

452 COAD patients were obtained from the TCGA database.

Using univariate Cox regression analysis, we first identified

thirty-nine survival-related genes. Next, based on the NMF

algorithm, four molecular subtypes of COAD were identified.

Using the indicator of basis, consensus, and silhouette, four

clusters were identified as optimal. The intergroup correlations

were low, and the intragroup correlations were the highest

(Figures 2A,B). We further analyzed the prognosis associated

with the four molecular subtypes. KM survival analyses showed

that cluster two had the best prognosis, and clusters one and three

had poor prognoses (Figure 2C).

Differential expression and analysis of
glycolysis- and lactate-related genes
among the four clusters

To further screen for differential glycolysis- and lactate-related

genes, we performed differential gene expression analysis between

cluster two and cluster one or cluster three and identified the

intersecting DEGs to obtain twenty-four genes associated with a

poor prognosis (Figures 3A,B). Next, using LASSO Cox regression,

twelve glycolysis- and lactate-related genes were screened based on

1,000-fold tenfold cross-validation to construct the prognostic

signature (Figures 3C,D). Additionally, Spearman’s correlation

analysis was applied to evaluate the expression correlation of

twelve glycolysis- and lactate-related genes. ADTRP and

CLCA1 exhibited a positive correlation, and PTPRU and SNCG

exhibited a negative correlation (Figure 3E). Finally, PPI analysis was

conducted to explore the interactions among the twelve glycolysis-

and lactate-related DEGs (Figure 3F). More lines between genes

indicate that more interactions exist with other genes. We identified

OLFM4 and CLCA1 as hub genes (Figure 3F).

Development and validation of a
glycolysis- and lactate-related gene
prognostic signature for colon
adenocarcinoma

First, we calculated the risk score for each COAD patient

using the following formula: Risk score = (0.248063077) *

ADTRP + (−0.133258741) * ALDOB + (0.220438097) *

APOBEC1 + (−0.01464853) * ASCL2 + (−0.000764405) *

CEACAM7 + (−0.084507044) * CLCA1 + (−0.033058311) *

CTXN1 + (0.078872672) * FLNA + (−0.289695621) * NAT2 +

(0.002887704) * OLFM4 + (0.046736691) * PTPRU +

(0.126164132) * SNCG. Then, we constructed a glycolysis-

and lactate-related gene prognostic signature comprising

twelve glycolysis- and lactate-related genes in the training

cohort. Based on their median risk score, COAD patients

were categorized into high-risk and low-risk groups.

Figure 4A illustrates the distribution of risk scores and
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FIGURE 2
Identification of glycolysis- and lactate-relatedmolecular subtypes. (A)Consensusmap of NMF clustering. (B)Different glycolysis- and lactate-
related molecular subtypes of the TCGA cohort were identified for k = 4. (C) Survival analyses of the four clusters.

FIGURE 3
Differential expression and analysis of glycolysis- and lactate-related genes among the four clusters. (A) DEGs between clusters 1 and 2. (B)
DEGs between clusters 3 and 2. (C) LASSO coefficient profile of twelve OS-related glycolysis- and lactate-related genes. (D) Optimal tuning
parameter of glycolysis- and lactate-related genes. (E) Gene expression correlations of twelve OS-related glycolysis- and lactate-related genes. (F)
PPI network analysis of twelve OS-related glycolysis- and lactate-related genes.

Frontiers in Cell and Developmental Biology frontiersin.org06

Liu et al. 10.3389/fcell.2022.971992

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.971992


survival status of each patient. We used a heatmap to show

the differential expression of the twelve glycolysis- and

lactate-related genes (Figure 4A). According to the KM

survival curves, high-risk patients showed a lower OS than

low-risk patients (Figure 4B). In the training cohort, the areas

under the ROC curves (AUCs) for the 1-, 3-, and 5-year OS

were 0.63, 0.74, and 0.78, respectively, indicating that the

signature may serve as a prognostic indicator for COAD

patients (Figure 4C).

Similarly, we performed analyses in the validation cohort and

entire cohort. Figure 4D depicts the risk score distribution,

survival status, and glycolysis- and lactate-related gene

expression profiles in the validation cohort and entire cohort.

Our results revealed that the low-risk group had better OS than

the high-risk group (Figure 4E). For the two cohorts, the AUCs

for the 1-, 3-, and 5-year OS were 0.68, 0.71, and 0.82 and 0.66,

0.63, and 0.66, respectively (Figure 4F). Furthermore,

stratification analyses based on age, gender, and stage showed

FIGURE 4
Construction and validation of the glycolysis- and lactate-related gene prognostic signature. (A,D) Predictive ability of the prognostic signature
in the training cohort (A) and validation cohort (D). Distribution of the risk score (upper), survival time (middle), and heatmap of selected glycolysis-
and lactate-related genes (below). (B,E) KM survival curves of OS for COAD patients between the training cohort (B) and validation cohort (E). (C,F)
ROC curves for the 1-, 3-, and 5-year survival in the training cohort (C) and validation cohort (F).
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that the OS of low-risk patients was better than that of high-risk

patients (Supplementary Figure S1). To further evaluate the

predictive ability of the glycolysis- and lactate-related gene

prognostic signature, we applied two independent external

datasets (GSE17536 and GSE39582) to validate our findings.

As shown in Supplementary Figures S2A, B, the KM curve

analyses indicated that the OS of high-risk patients was

significantly worse than that of low-risk patients, which was

consistent with our analysis in the TCGA-COAD cohort.

Correlation between the glycolysis- and
lactate-related gene prognostic signature
and clinical characteristics

Next, Figure 5A demonstrates the association of clinical

characteristics with prognostic gene expression levels between

the high- and low-risk groups. It was evident that the two risk

groups had large differences. We further explored the value of the

prognostic signature in the two risk groups stratified by different

clinical characteristics (age, gender, and stage). Age and the risk

score did not differ significantly (Figure 5B). Additionally, the

risk score and gender were not significantly correlated

(Figure 5C). Furthermore, significant correlations were found

between stage I and stage III and the risk score. The risk scores of

stage I and stage IV were significantly different, the risk scores of

stage II and stage III were significantly different, and the risk

scores of stage II and stage IV were significantly different

(Figure 5D). In summary, the risk scores were significantly

different for different stages.

Clinical nomogram for predicting the
survival times of colon adenocarcinoma
patients

We conducted univariate and multivariate Cox regression

analyses to investigate whether the risk score was an independent

FIGURE 5
Correlation between the glycolysis- and lactate-related gene prognostic signature and clinical characteristics. (A)Differences in glycolysis- and
lactate-related gene expression and clinical characteristics between the two risk groups. (B–D) Analysis of correlations between the glycolysis- and
lactate-related gene signature and age (B), gender (C), and stage (D).
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predictor of OS for COAD patients. The results of univariate Cox

regression indicated that the risk score was significantly related to

OS (Supplementary Figure S3A). Additionally, using multivariate

Cox regression, the risk score independently predicted the OS of

COAD patients (Supplementary Figure S3B). Subsequently, we

developed a clinical nomogram to determine the 1-, 3-, and 5-

year OS of COAD patients on account of a combination of

clinicopathological features and glycolysis and the lactate-related

gene prognostic signature (Figure 6A). Calibration curves

showed excellent agreement between actual observations and

the predicted rates of the 1-, 3-, and 5-year OS (Figure 6B).

Regarding the nomogram, the AUCs of the 1-, 3- and 5-year OS

were 0.763, 0.778, and 0.768, respectively (Figure 6C). The DCA

curve revealed that the nomogram was superior to other clinical

characteristics (Supplementary Figure S3C). Additionally, the

CIC visually demonstrated that the nomogram had a high

clinical net benefit, confirming that the nomogram can

accurately predict patient prognosis and can be used to guide

clinical decision-making (Supplementary Figure S3D).

Functional analysis of the signature

GO and KEGG pathway enrichment analyses of DEGs were

conducted in the high- and low-risk groups. GO terms were mainly

enriched in “glycosaminoglycan binding,” “apical part of cell,”

“external encapsulating structure,” “apical plasma membrane,”

and “collagen-containing extracellular matrix” (Figure 7A).

Additionally, KEGG pathway enrichment showed that DEGs

were primarily involved in “pancreatic secretion,” “protein

digestion and absorption,” “focal adhesion,” “renin secretion,”

and “drug metabolism—cytochrome P450” (Figure 7B).

FIGURE 6
Prediction of the OS of COAD patients using a clinical nomogram. (A)Nomogram for predicting the 1-, 3-, and 5-year OS of COAD patients. (B)
Calibration curves of the nomogram for predicting OS at 1, 3, and 5 years. Nomogram-predicted survival is on the X-axis, and actual survival is on the
Y-axis. (C) ROC curves of the nomogram for predicting the 1-, 3- and 5-year OS.
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Interrelationship between the glycolysis-
and lactate-related gene prognostic
signature and immune cell infiltration

Using the CIBERSORT algorithm, we comprehensively

assessed the relationship between the risk score and twenty-

two types of immune cells. Figure 8A depicts the immune

landscape of the dominant types of immune cells in COAD.

The visualization results showed that macrophages, resting

CD4+ T cells, and activated CD4+ T cells constituted most of

the immune cells. CD4 memory resting T cells, CD4 memory

activated T cells, and resting dendritic cells were significantly

higher in the low-risk group than the high-risk group

(Figure 8B). A higher percentage of M0 macrophages was

observed in the high-risk group than in the low-risk

group. Compared with the low-risk group, the high-risk

group had higher stromal, immune, and ESTIMATE scores

but a lower tumor purity score (Figure 8C). We also compared

the distribution of the CYT activity score between the two risk

groups. The CYT activity score of the high-risk group was

higher than that of the low-risk group (Supplementary Figure

S4A). Using ssGSEA algorithms, we analyzed the RNA

sequencing data from COAD patients for evidence of

immune cell infiltration. Neutrophils and plasmacytoid

dendritic cells (pDCs) were significantly different between

the two groups (Figure 8D). Additionally, the low-risk group

had significantly lower amounts of MHC molecules

(Figure 8E). To assess the impact of immune cells on

CAOD prognosis, we analyzed the expression of antitumor

immune cells between the two risk groups. The antitumor

immune cells were significantly different between the two

groups and were mainly higher in the high-risk group than in

the low-risk group (Figure 8F). Considering that the TMB is

closely related to cancer immunotherapy, we calculated the

TMB values of each patient between the two risk groups based

on the prognostic signature. As expected, the TMB

quantification analysis showed that the high-risk group

possessed a higher TMB (Supplementary Figure S4B).

Given the importance of ICPs in immunotherapy, we

further evaluated the expression differences of ICPs. As

shown in Figure 8G, there were significant differences in

CD70, HAVCR2, LAIR1 and NRP1 between the high- and

low-risk groups.

Differentiation of mutated genes between
the two risk subgroups

Figures 9A,B summarizes the information regarding mutated

genes according to the variant classification, variant type, and

single nucleotide variant (SNV) class. The waterfall plot shows

the mutational landscape of the top twenty genes in the high- and

low-risk groups with the highest mutation frequencies. The most

frequent mutations were found in APC, followed by TTN, TP53,

and KRAS in the high-risk group (Figure 9C). All 193 samples

(100%) of the low-risk group had increased expression of APC

(76%) and TP53 (52%) as well as TTN (50%) over other altered

genes (Figure 9D). Additionally, we detected somatic mutation

interactions. The high-risk group had several gene mutations,

including mutually exclusive APC-BRAF mutations (Figure 9E).

We also identified mutually exclusive TP53-MUC16 mutations

in the low-risk group (Figure 9F).

FIGURE 7
Functional enrichment analysis of DEGs between the high- and low-risk groups. (A) Analysis of DEGs for GO enrichment. (B) Analysis of KEGG
enrichment for DEGs.
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Chemotherapeutic drug sensitivity
analysis and small-molecule drug
screening

Chemotherapy drugs have remained the primary treatment

for COAD. A leading cause of the poor prognosis among COAD

patients is chemoresistance. In this study, we investigated the

sensitivities of patients in both the high- and low-risk groups to

common chemotherapy drugs for treating COAD. Interestingly,

the low-risk group exhibited increased IC50 values for paclitaxel,

dasatinib, gefitinib, nilotinib, pazopanib, rapamycin, and

sunitinib, indicating that high-risk patients may benefit from

these chemotherapy agents. Overall, these results showed that the

glycolysis- and lactate-related gene signature was related to drug

sensitivity (Figure 10A).

Additionally, we screened potential small-molecule agents

that could be used to treat COAD using the cMAP database. The

volcano plot shows the DEGs in the high- and low-risk groups,

including sixteen upregulated genes and fifty-five downregulated

genes (Figure 10B). Based on these DEGs, we screened six

potential small-molecule drugs, namely, 4-(2-aminoethyl)

benzenesulfonamide, bongkrek acid, esmolol, norethisterone,

parbendazole, and RX-821002. Figures 10C–H displays the

structures of the six small-molecule drugs based on the

PubChem database.

Molecular docking verification

Molecular docking is an in silico structure-based

computational method for drug screening. Using AutoDock

Tools1.57 software, we docked four core molecular targets

(DEFA5, CEACAM7, CLCA1, and ZG16) and screened six

small-molecule drugs. Studies have shown that the lower the

binding energy of receptors and ligands is, the more stable the

binding conformation and the higher the possibility of action.

FIGURE 8
Immune profiles between the two subgroups. (A) Immune cell proportions in COAD patients. (B) Analysis of twenty-two types of tumor-
infiltrating immune cells. (C) Boxplot of the differences in the stromal score, immune score, ESTIMATE score, and tumor purity. (D)Comparison of the
levels of infiltration of immune cells in the two groups. (E)Differences in MHCmolecule expression. (F) Relative abundance of the antitumor immune
response between the high- and low-risk groups. (G) Immune checkpoint expression in the high- and low-risk groups. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns, not significant.
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FIGURE 9
Somatic mutation analysis in the two subgroups. (A,B) Distribution of mutation types between the high-risk (A) and low-risk groups (B). The
upper panel depicts the variant classification, variant type, and SNV class of mutated genes, and the bottom panel represents variants per sample,
variant classification, and the top ten mutated genes. (C,D) Waterfall plot of somatic mutations between the high-risk (C) and low-risk groups (D).
(E,F) Comparison of co-occurrence and mutually exclusive mutations of the mutated genes between the high-risk (E) and low-risk groups (F).
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FIGURE 10
Evaluation of the chemotherapy response and screening of small-molecule drugs. (A) Sensitivity analysis of chemotherapy drugs between the
high- and low-risk groups. (B) Volcano plot of DEGs between the high- and low-risk groups. (C–H) Structures of six small-molecule drug candidates,
namely, 4-(2-aminoethyl) benzenesulfonamide (C), bongkrek acid (D), esmolol (E), norethisterone (F), parbendazole (G), and RX-821002 (H).
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Therefore, we used PyMOL software to visualize small-molecule

drug docking molecular targets with minimal binding energies

(Figures 11A–F). For example, bongkrek acid may bind to

ZG16 and form hydrogen bonds with amino acid residues

GLU-84, GLU-85, ARG-53 and TRP-72 near the active site to

exert its biological functions.

Expression of prognostic genes

To further verify the important roles of glycolysis- and

lactate-related genes in COAD, we examined the expression of

related key genes in 11 pairs of COAD specimens and adjacent

normal specimens. As shown in Figures 12A,B, we found that

FIGURE 11
Molecular docking of small-molecule drugs and core molecular targets. (A) Parbendazole-CLCA1. (B) 4-(2-Aminoethyl) benzenesulfonamide-
ZG16. (C) Bongkrek-acid-ZG16. (D) Norethisterone-CLCA1. (E) Esmolol-ZG16. (F) RX-821002-CLCA1.

FIGURE 12
mRNA expression levels of glycolysis- and lactate-related prognostic genes in COAD tissues and adjacent normal tissues. (A–D) Relative mRNA
expression levels of ALDOB (A), APOBEC1 (B), CLCA1 (C), and OLFM4 (D) in COAD tissues and adjacent normal tissues. T, COAD tissues; N, adjacent
normal tissues. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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ALDOB and APOBEC1 were elevated in COAD samples.

However, CLCA1 and OLFM4 had increased expression in

normal samples (Figures 12C,D). In addition, we obtained the

protein expression of glycolysis- and lactate-related genes from

the Human Protein Atlas database. As shown in Supplementary

Figure S5, representative immunohistochemistry images showed

that PTPRU and ALDOB were highly expressed in COAD

tissues, while CLCA1, CTXN1, FLNA, SNCG, NAT2, ADTRP,

CEACAM7, and OLFM4 were highly expressed in normal

tissues.

Discussion

COAD patients show high morbidity and mortality rates

because of metastasis, cancer recurrence, and chemotherapy

resistance (Hammond et al., 2016; Snyder et al., 2021). An

increasing number of studies have suggested that a typical

characteristic of malignancy is abnormal metabolism, which

can confer growth advantages to tumor cells by remodeling

the tumor microenvironment (Martinez-Reyes and Chandel,

2021). The Warburg effect indicates that unlike normal

differentiated cells, tumor cells also rely on glycolysis for

energy, even under conditions of sufficient oxygen (Pascale

et al., 2020). This aberrant glycolysis in tumor cells can

promote glucose uptake and lactate production so that tumor

cells obtain energy for metabolic and survival processes, further

promoting tumor development and growth (Vaupel and

Multhoff, 2021). A primary objective of this study was to

investigate the role of glycolysis- and lactate-related genes in

COAD patient OS, immune microenvironment, and

chemotherapeutic sensitivity to drugs. Our study, which

analyzed the TCGA and GSEA databases, identified four

molecular subtypes and generated a glycolysis- and lactate-

related gene prognostic signature. The high-risk group of

patients exhibited a poor prognosis, low levels of immune cell

infiltration, high levels of somatic mutations, and a high

sensitivity to chemotherapeutics.

We developed a prognostic model based on 12 glycolysis-

and lactate-related genes (ADTRP, ALDOB, APOBEC1, ASCL2,

CEACAM7, CLCA1, CTXN1, FLNA, NAT2, OLFM4, PTPRU,

and SNCG), and the combination of these genes generated an

accurate prediction of the clinical outcome. By hydrolyzing fatty

acid esters of hydroxy-fatty acids, ADTRP can prevent diabetes

and inflammation and control metabolic diseases (Lupu et al.,

2021). Colorectal cancer (CRC) cells may undergo metabolic

reprogramming during liver colonization when the liver

environment is conducive to aldolase B upregulation. This

upregulation enhances fructose metabolism and promotes the

growth of liver metastases caused by CRC (Bu et al., 2018). The

expression levels of APOBEC1 can be used to predict pancancer

outcomes, particularly for patients with pancreatic and thyroid

carcinoma (Niavarani et al., 2018). In CRC,

ASCL2 overexpression may increase the tendency to self-

renew rather than differentiate, causing liver metastases to

become self-renewing (Stange et al., 2010). CAR T-cell

therapy targeting CEACAM7 has been reported as a potential

treatment for pancreatic ductal adenocarcinomas (Raj et al.,

2021). Inhibition of the Wnt/beta-catenin signaling pathway

and epithelial-mesenchymal transition by CLCA1 can reduce

CRC aggressiveness (Li et al., 2017). In a chronic ischemia model,

CTXN reduced the size of necrosis of brain tissue, improved the

functioning of the antioxidant system and reduced

neurodegenerative changes (Kurkin et al., 2021). In CRC,

FLNA induces epithelial-mesenchymal transition, which

activates the smad2 pathway, increasing chemoresistance

(Cheng et al., 2020). CRC metastasis is closely related to the

expression level of the NAT2 gene, which can be used as a

biomarker for prognosis and therapy (Wang et al., 2021). Early

gastric cancers with high OLFM4 expression may have an

increased risk of metastasis to the lymph nodes, and

combining OLFM4 expression with tumor size and

differentiation status may result in better classification of early

gastric cancer patients (Zhao et al., 2016). By inhibiting Hippo/

YAP signaling, PTPRU functions as a tumor suppressant that

inhibits the stemness of cancer stem cells (Gu et al., 2019). In

high-grade serous ovarian cancer, SNCG upregulation

contributes to poor clinical outcomes. These findings

demonstrated that SNCG plays a pivotal role in promoting

metastasis by activating the PI3K/Akt signaling pathway

(Zhang et al., 2020). Therefore, glycolysis- and lactate-related

genes are involved in the development of COAD and are

potentially useful as markers in clinical settings.

Further analysis revealed that the glycolysis- and lactate-

related gene prognostic signature was robust and accurate.

Patient survival was longer for patients in the low-risk group

than for those in the high-risk group in our study. Based on the 3-

year OS, the AUCs of the training and validation cohorts were

0.74 and 0.71, respectively, suggesting that our model is superior

to those in other studies (AUC = 0.676, AUC = 0.63) (Qiu et al.,

2021; Xia et al., 2021). Therefore, our prognostic signature has

excellent predictive power and accuracy compared with other

prognostic signatures developed by other investigators.

Additionally, COAD patients’ 1-, 3-, and 5-year OS can be

accurately predicted using a nomogram that incorporates risk

scores and clinical characteristics. The AUC values revealed that

the nomogram is superior to other independent factors that can

assist clinicians in making decisions and devising personalized

treatment strategies for COAD patients.

COAD recurrence and metastasis are influenced by the

tumor microenvironment, particularly the immune

microenvironment (Xiong et al., 2019; Mei et al., 2021).

Increasing research has highlighted the role of immune cell

infiltration in the development, metastasis, and

immunosuppression of COAD (Picard et al., 2020). The

current study investigated the correlation between tumor-
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infiltrating cells and glycolysis- and lactate-related gene

prognostic signatures. Utilizing the CIBERSORT algorithm, a

comprehensive evaluation of the abundance and infiltration of

twenty-two immune cells was conducted in COAD patients. The

low-risk group exhibited a higher proportion of dendritic cells

and CD4+ T cells, while the high-risk group demonstrated a

higher proportion of M0macrophages. Higher densities of CD4+

T cells are associated with a better prognosis. Thus, the low-risk

group possessed a high density of CD4+ T cells, and longer

survival may be explained by this finding (Ahlen Bergman et al.,

2018; Schroeder et al., 2021). It has been suggested that

significant infiltration of M0 macrophages in the tumor

microenvironment may predict poor prognosis (Zheng et al.,

2021). Liu et al. (2017) found that the number of

M0 macrophages was inversely proportional to the survival

time of lung cancer patients. In our study, we found that the

high-risk group had a higher proportion of M0 macrophages

than the low-risk group and that the high-risk patients had

shorter survival, which is consistent with the findings above.

In addition, an increase in the number of dendritic cells was

associated with a good prognosis (Melaiu et al., 2020). Similarly,

in our study, the low-risk group had an increased degree of

dendritic cell infiltration and a better prognosis, which favorably

supports this finding. Additionally, ssGSEA showed an increased

proportion of neutrophils and plasmacytoid dendritic cells

(pDCs) in the low-risk group. According to our analysis, 55%

of patients with TP53 somatic mutations were in the high-risk

group, while only 52% of patients in the low-risk group had these

mutations. Cancer cells with TP53mutations possess new tumor-

promoting features, including higher invasion ability and

metastatic capacity (Pitolli et al., 2019). Breast cancer patients

with TP53 mutations have a poor prognosis (Zhang et al., 2021).

Therefore, the high-risk group may be more likely to develop an

immunosuppressive phenotype caused by TP53 mutations.

Chemotherapy resistance is a major hurdle in COAD treatment

and is closely related to mortality risk. For chemotherapy-sensitive

cancer patients, we can maximize the antitumor effect of

chemotherapy drugs and confer a benefit from standard and

scientific chemotherapy regimens. Our study demonstrated an

increased sensitivity to paclitaxel, dasatinib, gefitinib, nilotinib,

pazopanib, rapamycin, and sunitinib among high-risk patients. For

patients with metastatic CRC, gefitinib combined with FOLFOX-4

pretreatment enhanced the efficacy of antitumor therapy (Kuo et al.,

2005). Our findings may shed new light on suitable drug selection,

helping to guide future oncology studies. However, the exact

molecular mechanism by which chemotherapeutic drugs affect

COAD patients requires further exploration and experimental

validation. Therefore, the risk score may function as a diagnostic

tool to assess the chemotherapeutic sensitivity of COAD patients,

leading to a more individualized treatment approach.

In our study, we obtained four core molecular targets (DEFA5,

CEACAM7,CLCA1, andZG16) by joint analysis of theUniProt and

PDB databases. Interestingly, DEFA5 has been identified as a critical

biomarker of inflammatory bowel disease and plays a crucial anti-

inflammatory role. In addition to serving as a novel immune

response regulator, ZG16 may serve as a biomarker for

immunotherapy. As an alternative application of the prognostic

classifier, we explored the feasibility of searching for drug candidates

based on a combination of the core molecular targets and structure-

based approach. In the current study, we screened six small-

molecule drugs with high affinity for core molecular targets.

Among them, bongkrek acid functions as a selective activator of

the peroxisome proliferator-activated receptor γ isoform. Esmolol is

a well-established, fast β-blocker used to treat cardiac arrhythmias

and hypertension. Norethisterone, a potent and widely available

progestin, is recommended to treat endometrial hyperplasia. By

enhancing the activity of bone morphogenetic protein 2,

parbendazole induces osteogenic differentiation, exerting its

osteoporosis-prevention effects. Although the specific mechanism

of small-molecule compounds needs further experimental

verification, our study preliminarily shows their potential in

COAD treatment, guiding personalized cancer treatment.

Multiple approaches, datasets, and analyses were used to

verify the accuracy and robustness of our model. However,

several limitations exist that require further investigation.

First, this study was conducted using only retrospective data

from the TCGA database; thus, prospective studies are needed to

explore its clinical value. Second, exploring the molecular

mechanisms of glycolysis- and lactate-related genes in COAD

progression will require more fundamental experiments. Finally,

studies with larger sample sizes are necessary.

Conclusion

In conclusion, we identified four COAD molecular subtypes

with distinct prognoses and constructed a glycolysis- and lactate-

related gene prognostic signature. The prognostic signature may

function as a reliable indicator for prognosis prediction, immune

cell infiltration and drug candidates and may be used to identify

potential targets for accurate and efficient COAD therapy.
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