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Abstract Objectives Virtual reality (VR) is an increasingly valuable teaching tool, but current
simulators are not typically clinically scalable due to their reliance on inefficient manual
segmentation. The objective of this project was to leverage a high-throughput and
accurate machine learning method to automate data preparation for a patient-specific
VR simulator used to explore preoperative sinus anatomy.
Methods An endoscopic VR simulator was designed in Unity to enable interactive
exploration of sinus anatomy. The Saak transform, a data-efficient machine learning
method, was adapted to accurately segment sinus computed tomography (CT) scans
using minimal training data, and the resulting data were reconstructed into three-
dimensional (3D) patient-specific models that could be explored in the simulator.
Results Using minimal training data, the Saak transform–based machine learning
method offers accurate soft-tissue segmentation. When explored with an endoscope in
the VR simulator, the anatomical models generated by the algorithm accurately
capture key sinus structures and showcase patient-specific variability in anatomy.
Conclusion By offering an automatic means of preparing VR models from a patient’s
raw CT scans, this pipeline takes a key step toward clinical scalability. In addition to
preoperative planning, this system also enables virtual endoscopy—a tool that is
particularly useful in the COVID-19 era. As VR technology inevitably continues to
develop, such a foundation will help ensure that future innovations remain clinically
accessible.
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Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic
has thrust patients and health care workers into a vulnerable
state. Faced with this global crisis, the medical field had to
embrace new technologies to advance education and patient
care.1,2 Stay-at-home orders, widely implemented during
the early phase of the pandemic, resulted in a dramatic
decrease in the feasibility of in-person examinations. The
subsequent increase in video and telehealth visits during this
time period suggests the need for alternative, safer, and no-
contact methods for examining patients, to avoid delays in
diagnosis and treatment.

Virtual reality (VR) offers tremendous potential in the
medical field, especially for inherently visual-spatial exer-
cises like diagnostic and surgical endoscopy.3–5 Sinus anato-
my is intricate and variable, with close proximity to critical
neurovascular structures.6–8 Preoperative planning and in-
novative intraoperative image guidance systems presently
rely on 2D computed tomography (CT) planes that may not
offer the most intuitive visualization of anatomy.9–12

In otolaryngology, VR has demonstrated efficacy as a
teaching tool for students, residents, and surgeons to hone
procedural skills.13–26While such innovations showcase VR’s
potential, current simulators rely on laboriousmanual image
segmentation—the identification of different components in
an image—and are thus not clinically scalable.20 Machine
learning methods offer the potential to automate high-
quality image segmentation, addressing a significant hurdle
of clinical VR.27–30

Existingmachine learningmethods like convolutional neu-
ral networks (CNNs) have shown promise as a segmentation
tool across avarietyofmodalities but require a large volumeof
high-quality annotated data, as observed in previous studies
centered around sinus segmentation.31–33 True clinical appli-
cability demands a more data-efficient alternative.34

Subspace approximation with augmented kernels (Saak)
is a novel transformation that offers a fully reversible and
data-efficient means of feature extraction.35,36 Equipping
the Saak transform with a classifier produces an automatic
image segmentation algorithm capable of operating with
minimal training data.We previously developed thismethod
and studied its ability to segment intricate light sheet
fluorescence microscopy images, finding that Saak trans-
form–based machine learning consistently outperformed a
CNN, particularly with lower numbers of training images.36

In this study, we leverage data-efficient machine learning
to create a VR tool for patient-specific surgical planning.5Our
Saak transform–based method automatically segments soft
tissue and bone from sinus CT scans to allow operators to
explore a patient’s unique anatomy in the VR domain.

Materials and Methods

Preparation of Training Data
All data collection for this study received IRB approval. We
obtained Digital Imaging and Communications in Medicine
(DICOM) files for three patients’ sinus CT scans with

identification stripped for confidentiality purposes. The
patients were selected from a pool of preoperative candi-
dates for functional endoscopic sinus surgery. Both the soft
and bony tissues of all 548 axial images, between 100 and
200 per CT scan, were annotated in Amira to establish the
ground truth for training and validation purposes.

Segmentation Algorithm
We used MATLAB to extract and trim each axial slice from
the raw CT scan DICOM files to 350�350 windows encom-
passing the airspace structures. We then used randomly
selected images and their manually segmented labels to
train our Saak-based machine learning algorithm, consisting
of a multistage Saak transform—based on principle compo-
nent analysis (PCA)—and a random forest classifier. The
model segmented all desired anatomic structures at once
for each axial slice. We ran the trained model to segment
each CT scan such that the training data did not overlap with
testing data.

Validation of Segmentation
The Saak-based method was validated using randomly se-
lected, nonoverlapping axial images from the CT datasets.
We calculated the intersection over union (IOU) and dice
similarity coefficient (DSC) of the segmentation results of our
algorithm trained with three, six, and nine training images.

Virtual Reality Demo
After obtaining segmented data, we reconstructed the three-
dimensional (3D) object in Amira 6.1 and generated, com-
pressed, and exported a surface model to Autodesk Maya for
scaling and smoothing. We developed our VR demo in Unity
using models exported from Maya. We finalized all steps in
Maya and Unity with educational licenses.

We used an Acer Windows Mixed Reality Headset (Acer)
as the VR viewer and an educational-purpose license version
of Unity 5.5 (Unity Technologies) as the development engine.
In a new Unity project, we imported the patient’s 3D recon-
structed head andmounted a probewith a virtual endoscop-
ic camera. We enabled user control of the probe using either
Acer Windows Mixed Reality Controllers or keyboard inputs
and computed its coordinate position for mapping to 2D
slices of the CT scan. Finally, we designed a Unity canvas that
contained windows for the probe’s location and the endo-
scopic camera’s display. The outline of our VR pipeline is
outlined in ►Fig. 1.

Results

Automatic Segmentation
We compared the Saak transform segmentation results of
soft tissue (►Fig. 2, blue) and bone (►Fig. 2, red) with the
ground truth (►Fig. 2, white). Under the condition of three,
six, and nine training images, the DSC of soft tissue was
0.94�0.05, 0.96�0.04, and 0.98�0.01, respectively, while
the IOU was 0.89�0.09, 0.92�0.07, and 0.97�0.02, respec-
tively. In comparison to soft-tissue segmentation, bone
images had DSCs of 0.30�0.06, 0.66�0.10, and 0.6�0.07
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and IOUs of 0.44�0.08, 0.49�0.11, and 0.44�0.08 across
the same numbers of training images.

Virtual Reality Model
The automatic segmentation results enabledus to exploreeach
patient’s sinus anatomy in our Unity VR model with function-
ality to augment the user’s experience. In the digital recon-
struction, we examined the nares and nasal cavity to view the
orifice of the maxillary sinus, ethmoid air cells, frontal sinus,
nasopharynx, and any obstructions along the pathway with
real-timemapping of our location (►Fig. 3A, B) to correspond-
ing 2D slices of a CT scan. At any point during the exploration,
we could toggle between soft-tissue and bone views to assess
the degree of mucosal obstruction (►Fig. 3C–F). Our investi-
gative trajectory was also traced during the virtual endoscopy,
and tissueandboneboundarieswereoverlaidonthe3Dpathto
assess the user’s proximity to sensitive structures such as the
lamina papyracea.

We performed virtual endoscopy on two patients with
significant sinus disease and captured parallel views. In
addition to the frontal sinus, we visualized the alar cartilage
(►Fig. 4A, E), nasal cavity (►Fig. 4B, F), nasopharynx
(►Fig. 4C, G), maxillary sinuses, and ethmoid air cells
(►Fig. 4D, H). All structures were identifiable both through
the navigation system and through the endoscopic camera’s
view. These perspectives allowed us to compare the obstruc-
tions and varying landmark locations between these patients
(►Fig. 4).

Discussion

Both anatomic abnormalities and low conceptual expertise
of the surgeon are cited as risk factors for increased compli-
cation rates in endoscopic sinus surgeries.37 As VR enables a
more intuitive, 3D visualization of anatomic features

compared with traditional 2D CT scan views, our model has
the potential to address both of these issues. Our framework
offers the novel ability to automatically process and view a
patient’s unique anatomy in theVR domain.While existing VR
models serve as teaching tools, the scalable patient-specific
nature of our model broadens its application to preoperative
planning, virtual endoscopy, and education. The mapping
feature, inspired by the intraoperative image-guidance sys-
tems inpractice today, further enhances the identification and
understanding of landmarks.

The primary advantage of the Saak transform over other
machine learning methods is its data efficiency. We were
able to generate viable 3D sinus reconstructions using as few
as three training images, meaning that users can tailor the
algorithm to their specific segmentation needs with a mini-
mal amount of manually labeled data. We assessed the
accuracy of our Saak-based segmentation method with
qualitative and quantitative measures. In addition to strong
DSC and IOU values, the soft-tissue segmentation results had
minimal visible noise, avoiding unnecessary surface vertices
in the final model that would otherwise affect the perfor-
mance of the VR demo. Bone segmentationwas less accurate,
likely due to the limitations of generating manually labeled
training data around difficult-to-visualize structures like the
ethmoid air cell walls. However, while highly precise soft-
tissue segmentation is essential for an effective VR model,
less accurate bone segmentation still enables clear visuali-
zation of contours needed to identify the probe’s relative
position. The six and nine training sizes were more effective
in producing a bony anatomy model, but all training sizes
provided a similarly effective soft-tissue VR experience.

This study provides a foundation for future innovations in
the VR domain. Adding interactive functionality such as the
ability to cut or debride tissuewould build on this foundation
and allow trial runs of a surgery.

Fig. 1 Segmentation and virtual reality (VR) pipeline. (A) The axial slices of a raw computed tomography (CT) scan are passed to (B) the Saak
transform–based machine learning algorithm, which has been trained with manually labeled images. The algorithm produces segmented
slices of (C) soft tissue and (E) bone, which are stacked and processed to generate (D, F) three-dimensional (3D) meshes that can be ported to (G)
the prebuilt Unity VR user interface for interactive anatomical exploration.
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Both the machine learning and VR aspects of this study
present limitations. Our Saak-based method functions well
with consistent scan settings but is not designed to simulta-
neously handle images with multiple different windows and
contrast profiles. However, the data-efficient nature of the
Saak transform allows any user to tailor the performance of
the algorithm for their scan standards using only minimal
training data, preserving its clinical applicability.

Second, our VR model, like most others, is built using
surface meshes rather than space-occupying voxels due to
computational constraints. This makes deformation or
manipulation of the object more challenging, limiting the
realism of functional endoscopic sinus surgery simulators.
Nevertheless, the fundamental framework of applying
automatic segmentation to the VR domain is broadly

applicable and will remain relevant even as voxel-based VR
technology improves.

Conclusion

This study found that Saak transform–based machine learn-
ing automatically generates accurate, patient-specific VR
models. Beyond preoperative planning, automatic segmen-
tation and visualization of scans in VR may pave the way for
virtual endoscopy and other remote alternatives to diagnos-
tic examinations, addressing major challenges presented by
the COVID-19 era. Future research into the automatic
segmentation of additional anatomic structures and the
interactive mechanics of VR will reinforce the clinical appli-
cability of this technology.

Fig. 2 Qualitative and quantitative comparison of segmentation results. (A, B) The Saak transform–based method’s soft tissue (blue) and bone
(red) segmentation results overlaid with the ground truth (white) for two axial slices of a computed tomography (CT) scan. (C, D) The
dice similarity coefficient (DSC) and intersection over union (IOU) results of our automatic segmentation method for soft tissue and bone
computed using 24 randomly selected validation image sets.
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Fig. 3 Functionality of the virtual reality (VR) interface. (A) The three-paned Unity user interface displaying the mapped location of the
probe, the probe’s camera feed, and the three-dimensional (3D) model in which the probe is deployed (MS, maxillary sinus; NP, nasopharynx).
(B–F) A view of the frontal sinus showing user ability to toggle between (C, D) tissue and (E, F) bone views and control the brightness
of the probe’s light. (G–I) A 3D tracer enables the user to view the probe’s path. Bone and tissue can be toggled on and off to observe proximity of
the path to other structures like the orbits.

Fig. 4 Labeled anatomical features. (A–D) Selected views of a patient’s anatomy. (E–H) Parallel views in the second patient highlighting the
anatomical differences. (B) The first patient has a narrower nasal cavity due to obstruction compared with (F) the second patient. (C) While the
natural orifice of the maxillary sinus is normally located above the inferior turbinate, (H) the second patient has a passageway below the
turbinate from previous surgery.
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