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Abstract
We propose an inferential framework for fixed effects in longitudinal functional
models and introduce tests for the correlation structures induced by the lon-
gitudinal sampling procedure. The framework provides a natural extension of
standard longitudinal correlation models for scalar observations to functional
observations. Using simulation studies, we compare fixed effects estimation
under correctly and incorrectly specified correlation structures and also test the
longitudinal correlation structure. Finally, we apply the proposed methods to a
longitudinal functional dataset on physical activity. The computer code for the
proposed method is available at https://github.com/rli20ST758/FILF.
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1 INTRODUCTION

Due to technological advancement, longitudinal functional data have become common in scientific studies.1 For
example, objective physical activity measurements2-5 obtained from wearable accelerometers usually consists of mul-
tiple daily profiles measured at every minute of the day for hundreds of study participants at a number of vis-
its. This type of data structure gives rise to longitudinal functional data, which resembles traditional longitudinal
data, but has a function instead of a scalar as the basic unit of observation. The average activity measured at
multiple visits gives rise to standard longitudinal data, whereas minute-by-minute activity profiles observed at mul-
tiple visits give rise to longitudinal functional data. Another example is diffusion tensor imaging (DTI),6-10 where
imaging data along brain tracts were collected for patients of multiple sclerosis and healthy controls at a num-
ber of visits. The physical activity measurements and the DTI data are usually collected at sparse longitudinal
visits with densely observed functions, the data structure the article focuses on. This new and practical data struc-
ture requires specialized methodological tools to address scientific problems using the original structure of the
data.
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Longitudinal functional data often exhibit complex within- and between-visit correlations. To accommodate such
correlations, various functional mixed effects models6,8,9,11-16 have been proposed. These approaches, after data trans-
formation or projections, allow inference on the fixed effects parameters using the linear mixed effects (LMEs)
inferential machinery. Alternatively, bootstrap of study participants9,17,18 can be used to construct confidence bands
and conduct hypothesis tests for fixed effect functions. In spite of the growing interest in this area of research,
modeling longitudinal functional data continues to be daunting. On the one hand, it is often difficult to specify
within-visit correlation structures which account for the continuity of the functional domain with dense observa-
tions. On the other hand, the between-visit correlations may be modeled flexibly using structured specifications that
represent the known and usually relatively sparse longitudinal sampling structure (eg, nesting of functions within
individuals).

With the above considerations, we consider a unified inferential model framework that builds on the marginal decom-
position model proposed by Park and Staicu,13 which focused on modeling the covariance of longitudinal functional
data, but did not consider fixed effects inference or tests of correlations. The marginal decomposition model used lon-
gitudinal time-invariant and data-adaptive eigenfunctions to model within-visit correlations and a sequence of bivariate
covariance functions (either parametric or nonparametric) to model the longitudinal correlations, and is computationally
simpler than the approach in Chen and Müller,12 which modeled longitudinal functional data with a four-dimensional
nonparametric covariance function. For longitudinal functional data with sparse longitudinal visits and densely observed
functions, it might be sufficient and preferred to model the longitudinal correlation with a simple parametric specification.
More importantly, the separation of within-subject correlation and longitudinal correlation in the marginal decomposi-
tion model not only allows us to compare fixed-effects inference under different longitudinal correlation structures but
also enables us to compare different longitudinal correlation structures via hypothesis testing, the major contributions of
this article. For the latter, we shall conduct multiple tests on the correlation structure of the sequence of bivariate covari-
ance functions for modeling the longitudinal correlations in the above marginal decomposition model. For each test, we
use the bootstrap-based approach for covariance testing proposed by Chen et al,19 which compared parametric covariance
functions vs nonparametric covariance function for modeling traditional longitudinal data. To our best knowledge, we
have not been aware of any existing test of the longitudinal correlations developed for longitudinal functional data. More-
over, the test in Chen et al19 is the only available test with an unspecified nonparametric alternative and can be applied
to longitudinal data that are observed at irregular time points; see our discussion in Section 3 on alternative tests that are
applicable only to limited scenarios.

In terms of fixed-effects inference, the proposed framework may compare favorably against the functional addi-
tive model proposed by Scheipl et al,8 which only considered multilevel functional models with multiple covariance
functions. It is worth noting that the aforementioned model can be computationally challenging to fit when using
its spline-based formulation of functional random effects. Bootstrapped approaches such as in Park et al18 are usu-
ally computationally demanding, even for small datasets. In addition, as shall be shown in our simulations, simple
bootstrapping of subjects may give inefficient inference when the subjects have multiple visits exhibiting within-visit
correlations.

In summary, the contributions of this article are to, for longitudinal functional data: (a) generalize standard longitu-
dinal correlation models; (b) introduce testing for longitudinal correlation structures; and (c) study the effect of correctly
and incorrectly specified correlation structures on the fixed-effects inference.

The article is organized as follows. In Section 2, we introduce the general functional mixed effects model and the spe-
cific longitudinal correlation structures for modeling longitudinal functional data. In Section 3, we address the problem
of testing longitudinal correlation structure. Section 4 assesses the properties of the statistical methods proposed using
simulations. Section 5 applies our methods to real data. We conclude the article with a discussion in Section 6. The com-
puter code for the proposed method and an associated RMD file with demonstration details are available at https://github.
com/rli20ST758/FILF.

2 FUNCTIONAL MIXED EFFECTS MODELS

Let  ⊂ R be a compact interval and the index s ∈  be called the functional index. Let yij(s) denote the observed response
variable at s for subject i, 1 ≤ i ≤ n, at the jth, 1 ≤ j ≤ ni, visit that occurred at time Tij. Denote by xij = [xij1, … , xijp]T
the vector of covariates for subject i at visit j, and xi = [xi1, … , xini]

T the ni × p matrix of covariates for subject i. Some
of the covariates may depend on the visit number and some may not, but we use the index j for all variables to simplify
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notation. For one data application on physical activity, the covariates are age, body mass index (BMI), sex, and week-
end, and thus p = 4. Let yij = [yij(s1), … , yij(sm)]T , where {s1, … , sm} is a fixed grid in  . Let yi = [yT

i1, … , yT
ini
]T be the

mni-dimensional column vector obtained by vectorizing all observations for subject i.
We denote by 𝜇ij(⋅) the conditional mean of the functional process yij(⋅) given the covariates xij and assume that

𝜇ij(s) = 𝛽0(s) +
p∑

r=1
xijr𝛽r(s), (1)

where 𝛽r(⋅) are smooth, unknown functions of s. Using the approach in Park and Staicu,13 we decompose the functional
residuals, yij(s) − 𝜇ij(s) = Wij(s) + 𝜖ij(s), where

Wij(s) =
∑

k≥1
𝜉ijk𝜙k(s), (2)

and 𝜖ij(s) is white noise with zero mean and variance 𝜎2
𝜖
. The functions {𝜙1(⋅), 𝜙2(⋅), …} form an orthonormal basis

and 𝜉ijk are associated random coefficients. We assume that 𝜉ijk are normally distributed with zero mean and covari-
ance Gk(Tij1 ,Tij2) = Cov{𝜉ij1k, 𝜉ij2k|Tij1 ,Tij2} and are uncorrelated over i and k. Then the covariance of the process is a
four-dimensional operator with the following structure

(s1,Tij1 , s2,Tij2) = Cov
{

Wij1(s1),Wij2(s2)|Tij1 ,Tij2

}
=
∑

k≥1
Gk(Tij1 ,Tij2)𝜙k(s1)𝜙k(s2).

We also assume that the sampling visits Tij are independent over i and j and have a smooth probability density function,
g(⋅). Then the basis functions 𝜙k(⋅) are eigenfunctions of the marginal covariance operator

m(s1, s2) =
∫
(s1,T, s2,T)g(T)dT =

∑

k≥1
𝜆k𝜙k(s1)𝜙k(s2),

where 𝜆k = ∫ Gk(T,T)g(T)dT are eigenvalues and are assumed to be ordered decreasingly, that is, 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0, and
the random coefficients 𝜉ijk satisfy 𝜉ijk = ∫ Wij(s)𝜙k(s)ds.

Standard longitudinal models using working covariance often assume either independence, exchangeability, or leave
them unspecified. A natural generalization of these assumptions to longitudinal functional data is via the specification of
the working covariance, Gk(⋅, ⋅), for every eigenfunction, 𝜙k(⋅), indexed by k. The continuity of the functional domain is
accounted by within-visit correlation structures and the longitudinal sampling structure is represented by between-visit
correlations. We propose to model the within-visit covariance nonparametrically and the between-visit covariance using
approaches inspired by standard and functional longitudinal data analysis. The rationale is that the functions are often
densely observed and exhibit complex correlation structure, for which a nonparametric approach would provide the
needed flexibility, while the longitudinal sampling visits are often sparse, for which a simpler correlation structure might
be sufficient and also easy to interpret.

2.1 Longitudinal working covariances

We consider three common correlation models including two parametric correlation structures, but the proposed method
can easily be extended to other parametric correlation structures.

The first is the working independence model, where Wij(s) in Equation (2) are assumed to be independent and iden-
tically distributed for all i and j. Under this framework the random scores 𝜉ijk = 𝜁ijk, where 𝜁ijk are uncorrelated across i
and j for each k and Var(𝜁ijk) = 𝜎2

e,k. Then, we have Gk(Tij1 ,Tij2) = 𝜎
2
e,k1{j1=j2}.

The second is the exchangeable correlation model, that is 𝜉ijk = 𝜉ik + 𝜁ijk, where 𝜉ik are uncorrelated with all 𝜁ijk
and 𝜁ijk are mutually uncorrelated for all i, k, and j. Denote 𝜎2

0,k = Var(𝜉ik) and 𝜎2
e,k = Var(𝜁ijk), and then Gk(Tij1 ,Tij2) =

𝜎
2
0,k + 𝜎

2
e,k1{j1=j2}. The exchangeable model for longitudinal functional data is a particular case of the multilevel func-

tional principal component model.11 Indeed, we may write Wij(s) = Ui(s) + Vij(s) with Ui(s) =
∑

k≥1 𝜉ik𝜙k(s) and Vij(s) =∑
k≥1 𝜁ijk𝜙k(s).
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The third is the unspecified smooth correlation model, where Gk(⋅, ⋅) is modeled nonparametrically. In this case
𝜉ijk = 𝜉ik(Tij) + 𝜁ijk, where 𝜉ik(Tij) is a zero-mean smooth process with covariance function Cov

{
𝜉ik(Tij1), 𝜉ik(Tij2)

}
=

Gk0(Tij1 ,Tij2), and 𝜁ijk are zero mean random errors with Var(𝜁ijk) = 𝜎2
e,k. In particular, 𝜁ijk are mutually uncor-

related for all i, j, and k. The induced covariance function is Gk(Tij1 ,Tij2) = Gk0(Tij1 ,Tij2) + 𝜎
2
e,k1{j1=j2}. We

further decompose the covariance function Gk0(Tij1 ,Tij2) as Gk0(Tij1 ,Tij2) =
∑∞
𝓁=1𝜆k𝓁𝜓k𝓁(Tij1)𝜓k𝓁(Tij2), where

𝜆k1 ≥ 𝜆k2 ≥ · · · ≥ 0 and 𝜓k𝓁(⋅) are orthonormal eigenfunctions that satisfy ∫T 𝜓k𝓁1(T)𝜓k𝓁2 (T)dT = 1{𝓁1=𝓁2}. It
follows that 𝜉ijk =

∑∞
𝓁=1𝜂ik𝓁𝜓k𝓁(Tij) + 𝜁ijk, where 𝜂ik𝓁 are uncorrelated random scores with zero mean and

variance 𝜆k𝓁 .
The unspecified smooth covariance model contains the independent and exchangeable models as special cases.

Indeed, the working independence model corresponds to Gk0(Tij1 ,Tij2) = 0 while the exchangeable correlation model cor-
responds to Gk0(Tij1 ,Tij2) = 𝜎

2
0,k. Thus, for model estimation below, we will focus on the unspecified covariance model as

the other cases can be treated as simpler cases.

2.2 Model estimation

We first consider estimation of 𝜇ij(⋅) using B-spline expansion of the coefficient functions 𝛽r(⋅). Specifically, let
B(s) = [B1(s), … ,Bc(s)]T ∈ Rc be a collection of B-spline basis functions in the unit interval with c being the num-
ber of basis functions. Then 𝛽r(s) =

∑c
d=1𝛼rdBd(s), where 𝜶r = [𝛼r1, … , 𝛼rc]T is the unknown coefficient vector. We

use cubic B-splines and a relatively large number of equally spaced knots, that is, a large c, so that the approxima-
tion bias is negligible. Let B = [B(s1), … ,B(sm)]T ∈ Rm×c, then 𝝁ij = [𝜇ij(s1), … , 𝜇ij(sm)]T = B𝜶0 +

∑p
r=1xijrB𝜶r. Denote

Xij = [B, xij1B, … , xijpB] ∈ Rm×((p+1)c), 𝜶 = [𝜶T
0 , … ,𝜶

T
p ]T ∈ R(p+1)c. Then, we have 𝝁ij = Xij𝜶. Let Xi = [XT

i1, … ,XT
ini
]T ∈

R(mni)×((p+1)c) and 𝝁i = [𝝁T
i1, … ,𝝁

T
ini
]T ∈ Rmni . Then, we have 𝝁i = Xi𝜶.

Now we consider Wij(s) =
∑

k≥1 𝜉ijk𝜙k(s) in Equation (2), where for each k ≥ 1, 𝜉ijk =
∑
𝓁≥1 𝜂ik𝓁𝜓k𝓁(Tij) + 𝜁ijk. As

both terms involve infinite sums, we propose to use a number of eigenfunctions 𝜙k(⋅) that explains at least a
given percentage of the variance explained (PVE) in the marginal covariance function, m. Denote the selected
number of 𝜙k(⋅) by K. Next we determine the approximation of 𝜉ijk for all 1 ≤ k ≤ K simultaneously by ranking
𝜆k𝓁 , the variances of scores 𝜂ik𝓁 . We retain the 𝜆k𝓁 that are larger than 𝜆

∗, where 𝜆
∗ is the largest value that

satisfies

∑K
k=1

{
𝜎

2
e,k +

∑
𝓁≥1 𝜆k𝓁1{𝜆k𝓁≥𝜆

∗}

}

∑K
k=1

{
𝜎

2
e,k +

∑
𝓁≥1 𝜆k𝓁

} > PVE. (3)

This will discard 𝜂ik𝓁 with small variances. According to our simulation studies, discarding small variances leads to
improved estimation. Let Lk be the number of eigenfunctions selected for 𝜉ijk. Then approximately,

Wij(s) =
∑

1≤k≤K

{
∑

1≤𝓁≤Lk

𝜂ik𝓁𝜓k𝓁(Tij) + 𝜁ijk

}
𝜙k(s).

Let Wij = [Wij(s1), … ,Wij(sm)]T ∈ Rm, 𝝓k = [𝜙k(s1), … , 𝜙k(sm)]T ∈ Rm, 𝚿ijk = [𝜓k1(Tij), … , 𝜓kLk (Tij)]T ∈ RLk , and
𝜼ik = [𝜂ik1, … , 𝜂ikLk ]

T ∈ RLk . Then

Wij =
∑

1≤k≤K

(
𝚿T

ijk𝜼ik + 𝜁ijk

)
𝝓k.

Let𝚿ij = blockdiag(𝚿T
ij1, … ,𝚿T

ijK) ∈ RK×L, where L =
∑

1≤k≤K Lk, and 𝜼i = [𝜼T
i1, … , 𝜼

T
iK]

T ∈ RL. Note that 𝜼ik has a diag-
onal covariance matrix 𝚲k = diag(𝜆k1, … , 𝜆kLk ) and 𝜼i has a diagonal covariance matrix 𝚲 = blockdiag(𝚲1, … ,𝚲K). Let
𝚽 = [𝝓1, … ,𝝓K] ∈ Rm×K and 𝜻 ij = [𝜁ij1, … , 𝜁ijK]T ∈ RK . Then

Wij = 𝚽
(
𝚿ij𝜼i + 𝜻 ij

)
.
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Let Wi = [WT
i1, … ,WT

ini
]T ∈ Rmni ,𝚿i = [𝚿T

i1, … ,𝚿T
ini
]T ∈ R(Kni)×L, and 𝜻 i = [𝜻T

i1, … , 𝜻
T
nii
]T ∈ RKni . Then

Wi = (Ini ⊗𝚽)
(
𝚿i𝜼i + 𝜻 i

)
.

It is easy to show that 𝜻 ij has a diagonal covariance matrix 𝚺 = diag(𝜎2
e,1, … , 𝜎

2
e,K) and that 𝜻 i has a diagonal covariance

matrix Ini ⊗ 𝚺. For the random error term 𝜖ij(s), let 𝝐ij = [𝜖ij(s1), … , 𝜖ij(sm)]T ∈ Rm and 𝝐i = [𝝐T
i1, … , 𝝐

T
ini
]T ∈ Rmni .

Finally, we obtain the mixed model representation

yi = Xi𝜶 + (Ini ⊗𝚽)
(
𝚿i𝜼i + 𝜻 i

)
+ 𝝐i,

⎛
⎜
⎜
⎜⎝

𝜼i

𝜻 i

𝝐i

⎞
⎟
⎟
⎟⎠

∼
⎡
⎢
⎢
⎢⎣

⎛
⎜
⎜
⎜⎝

0L

0Kni

0mni

⎞
⎟
⎟
⎟⎠

,

⎛
⎜
⎜
⎜⎝

𝚲 0 0
0 Ini ⊗ 𝚺 0
0 0 𝜎

2
𝜖
Imni

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦
, (4)

where [𝜼T
i , 𝜻

T
i , 𝝐

T
i ]

T are independent across subjects. Therefore, given the eigenfunctions 𝚿i and 𝚽, the fixed effects 𝜶
and variance components 𝜆k𝓁 , 𝜎2

e,k, and 𝜎2
𝜖

can be estimated using standard mixed effects software. To avoid overfitting,
we impose a quadratic penalty on each 𝜶r. Let P be a second order difference penalty matrix.20 To be specific we use the
penalty

∑p
r=0𝜏r𝜶

T
r P𝜶r, where 𝜏r is the smoothing parameter for the rth function 𝛽r(⋅). The model can be fitted using the

gam function21 or bam function22 in the R package mgcv23 and we use generalized cross validation to select the smoothing
parameters.

2.3 Longitudinal covariance estimation and model estimation algorithm

We first obtain an initial estimate of 𝜶 for the fixed effects, by fitting model (4) without including the term (Ini ⊗

𝚽)
(
𝚿i𝜼i + 𝜻 i

)
. This is equivalent to assume that all observations yij(s) are mutually independent. A small simulation

study shows that the proposed method is not sensitive to the initial estimate. Indeed, see Section S.1 of the supplementary
material for alternative methods of the initial estimate for 𝜶.

With an initial estimate of 𝜶, the residuals rij(s) = yij(s) − 𝜇ij(s) can be calculated and used for estimating the marginal
eigenfunctions 𝜙k(⋅) and the longitudinal covariances. First, the eigenfunctions 𝜙k(⋅) can be estimated by using the fast
face algorithm24 of the sandwich smoother25 on the set of residuals. Specifically, let Rij = [rij(s1), … , rij(sm)]T ∈ Rm, Ri =
[Ri1, … ,Rini ] ∈ Rm×ni , and R = [R1, … ,Rn] ∈ Rm×N , where N =

∑n
i=1ni. Then we apply the face algorithm to N−1RRT .

Then, given 𝜙k(⋅), we calculate ∫ rij(s)𝜙k(s)ds as the prediction for 𝜉ijk. For the working independence model, 𝜆k can be
estimated along with 𝜙k(⋅) directly from the face algorithm. For the exchangeable model, we have 𝜉ijk = 𝜉ik + 𝜁ijk and a
one-way nested ANOVA model can be used to estimate 𝜎2

0,k and 𝜎2
e,k. Finally, when Gk(⋅, ⋅) is unspecified, we approximate

it using tensor-product B-splines and apply the fast covariance estimation method for sparse functional data26 to the
dataset {𝜉ijk,Tijk, 1 ≤ j ≤ ni, 1 ≤ i ≤ n} to obtain estimates of Gk0(⋅, ⋅) and 𝜎2

e,k. We use 10 marginal cubic B-splines with
equally spaced knots. Then, an eigendecomposition of Gk0(⋅, ⋅) leads to estimates of eigenfunctions 𝜓k𝓁(⋅) and associated
eigenvalues 𝜆k𝓁 . We retain all eigenfunctions with associated positive eigenvalues and then use Equation (3) to discard
small eigenvalues.

Once we have got estimates of the marginal eigenfunctions and the longitudinal covariances, we refine the estimates of
fixed effects by fitting the mixed model (4) to obtain estimates of𝜶, denoted by 𝜶̂. Given the estimated variance parameters
and treating the smoothness penalty on the fixed effects function as prior distributions, 𝜶̂ has a posterior multivariate
normal distribution, which can be used to construct either point-wise or simultaneous confidence bands for the fixed
effects functions. We omit the details and refer to the textbook by Wood.27

We summarize the steps of the proposed method with unspecified smooth covariance in Algorithm 1. The estimation
algorithm with independent and exchangeable covariance is available in Section S.2 in the supplementary material. Notice
that the fixed effect is actually estimated twice (initial estimate and refined estimate) but not iterative since we have
found that more iterations do not contribute to a better estimation. The reason for this is that as long as a good initial
estimate of fixed effects is obtained, subsequent estimation of covariances via residuals is already sufficiently accurate
and does not have substantial improvement using residuals with refined estimates. As shall be shown in our simulation
study, our proposed initial estimates are often comparable with the proposed refined estimates. Notice that we still use
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Algorithm 1. Estimate fixed effects assuming unspecified smooth covariance

1. Estimate the initial fixed effects as 𝜇0
ij(s) by existed methods assuming that all observations yij(s) are mutually

independent, and subtract the initial mean functions from observed data to get residuals as rij(s) = yij(s) − 𝜇0
ij(s).

2. Apply the face algorithm to rij(s) to extract eigenfunctions 𝜙k(s) and principal scores 𝜉ijk.
3. For each layer k, apply the sparse face algorithm25 to 𝜉ijk to extract eigenfunctions 𝜓k𝓁(s).
4. With covariates xijp and estimated eigenfunctions 𝜙k(s) and 𝜓k𝓁(s), fit the mixed model (4) using the gam or bam
function to obtain the final and refined fixed effects as 𝜇ij(s).

the refined estimates as our final estimates because inference would not be valid with the initial estimates. Finally, a small
simulation for the iterative procedure between estimating the mean and covariance structure is shown in Section S.1 in
the supplementary material.

3 TESTS OF LONGITUDINAL COVARIANCES

We use the goodness of fit test in Chen et al19 to test the structure of the covariance Gk0(⋅, ⋅) in the following sce-
narios: (1) test the independent model against the unspecified covariance model; and (2) test the exchangeable model
against the unspecified covariance model. The only other available method for carrying out the above tests is the mul-
tivariate test in Zhong et al,28 which can only be applied to data with a common longitudinal design and assumes an
unstructured covariance that does not account for smoothness in the alternative covariance. Thus when applicable, the
multivariate test tends to be less powerful than the above goodness of fit test. It is also worth mentioning that if the
alternative is also parametric, then likelihood-based tests such as the one in Crainiceanu and Ruppert29 may instead be
used.

We will consider two types of tests: test of an individual covariance or joint test of multiple covariances. To
illustrate the idea, consider the case when the null hypothesis assumes independence. For the individual test, we
may test H0k ∶ Gk0(⋅, ⋅) = 0 against H1k ∶ Gk0(⋅, ⋅) is unspecified for each k. For the joint test, we may test H0 ∶
Gk0(⋅, ⋅) = 0 for all k ≥ 1 against H1 ∶ Gk0(⋅, ⋅) is unspecified for at least one k ≥ 1. The null model for the joint test
corresponds to the assumption that the longitudinal functions Wij(⋅) are uncorrelated across visits, j, within study
participants.

The individual longitudinal covariance test can be written as

H0k ∶ Gk0(T,T′) = G̃k0(T,T′) vs H1k ∶ Gk0(T,T′) ≠ G̃k0(T,T′), (5)

where G̃k0(T,T′) is a parametric covariance function with a finite number of unknown parameters. For example, to
test the null hypothesis of an exchangeable covariance model, we have Gk(Tij1 ,Tij2) = G̃k0(Tij1 ,Tij2) + 1{j1=j2}𝜎

2
e,k, where

G̃k0(Tij1 ,Tij2) = 𝜎
2
0,k. For testing the null hypothesis of working independence, everything stays the same, except that

G̃k0(Tij1 ,Tij2) = 0.
We now briefly describe the test proposed in Chen et al19 Suppose that the null covariance is G0 and the alternative is

GA. First, we estimate the unknown parameters under the null hypothesis and denote the resulting estimate by Ĝ0. Under
the alternative hypothesis, we estimate GA nonparametrically using, for example, smoothing based on tensor product
of B-splines. If the estimator under the alternative hypothesis is ĜA then the test statistic is the Hilbert-Schmidt norm
distance

Tn =
‖‖‖ĜA −Ĝ0

‖‖‖HS
,

where ‖f‖HS =
√
∫∫ f (T,T′)2dTdT′ and Ĝ0 is the smoothed null covariance estimate using again tensor-product of

B-splines. The rationale for smoothing Ĝ0 is to remove the potential bias induced by smoothing procedure used for obtain-
ing ĜA. Larger values of the test statistic, Tn, will provide evidence against the null hypothesis. The null distribution of Tn
is obtained via wild bootstrap,30 that is, the estimated error variance under the alternative hypothesis is used to generate
bootstrap samples.
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To explore the overall structure of longitudinal covariances for modeling longitudinal functional data, we propose a
joint test of Gk0(⋅, ⋅) for all 1 ≤ k ≤ K. As we do not expect a large K (only a small number of multiple comparisons), the
approach we propose is straightforward: conduct individual covariance tests and use a Bonferroni correction to control
the family wise error rate. While not explored, one may also use more refined multiple testing methods such as the
Benjamini-Hochberg method.31

4 SIMULATION STUDIES

We use simulations to compare the performance of inferential approaches for the longitudinal functional mod-
els using independent, exchangeable, and unspecified covariance assumptions. We will focus on estimation and
inference for fixed effects as well as size and power of the covariance tests introduced in Section 3. The lon-
gitudinal functional models are compared with the standard functional data method implemented in the pffr
function8,32,33 of the R package refund.34 This approach was designed for functional data without residual cor-
relation and will be referred to as the ind_obs method, in the sense that the method assumes independence
in longitudinal observations. The methods implemented in the pffr function work very well in practice when
residuals are not correlated. We also compare methods with the bootstrap method18 to obtain the confidence
bands for the coefficient functions. The point estimators for the bootstrap approach are obtained using the pffr
function.

4.1 Simulation settings

Data are generated from the model yij(s) = 𝜇ij(s) +Wij(s) + 𝜖ij(s), s ∈ [0, 1]. The functional mean is 𝜇ij(s) = 𝛽0(s) +
xi1𝛽1(s) + xij2𝛽2(s), where the number of covariates is p = 2, xi1

iid∼ N(0, 1), and xij2 = aTij + eij, where eij ∼ N(𝜌ei(j−1), 1)
with ei0 = 0. We let a = 1 and 𝜌 = 0.7. The coefficient functions are 𝛽0(s) = 1 +

√
3 cos(3𝜋s), 𝛽1(s) = 2 + cos(2𝜋s) and

𝛽2(s) = 2 + sin(𝜋s). The number of visits per subject, ni, will be specified later while the visit times, Tij, are generated
uniformly from the unit interval and then ordered. Using the orthonormal functions 𝜙1(s) = 1 and 𝜙2(s) =

√
2 sin(2𝜋s),

Wij(⋅) is generated from one of the three models below:

1. Independent covariance: Wij(s) =
∑2

k=1𝜁ijk𝜙k(s).
2. Exchangeable covariance: Wij(s) =

∑2
k=1(𝜉ik + 𝜁ijk)𝜙k(s).

3. Unspecified covariance: Wij(s) =
∑2

k=1

{∑2
𝓁=1𝜂ik𝓁𝜓k𝓁(Tij) + 𝜁ijk

}
𝜙k(s).

For the independent covariance, 𝜁ij1
iid∼ N(0, 4.5) and 𝜁ij2

iid∼ N(0, 3). For the exchangeable covariance, 𝜉i1
iid∼ N(0, 3),

𝜉i2
iid∼ N(0, 2), 𝜁ij1

iid∼ N(0, 1.5), and 𝜁ij2
iid∼ N(0, 1). For the unspecified covariance, 𝜓11(T) =

√
2 cos(2𝜋T), 𝜓12(T) =√

2 sin(2𝜋T), 𝜓21(T) =
√

2 cos(4𝜋T), and 𝜓22(T) =
√

2 sin(4𝜋T). We generate the random terms as 𝜂i11
iid∼ N(0, 2), 𝜂i12

iid∼
N(0, 1.5), 𝜂i21

iid∼ N(0, 1.5), 𝜂i22
iid∼ N(0, 1), 𝜁ij1

iid∼ N(0, 1), and 𝜁ij2
iid∼ N(0, 0.5). The functional arguments {s1, … , sm} form

a grid of 101 equidistant points in the unit interval. The mutually independent random errors 𝜖ij(s) are generated from
N(0, 𝜎2

𝜖
). The value of 𝜎2

𝜖
is 1.5, which is determined by a signal-to-noise ratio (SNR) with a value of 5. For the inde-

pendent and exchangeable covariances, we define SNR in the functional data as
∑

k≥1(𝜎2
0,k + 𝜎

2
e,k)∕𝜎

2
𝜖
; for the unspecified

covariance, we define SNR as
∑

k≥1(
∑
𝓁≥1 𝜆k𝓁 + 𝜎2

e,k)∕𝜎
2
𝜖
.

For simulations, we use a factorial design with three factors: (a) the number of subjects is either 100 or 200; (b) the
number of visits ni are generated from either Unif[3, … , 6] or Unif[8, … , 12]; and (c) the covariance model is either inde-
pendent, exchangeable or unspecified. There are 12 model conditions. For each condition, 500 replications are conducted
on an Intel Core i7-8700 with 32GB RAM using one core per simulation.

For tests of longitudinal covariances, data are generated similarly. However, under the alternative we add terms to
ensure that the null model is misspecified. Specifically, we consider

1. Deviation from independent covariance: 𝜉ijk → 𝜉ijk + Δzik(Tij).
2. Deviation from exchangeable covariance: 𝜉ik + 𝜁ijk → 𝜉ik + 𝜁ijk + Δzik(Tij).
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The scalarΔ controls the magnitude of the deviation from the null model. The scores 𝜉ik and 𝜁ijk are independent from
the nonlinear random function zik(⋅), where zik(T) =

∑2
𝓁=1𝜂ik𝓁𝜓k𝓁(T). The terms 𝜂ik𝓁 and 𝜓k𝓁(T) are specified as before.

In addition to the above simulation settings, we have also conducted simulations when the number of covariates is
four and the number of marginal eigenfunctions is also four. The details of the simulation settings and results can be
found in Section S.6 of the supplementary material.

4.2 Model estimation and evaluation criteria

The initial mean estimation is conducted using the pffr function using 10 cubic B-splines bases and the second order
difference penalty. The marginal eigenfunctions 𝜙k(s) are estimated by fitting the functional residuals via the fpca.face
function24 in the R package refund with 20 knots. The unspecified covariance model components 𝜓k𝓁(T) and 𝜉ik𝓁 are
estimated using the face.sparse function in the R package face with 15 knots. The truncation parameters K and Lk (for the
unspecified covariance model) are all determined using the prespecified level PVE with a value of 0.95. The final mixed
model is fitted using bam function22 in the R package mgcv.23

The estimation accuracy for functional parameters is assessed using the mean integrated squared errors (MISE)
and the properties of the pointwise confidence intervals. Specifically, for a function 𝛽 with estimate 𝛽, MISE(𝛽) =

1
Nsim

∑Nsim
isim=1 ∫ {𝛽

isim(s) − 𝛽(s)}2ds. For the pointwise confidence intervals, we report the integrated actual pointwise cover-

age (IAC) and integrated actual width (IAW), where IAC is defined as 1
Nsim

∑Nsim
isim=1 ∫ I{𝛽 isim (s) ∈ CIp(s)}ds and CIp(s) is the

pointwise approximate confidence interval for the functional parameter 𝛽(s). For example, an approximate 95% point-
wise confidence interval CIp(s0) for 𝛽1(s0) can be constructed as 𝛽1(s0) ± 1.96 × ̂SD{𝛽1(s0)}. The length of the confidence
interval at s0 is 3.92 × ̂SD{𝛽1(s0)} and IAW = 1

Nsim

∑Nsim
isim=1 ∫ 3.92 × ̂SD{𝛽 isim (s)}ds.

4.3 Simulation results for estimation

Tables 1 to 3 display the results for estimating the coefficient functions when the data generating mechanism uses inde-
pendent, exchangeable, or unspecified covariances, respectively. For each table, we compare results using five methods.
The ind_obs method refers to the method implemented in the pffr function; we use the bootstrap method18 to obtain
the confidence bands for the coefficient functions; and the independent, exchangeable and unspecified methods refer
to the proposed methods with independent, exchangeable and unspecified covariances, respectively. We first focus on
the point estimation, which is partially captured by the MISE in the three tables. Results indicate that as the num-
ber of subjects and visits increase, MISEs decrease for all methods; see the columns labeled

√
MISE in Tables 1 to 3.

Moreover, the MISE obtains the smallest value when the correlation is correctly specified. In particular, the reduction
in MISE is substantial for data with exchangeable and unspecified covariance structures when the correct model is
used compared to one that does not account for correlation. For example, in Table 2 which corresponds to data simu-
lated from an exchangeable correlation structure, for n = 200 and ni ∼ Unif[8, 12], the

√
MISE is 0.028 for 𝛽2(s) for the

method which accounts for exchangeable correlation, while it is 0.066 for the bootstrap method which does not. Finally,
the unspecified correlation model consistently provides good estimators, with the corresponding MISE comparable to
that obtains from the correctly specified model. See Section S.3 in the supplementary material for additional simulation
results.

For confidence bands, all methods outperform the ind_obs method in terms of coverage. The confidence bands from
the ind_obs method are on average too narrow and are far below the nominal coverage level. The correctly specified and
the unspecified covariance models provide confidence bands that are close to the nominal, though, slightly conservative
sometimes. The bootstrap method provides confidence bands that close to the nominal, though they require more com-
putational times and have higher average width for estimating slope functions and lower average width for estimating
intercept functions. When models are misspecified (eg, exchangeable model for unspecified covariance data), the aver-
age coverage of the confidence bands tends to be close to the nominal, but at the expense of much wider confidence
bands.

In terms of run times per simulation averaged by 500 replications, the bootstrap method is the slowest and the ind_obs
method is the fastest. Computational time increases with more complex longitudinal correlation structures. However,
when the dataset has a large number of subjects and a large number of visits per subject (n = 200 and ni ∼ Unif[8, 12]),
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T A B L E 1
√

MISE, IAC for 95% pointwise confidence interval and IAW for estimating 𝛽0(s), 𝛽1(s), and 𝛽2(s) based on independent
covariance data using five methods across 500 simulations

𝜷0(s) 𝜷1(s) 𝜷2(s)

Method Time
√

MISE IAW IAC
√

MISE IAW IAC
√

MISE IAW IAC

n = 100 and ni ∼ Unif[3, 6]

ind_obs 0 (0.0) 0.127 0.23 0.58 0.119 0.15 0.46 0.082 0.09 0.40

Bootstrap 72 (0.1) 0.127 0.54 0.93 0.119 0.51 0.93 0.082 0.35 0.93

Independent 3 (0.0) 0.125 0.80 0.98 0.115 0.51 0.95 0.073 0.33 0.95

Exchangeable 7 (0.1) 0.125 0.82 0.98 0.115 0.52 0.96 0.073 0.34 0.95

Unspecified 8 (0.0) 0.125 0.80 0.98 0.115 0.51 0.95 0.073 0.34 0.95

n = 100 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.086 0.16 0.58 0.079 0.10 0.46 0.052 0.07 0.45

Bootstrap 150 (0.1) 0.086 0.36 0.94 0.079 0.34 0.94 0.052 0.23 0.95

Independent 32 (0.1) 0.085 0.53 0.96 0.078 0.34 0.94 0.048 0.23 0.96

Exchangeable 49 (0.4) 0.085 0.54 0.97 0.078 0.35 0.95 0.048 0.23 0.96

Unspecified 37 (0.1) 0.085 0.53 0.96 0.078 0.34 0.94 0.048 0.23 0.96

n = 200 and ni ∼ Unif[3, 6]

ind_obs 1 (0.0) 0.086 0.16 0.61 0.084 0.11 0.44 0.056 0.07 0.42

Bootstrap 138 (0.1) 0.086 0.38 0.95 0.084 0.36 0.94 0.056 0.25 0.96

Independent 24 (0.1) 0.085 0.57 0.97 0.082 0.36 0.95 0.051 0.24 0.97

Exchangeable 49 (0.4) 0.085 0.57 0.97 0.082 0.36 0.96 0.051 0.24 0.97

Unspecified 33 (0.1) 0.085 0.57 0.97 0.082 0.36 0.95 0.051 0.24 0.97

n = 200 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.059 0.11 0.61 0.057 0.07 0.46 0.038 0.05 0.44

Bootstrap 288 (0.4) 0.059 0.25 0.95 0.057 0.24 0.93 0.038 0.17 0.94

Independent 264 (0.9) 0.058 0.38 0.97 0.056 0.24 0.94 0.036 0.16 0.95

Exchangeable 381 (3.0) 0.058 0.39 0.98 0.056 0.24 0.94 0.036 0.17 0.96

Unspecified 275 (0.9) 0.058 0.38 0.97 0.056 0.24 0.94 0.036 0.16 0.95

Note: Time (standard error) with second as a unit is the run time per simulation averaged by 500 replications.

the computation time for fitting the proposed methods can be comparable to or longer than that of the bootstrap method.
The proposed method may be sped up via parallel computing in the bam function, but in our simulation we only use one
core.

In summary, the unspecified covariance models perform well in terms of inference for the fixed effects in a variety of
scenarios. However, in practice one may still want to know whether a simpler correlation structure is reasonable for the
data, as the correct model slightly outperforms the unspecified covariance model. In the next section, we provide results
for testing the longitudinal covariance.

4.4 Simulation results for longitudinal covariance tests

For the covariance tests introduced in Section 3, we report the empirical type I error rate (estimated size) for nominal levels
𝛼 = 0.05 and 0.10 based on 5000 simulated datasets, and the power at the 𝛼 = 0.05 level with 1000 simulated datasets.
For the joint test, we use the Bonferroni correction to account for the multiplicity of hypotheses tests. For the individual
covariance tests, the power curves are presented as functions of the deviation from the null, defined as
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T A B L E 2
√

MISE, IAC for 95% pointwise confidence interval and IAW for estimating 𝛽0(s), 𝛽1(s), and 𝛽2(s) based on exchangeable
covariance data using five methods across 500 simulations

𝜷0(s) 𝜷1(s) 𝜷2(s)

Method Time
√

MISE IAW IAC
√

MISE IAW IAC
√

MISE IAW IAC

n = 100 and ni ∼ Unif[3, 6]

ind_obs 0 (0.0) 0.225 0.22 0.34 0.226 0.15 0.24 0.119 0.09 0.28

Bootstrap 74 (0.1) 0.225 0.97 0.94 0.226 0.94 0.94 0.119 0.51 0.94

Independent 3 (0.0) 0.223 0.80 0.86 0.220 0.50 0.69 0.107 0.33 0.82

Exchangeable 6 (0.0) 0.215 1.44 0.97 0.202 0.90 0.95 0.063 0.29 0.95

Unspecified 11 (0.0) 0.215 1.42 0.99 0.208 0.87 0.93 0.064 0.29 0.94

n = 100 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.206 0.15 0.27 0.205 0.10 0.17 0.092 0.07 0.26

Bootstrap 152 (0.1) 0.206 0.91 0.95 0.205 0.90 0.95 0.092 0.39 0.94

Independent 32 (0.2) 0.205 0.54 0.74 0.202 0.34 0.54 0.086 0.23 0.75

Exchangeable 46 (0.2) 0.203 1.39 0.97 0.187 0.87 0.97 0.037 0.17 0.96

Unspecified 51 (0.2) 0.205 1.36 0.98 0.190 0.84 0.96 0.037 0.17 0.95

n = 200 and ni ∼ Unif[3, 6]

ind_obs 1 (0.0) 0.162 0.16 0.34 0.149 0.11 0.26 0.085 0.07 0.29

Bootstrap 137 (0.2) 0.162 0.69 0.94 0.149 0.66 0.95 0.085 0.36 0.95

Independent 23 (0.1) 0.160 0.57 0.85 0.147 0.35 0.72 0.079 0.24 0.82

Exchangeable 44 (0.2) 0.151 1.02 0.97 0.141 0.64 0.95 0.047 0.21 0.95

Unspecified 54 (0.2) 0.152 1.01 0.99 0.142 0.63 0.95 0.047 0.21 0.95

n = 200 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.147 0.11 0.28 0.140 0.07 0.20 0.066 0.05 0.25

Bootstrap 288 (0.3) 0.147 0.65 0.95 0.140 0.63 0.95 0.066 0.28 0.95

Independent 261 (0.9) 0.147 0.38 0.73 0.139 0.24 0.58 0.063 0.16 0.76

Exchangeable 373 (1.5) 0.144 0.97 0.97 0.131 0.62 0.96 0.028 0.12 0.95

Unspecified 383 (1.5) 0.147 0.98 0.98 0.134 0.61 0.95 0.029 0.12 0.95

Note: Time (standard error) with second as a unit is the run time per simulation averaged by 500 replications.

Δ2
∫ Var{zik(T)}dT

∫ Var{𝜉ik(T)}dT + Δ2
∫ Var{zik(T)}dT

for each k. For the joint test, the deviation from the null is defined as

Δ2 ∑
k ∫ Var{zik(T)}dT

∑
k ∫ Var{𝜉ik(T)}dT + Δ2 ∑

k ∫ Var{zik(T)}dT
.

The deviation from the null hypothesis is a number between 0 and 1.
Table 4 reports the empirical type I errors of the individual and joint tests, indicating that all tests have empirical levels

close to their nominal levels. Tests can be conservative for exchangeable covariance with a larger number of visits per
subject. We have also evaluated the dependency of the testing statistics from different layers for a few simulation settings;
see Section S.4 of the supplementary material for details. While we have found significant positive correlations among
the testing statistics for most scenarios, the correlations seem small. Nevertheless, for the joint test where the Bonferroni
correction is used, multiple testing methods that account for positive dependencies such as the Simes method35 might
instead be employed.
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T A B L E 3
√

MISE, IAC for 95% pointwise confidence interval and IAW for estimating 𝛽0(s), 𝛽1(s), and 𝛽2(s) based on unspecified
covariance data using five methods across 500 simulations

𝜷0(s) 𝜷1(s) 𝜷2(s)

Method Time
√

MISE IAW IAC
√

MISE IAW IAC
√

MISE IAW IAC

n = 100 and ni ∼ Unif[3, 6]

ind_obs 0 (0.0) 0.127 0.23 0.58 0.122 0.15 0.42 0.086 0.10 0.37

Bootstrap 74 (0.1) 0.127 0.53 0.93 0.122 0.50 0.93 0.086 0.37 0.94

Independent 3 (0.0) 0.125 0.81 0.97 0.118 0.51 0.95 0.076 0.34 0.95

Exchangeable 7 (0.1) 0.125 0.82 0.97 0.118 0.52 0.96 0.076 0.34 0.95

Unspecified 19 (0.1) 0.081 0.62 1.00 0.077 0.31 0.93 0.052 0.22 0.94

n = 100 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.081 0.16 0.61 0.070 0.10 0.49 0.063 0.07 0.36

Bootstrap 152 (0.1) 0.081 0.34 0.94 0.070 0.31 0.94 0.063 0.28 0.95

Independent 32 (0.1) 0.079 0.55 0.97 0.069 0.34 0.97 0.059 0.23 0.91

Exchangeable 43 (0.3) 0.079 0.55 0.97 0.069 0.34 0.97 0.059 0.23 0.91

Unspecified 77 (0.4) 0.045 0.37 1.00 0.041 0.18 0.95 0.032 0.13 0.94

n = 200 and ni ∼ Unif[3, 6]

ind_obs 1 (0.0) 0.085 0.16 0.60 0.079 0.11 0.47 0.059 0.07 0.40

Bootstrap 138 (0.1) 0.085 0.37 0.95 0.079 0.35 0.95 0.059 0.26 0.94

Independent 24 (0.1) 0.084 0.56 0.97 0.077 0.36 0.96 0.055 0.24 0.94

Exchangeable 45 (0.3) 0.084 0.57 0.97 0.077 0.36 0.96 0.055 0.24 0.94

Unspecified 116 (0.6) 0.054 0.43 1.00 0.050 0.21 0.94 0.036 0.15 0.95

n = 200 and ni ∼ Unif[8, 12]

ind_obs 1 (0.0) 0.056 0.11 0.64 0.052 0.07 0.49 0.044 0.05 0.37

Bootstrap 288 (0.4) 0.056 0.24 0.94 0.052 0.22 0.94 0.044 0.20 0.95

Independent 262 (0.8) 0.055 0.38 0.97 0.051 0.24 0.96 0.043 0.16 0.91

Exchangeable 339 (1.5) 0.055 0.38 0.97 0.051 0.24 0.97 0.043 0.16 0.90

Unspecified 585 (3.6) 0.031 0.25 1.00 0.029 0.12 0.94 0.022 0.09 0.95

Note: Time (standard error) with second as a unit is the run time per simulation averaged by 500 replications.

Figure 1 presents the power curves for the proposed tests, indicating similar patterns for the two individual and the
joint tests. The test for independent covariance has higher power than the one for exchangeable covariance data. For
both types of the null hypothesis, power increases with the number of subjects and observation per subject. Power seems
to be particularly sensitive to the number of visits, ni, per curve. Indeed, with 100 study participants and exchangeable
covariance, for all three tests, the power for ni ∼ Unif[8, 12] is close to one under a deviation around 0.25. In contrast,
for ni ∼ Unif[3, 6], the deviation needs to be closer to 0.7 to reach the same power. As expected, power depends on how
closely the true model matches the specified alternative assumed by the test.

In summary, in all settings, the proposed tests maintain proper size and have the power to detect alternative
longitudinal covariance both when the null hypothesis assumes independent covariance and exchangeable covariance.

5 DATA APPLICATION

Wearable devices such as accelerometers provide objective and detailed measurements of physical activity and enable
researchers to study how physical activity changes with age, personal characteristics, and health status. In earlier studies
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T A B L E 4 Empirical type I error of covariance tests at the nominal 𝛼 = 0.05 and 0.10 levels based on 5000 datasets, by sample size
(n) and observations per subject (ni)

n = 100 n = 200

Null ni Layer 𝜶 = 0.05 𝜶 = 0.10 𝜶 = 0.05 𝜶 = 0.10

Exchangeable Unif[3, 6] First layer 0.055 0.105 0.046 0.098

Second layer 0.050 0.099 0.045 0.093

Joint test 0.053 0.103 0.043 0.090

Unif[8, 12] First layer 0.042 0.094 0.039 0.085

Second layer 0.037 0.080 0.040 0.092

Joint test 0.037 0.078 0.033 0.078

Independent Unif[3, 6] First layer 0.056 0.115 0.057 0.110

Second layer 0.051 0.108 0.052 0.103

Joint test 0.053 0.105 0.056 0.106

Unif[8, 12] First layer 0.053 0.103 0.057 0.108

Second layer 0.054 0.103 0.055 0.102

Joint test 0.056 0.104 0.058 0.108

 The first layer  The second layer Joint test
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Null: exchangeable covariance.
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Null: independent covariance.

(A)

(B)

F I G U R E 1 Power curves (type I error 𝛼 = 0.05) for individual and joint tests of covariances, under deviation from the null. Shown are:
ni ∼ Unif[3, 6] (solid line) and ni ∼ Unif[8, 12] (dashed line), for n = 100 (gray) and n = 200 (black)
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F I G U R E 2 Physical activity profiles of two NHANES study participants over available days. Panels in the top row are from a male with
age 54 and BMI 20.5. Panels in the bottom row are from a female with age 57 and BMI 31.54. Each panel displays MIMS of 1 day from
midnight to midnight, titled by day of the week

based on cross-sectional data, the systematic and random circadian rhythms of physical activity was analyzed as functions
of time of day and age.2,3

In this analysis, our objective is to quantify the circadian rhythm of physical activity over multiple days and how
they relate to age, sex, and BMI and provide associated inference. Data were collected from the National Health and
Nutrition Examination Survey (NHANES), a large cohort study conducted in 2-year waves by the US Centers for Disease
Control and Prevention (CDC) to assess the health and nutritional status of US population. We focus on the NHANES
2011-2012 and 2013-2014 data, where each study participant was asked to wear the wrist-worn device all the time for
seven consecutive days. The physical activity data were collected and summarized in minute-level Monitor-Independent
Movement Summary (MIMS) units, a physical activity intensity unit optimized to capture normal human motion.36 For
each day of the study participant, our initial data are MIMS measured at 1440 minutes from midnight to midnight. The
final dataset consists of 513 study participants (208 men and 305 women) with an average age of 57 years and an average
BMI value of 28. Figure 2 displays the physical activity profiles of two randomly selected NHANES study participants. For
each study participant, we further subset the days with at least 95% estimated wear time, leading to a total of 3187 days
of wear with an average of 6.21 days of wear per study participant. For subject i at day j, the average MIMS at hour s of a
day is our longitudinal functional outcome, denoted by yij(s).

Activity profiles often vary for weekends (Saturday/Sunday) and weekdays (Monday-Friday). Thus, we create a binary
variable which is 1 for weekends and 0 for weekdays. Then, we include sex (denoted by sexi), age (agei), BMI (BMIi),
and weekend (weekendi) as the covariates in this analysis. The mean function is 𝜇ij(s) = 𝛽0(s) + sexi𝛽sex(s) + agei𝛽age(s) +
BMIi𝛽BMI(s) +weekendi𝛽weekend(s). The variable sexi is 0 for males and 1 for females. Both age and BMI are centered so
that 𝛽0(s) is the population mean MIMS corresponding to males of age 57 and with BMI of 28. The longitudinal covariate
Tij is the day of wear. Because physical activity profiles are periodic, that is, physical activity counts are the same at the
start of the day and at the end of the day, the coefficient function should also be cyclic and we use cyclic P-splines. To
investigate the longitudinal correlation structure of the data, we first estimate the marginal covariance function via the
fpca.face R function using cubic B-spline basis functions with 10 knots. Using the procedure described in Section 2.2, we
identify that eight eigenfunctions explain 90% of the marginal variance. Using these eight eigenfunctions, we conduct a
joint test for the null hypothesis that all longitudinal covariances Gk0(⋅, ⋅) can be induced by an exchangeable covariance
between daily profiles within each subject. The P-values are 0.04, 0.25, 0.06, 0.49, 0.62, 0.49, 0.09 and 0.19, respectively.
Thus, with the Bonferroni correction, we do not reject the null hypothesis at the 0.05 level. The final model fit is obtained
by using exchangeable covariances for all longitudinal covariances.

The estimated coefficient functions are displayed in Figure 3, along with the 95% pointwise confidence bands. The
top left panel in Figure 3 displays the estimated mean activity profile 𝛽0(s) for males with age 57 and BMI 28. The shape is
consistent with that of published average activity plots over the course of the day. On average, individuals are less active
during night. Then, their activities increase sharply between 5 AM and 11 AM, sustain between 11 AM and 7 PM, and
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F I G U R E 3 Estimated coefficient functions for the NHANES dataset along with pointwise 95% confidence bands under exchangeable
longitudinal covariance structure
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F I G U R E 4 Left two panels: Estimated mean activity profiles of females and males with BMI 28 at four different ages. Right two panels:
Estimated mean activity profiles of females and males with age 57 and with four different BMI values

decrease rapidly after 7 PM. The top middle panel indicates that females in this age group (50-70) have significantly more
activities than males throughout most of the day except for midnight. The top right panel displays the estimated coefficient
function for age, indicating a loss of activity for older individuals from afternoon to 1 AM. There is no substantial age
effect in activity in the morning while the most considerable age effect happens in the early night. These findings are
consistent with previous findings that older individuals sleep early at night and wake up early in the morning, while
younger individuals are more energetic at night. The bottom left panel indicates that activity patterns tend to decrease
with increasing BMI, especially in the daytime. Compared to weekdays, weekends correspond to lower levels of activity
in the whole day, significantly in the morning from 5 AM to 11 AM. These results are consistent with common sense that
individuals are less active on weekends morning.

Figure 4 displays the estimated mean activity profiles for females and males, with different age and BMI combinations.
From the left two panels, we see that for a given BMI value, there is a pronounced decrease in activity as a function of age,
both for females and males. Moreover, younger individuals have on average two activity peaks, while older individuals
tend to lose the second activity peak. It indicates that the change of physical activity patterns with age is due to less activity
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in the afternoon and at night. The right two panels indicate that the average activity profile decreases with increasing BMI.
The negative effect of age only works after noon while individuals with larger BMI have less activity during all daytime.
Moreover, the effect of two units on the BMI scale is roughly equivalent to two years of age in terms of overall activity
loss. Finally, the estimated covariances of physical activity profiles within each day and across days, respectively, and the
top three estimated eigenfunctions 𝜙k(s) are shown in Section S.5 in supplementary material.

6 DISCUSSION

We introduced an inferential framework for estimating fixed effects functions for longitudinal functional data with
complex correlation structures. Methods are natural extensions of standard longitudinal data methods with scalar
observations and use the flexible marginal decomposition model framework in Park and Staicu.13

Simulation studies indicate that the estimation procedure works remarkably well even when the longitudinal correla-
tions are misspecified. However, the confidence bands obtained under misspecified correlation models may have smaller
than nominal coverage or are wider than necessary. Our results indicate that using unspecified correlation matrices is the
safer approach when it is computationally feasible. More work will be necessary to improve the computational feasibility
of these methods for larger sample sizes in terms of the number of study participants, visits, and observations per curve.

We also introduced a testing framework for longitudinal correlations for longitudinal functional data, which extended
the testing method in Chen et al.19 The proposed tests provide insight into what correlation structures are appropriate
and may help reduce the computational cost when a simpler longitudinal correlation is chosen.

This article only considered scalar covariates and it would be of interest to extend the proposed framework to include
functional covariates.
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