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Abstract: High-quality all-carbon nanostructure graphdiyne (GDY) saturable absorber was
successfully fabricated and saturable absorption properties in the 2 µm region were characterized
using a commercial mode-locked laser as a pulsed source. The fabricated GDY was first used as
an optical switcher in a passively Q-switched Ho laser. Under absorbed pump power of 2.4 W,
the maximum average output power and shortest pulse width were 443 mW and 1.38 µs, at a
repetition rate of 29.72 kHz. The results suggest that GDY nanomaterial is a promising candidate as
an optical modulator for generation of short pulses in Ho-doped lasers at 2.1 µm.

Keywords: graphdiyne nanomaterial; saturable absorber; passively Q-switched; Ho-doped laser;
2.1 µm

1. Introduction

Graphdiyne (GDY) is an emerging synthetic material with all-carbon nanostructure, following
the footsteps of fullerenes (zero-dimensional, 1985), carbon nanotubes (one-dimensional, 1991),
and graphene (two-dimensional, 2004) [1–6]. GDY, has attracted widespread attention with its unique
electrical and optical properties. After theoretical chemist R. H. Baughman’s first proposal that the
structure of GDY formed by sp and sp2 hybrid carbon could exist stably, many attempts to fabricate it
have been made by researchers [7,8]. Until 2010, Li et al. were the first to successfully prepare large
area GDY film on the surface of copper through the chemical in-situ growth of hexaethynylbenzene,
realizing the leap from theoretical prediction to experimental testing of GDY [9–11]. GDY is a
two-dimensional (2D) planar structure formed by the direct connection of sp-hybridized 1,3-diyne
bonds and sp2-hybridized benzene rings. This planar hybridization structure gives GDY a high π

conjugation and controllable electronic structure [12–14]. In the GDY structure model, alkyne bonds
and sub-nanopores give a large amount of reaction sites for its functionalization. The special electronic
structure and pore structure of GDY offer important potential applications in the fields of optoelectronics,
electronics, energy, and catalysis [15]. In particular, GDY has a tunable direct band gap of 0.4–1.22 eV,

Nanomaterials 2020, 10, 1848; doi:10.3390/nano10091848 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://dx.doi.org/10.3390/nano10091848
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/9/1848?type=check_update&version=2


Nanomaterials 2020, 10, 1848 2 of 10

in contrast with the zero-band gap of graphene, which shows great potential for application in photonic
devices based on optical switching [16–18].

Optical switchers play a crucial role in pulsed laser operation. The Ho-doped pulsed laser sources
at 2.1 µm possess a broad range of application in scientific and technical fields, such as laser radar,
countermeasure, and remote sensing [19–21]. What is more, the Ho-doped pulsed laser has become a
research hotspot owing to the features of low heat and high efficiency [22–24]. Passively Q-switched
(PQS) technology is the most efficient approach to achieving pulsed lasers. In recent years, the emergence
of two-dimensional (2D) materials has provided more choices and opportunities for the use of saturable
absorbers (SAs) in pulsed lasers PQS solid-state lasers. They have common remarkable merits,
including simple structure, compactness, easy operation, and low cost [25–33]. However, they also
have their own disadvantages. For example: Carbon nanotubes (CNTs) easily form a bundled and
entangled morphology, which causes strong scattering and thus large losses; thermal stability and
oxidation resistance of black phosphorus (BP) and transition metal oxides (TMDs) have strongly limited
their applications in ultrafast lasers; low absorption efficiency of graphene leads to low modulation
depth, and so on [34–36]. GDY has a natural band gap energy compared to graphene and MXene
with zero band gap. The large nonlinear absorption coefficient (>10−1 cm GW−1), low saturation
intensity (<10 GW cm−2), and ultrafast relaxation time (<30 ps) have all confirmed that GDY as an
SA is a promising 2D material in pulsed laser generation. Recently, Guo et al. reported the saturable
absorption properties of GDY for the first time and used them to generate mode-locked fiber lasers
at wavebands of 1 µm and 1.5 µm [37,38]. In 2020, Zu et al. reported GDY as a saturable absorber
for 1.9 µm all solid-state Q-switched laser [39]. However, up to now there has been no pulsed laser
performance reported based on GDY in a Ho-doped laser around 2.1 µm.

In this paper, we developed a GDY optical switcher with remarkable thermal stability, using it
first as an SA at 2.1 µm region. In a compact linear cavity, we obtained stable pulsed Ho laser operation.
Furthermore, the Ho-doped PQS laser characteristics were displayed from all sides. The research
demonstrates that GDY nanomaterial is an expected material as an optical modulator in mid-infrared
pulsed lasers

2. Fabrication and Characteristics of GDY-SA

The GDY material was first synthesized using the liquid/liquid interface method [40]. Subsequently,
ethanol solution was added to the prepared GDY solution and the mixture was stirred ultrasonically for
about half an hour. Next, we dropped solution onto the center of the quartz plate and centrifuge twice at
a speed of 150 r/min to make the plate evenly covered. Finally, the GDY-SA used in our experiment was
successfully prepared, as shown in Figure 1a. Its color is transparent and light brown, indicating good
light transmittance. The illustration in Figure 1b shows the atomic force microscopy (AFM) (Bruker,
Dimension ICON, Karlsruhe, Germany) image of GDY nanosheets. From the cross-section analysis
we know the thickness of the GDY nanosheets is about 2.8 nm, as shown in Figure 1b, indicating the
prepared sample is only a few layers thick. The thickness affects the modulation depth of the
GDY-SA. The morphology characteristics of GDY nanosheets were detected using scanning electron
microscope (SEM) (Sigma 500, ZEISS, Oberkochen, Germany). Figure 1c shows several microns in
size, which displays that GDY nanosheets are easily folded during the process of drying before SEM
measurement, due to the thin structural feature. As shown in Figure 1d, a great quantity of GDY
nanosheets can be observed through high-resolution transmission electron microscope (HRTEM)
(Talos F200X G2, FEI, Waltham, MA, USA) images, indicating that 2D GDY has been successfully
fabricated. Clear lattice spacing of 0.44 nm was observed corresponding to the characteristics of
GDY. Raman spectroscopy based on light scattering effect is an effective method to characterize the
structure of carbon materials. It can qualitatively identify the order degree of samples and detect
the existence of acetylenic linkages. Figure 1e shows the four typical Raman peaks of GDY sample,
which are located at 1385 cm−1 (D bond), 1580 cm−1 (G bond), 1936 cm−1, and 2158 cm−1, respectively.
The intensity ratio between D bond and G bond is about 0.73, indicating that the graphitic sample has
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a good degree of order. Peaks at 1936 cm−1 and 2158 cm−1 can be classified as characteristic peaks of
acetylenic linkages. The high-resolution X-ray photoelectron spectroscopy (XPS) (Thermo Scientific
ESCALAB 250Xi, Thermo Scientific, Waltham, MA, USA) (Figure 1f) confirmed the composition of
GDY. The appearance of O1s peak is mainly caused by the small amount of air absorbed by GDY
exposed to the air. The two C1s peaks at 285.2 and 284.5 eV are the sp orbital and sp2 orbital of the
C atom. Furthermore, the integral area ratio of these two peaks is 2:1, which also indirectly indicates
that the benzene rings are connected by two alkyne bonds.
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Figure 1. (a) Fabricated graphdiyne (GDY) sample on a glass substrate (10 × 10 mm2), (b) typical height
profiles, inset: Atomic force microscopy (AFM) image, (c) SEM image, (d) high-resolution transmission
electron microscope (HRTEM) image of GDY, (e) Raman spectrum of GDY, (f) high-resolution XPS
spectrum of GDY.

Additionally, the transmission of the GDY-SA was measured to be higher than 70% in the
2000–2150 nm spectral range, demonstrating that the GDY-SA has potential for broadband optical
modulation, as shown in Figure 2a. We also measured the nonlinear optical response of the GDY-SAs
using a mode-locked Tm-doped fiber laser (MCL-2000-50-SM-20-PS, Mchlight, Shenzhen, China) at
wavelength of 2000 nm with balanced synchronous dual-detector [41]. The transmittance was detected
by varying intensity of the laser seed source power. We quoted a model of T (I) = 1 − ∆T × exp
(−I/Isat) − Tns to characterize nonlinear optical parameters (T (I), ∆T, I, Isat, and Tns correspond to
transmission, modulation depth, input optical intensity, saturation optical intensity, and non-saturable
loss, respectively). By fitting the experimental results, the saturation optical intensity, non-saturable
loss, and modulation depth were obtained as 0.048 GW/cm2, 16.6%, and 21.1%, respectively (Figure 2b).
The appropriate modulation depth value and the low Isat value in 2 000 nm band mean that GDY has
great technical potential as a passive Q-switcher for generating ultrashort laser pulses.



Nanomaterials 2020, 10, 1848 4 of 10
Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 10 

 

 
Figure 2. (a) Transmission spectrum, (b) nonlinear transmission curve. 

3. Experimental Setup 

A schematic diagram for the GDY-SA pulsed laser is shown in Figure 3. The pump source used 
in our experiment was a commercial Tm: Fiber laser (TDFL01-00015, CETC-Txstar, Shanghai, China) 
with a center wavelength of 1940 nm at 22 °C. A lens with a focal length of 100 mm was used as a 
coupling system to collimate and focus the pump laser into the crystal. The block shaped Ho:YLF 
crystal has a dopant concentration of 0.5 at%, with dimensions of 3 × 3 × 10 mm3. Both end faces are 
antireflection coated at 1940 and 2050 nm. In order to eliminate the heat generated during pumping 
process, the Ho:YLF crystal was wrapped in indium foil and tightly installed in a water-cooled copper 
block at a temperature of 13 °C. A simple linear resonator cavity was used to investigate the output 
performance of the Ho:YLF laser. An input mirror with a radius of curvature of 200 mm was high-
transmittance (HT) at 1.9 μm and high-reflection (HR) at 2.1 μm. The 45-deg dichroic mirrors M2 and 
M4 were high transmission for pump light and high reflective for resonant wavelength. The plat 
mirror M3, serving as an output coupler (OC), gave partial transmissions (T) of 1% and 3% at 2.1 μm, 
respectively. 

 
Figure 3. The schematic of the experimental setup for the passively Q-switched (PQS) operation. 

  

Figure 2. (a) Transmission spectrum, (b) nonlinear transmission curve.

3. Experimental Setup

A schematic diagram for the GDY-SA pulsed laser is shown in Figure 3. The pump source used in
our experiment was a commercial Tm: Fiber laser (TDFL01-00015, CETC-Txstar, Shanghai, China) with
a center wavelength of 1940 nm at 22 ◦C. A lens with a focal length of 100 mm was used as a coupling
system to collimate and focus the pump laser into the crystal. The block shaped Ho:YLF crystal has a
dopant concentration of 0.5 at%, with dimensions of 3 × 3 × 10 mm3. Both end faces are antireflection
coated at 1940 and 2050 nm. In order to eliminate the heat generated during pumping process, the
Ho:YLF crystal was wrapped in indium foil and tightly installed in a water-cooled copper block at a
temperature of 13 ◦C. A simple linear resonator cavity was used to investigate the output performance
of the Ho:YLF laser. An input mirror with a radius of curvature of 200 mm was high-transmittance
(HT) at 1.9 µm and high-reflection (HR) at 2.1 µm. The 45-deg dichroic mirrors M2 and M4 were high
transmission for pump light and high reflective for resonant wavelength. The plat mirror M3, serving
as an output coupler (OC), gave partial transmissions (T) of 1% and 3% at 2.1 µm, respectively.
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4. Results and Discussions

At the beginning, the performances of the continuous-wave (CW) laser was analyzed, as shown
in Figure 4. The output the power was measured by a 30 A-SH-V1 (30ASH-V1, OPHIR, Jerusalem,
Israel) laser power meter. Under the absorbed pump power of 2.4 W, the CW mode maximum output
power for OCs of T = 1% and T = 3% were 1.04 W and 1.26 W, corresponding to slope efficiencies of
50.4% and 67.6%, respectively.
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Figure 4. Output power versus the absorbed pump power for continuous-wave (CW) and PQS.

Subsequently, on installing the GDY-SA into the laser cavity at a 10 mm distance from the OC,
stable PQS Ho:YLF laser mode was easily carried out. The beam radius of the Ho:YLF laser inside
the resonator was calculated by using the ABCD matrix, in which the |A + D|/2 value of the resonator
was about 0.3. In the middle of the Ho:YLF crystal, the radius of the TEM00 mode was about 270 µm,
and the radius of the TEM00 mode at the position GDY-SA was about 150 µm. By the transmission of
3% OC, the maximum output power of the passively Q-switched (PQS) operation is 443 mW with an
absorbed pump power of 2.4 W. The slope efficiency is 36.1% (Figure 4). With an insert displaying the
fluctuation in maximum output power over one hour, the instability of the average output powers
were approximately 4.1% and 3.4% of the two output couplers OCs (Figure 5). At the same time,
we took measurements of the emission spectrum using a spectrometer (SOL-MS3504i, SOL-instrument
Ltd., Minsk, Republic of Belarus) with a wavelength resolution of 0.34 nm. The illustration in Figure 5
shows that the pulsed laser emission spectra were centered at 2063.38 and 2062.07 nm, respectively.
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Figure 5. Instability of the average output power measured for 60 min with output couplers (OCs),
inset: PQS laser emission spectra for two different OCs.

In Figure 6 the repetition rate, pulse duration, peak power, and single-pulse energy dependence
results of the PQS laser are plotted for different transmissions. Combining the four sets of graphs,
we can see an obvious pattern. When the absorbed pump power increases, the repetition rates,
peak powers and single pulse energies gradually increase, while the pulse widths become smaller.
Using T = 3% OC, the shortest pulse width was 1.38 µs, and the highest pulse repetition rate was
29.72 kHz, corresponding to a pulse energy of 14.91 µJ and a peak power of 10.8 W. Table 1 summarizes
the comparison results of different OC mirrors with transmissions of 1% and 3%.
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Table 1. Performances of the PQS Ho: YLF laser under different OCs.

Transmittance of the OC T = 1% T = 3%

Shortest pulse width/µs 1.54 1.38
Repetition rate/kHz 25.02 29.72

Peak power/W 9.08 10.8
Single pulse energy/µJ 13.99 14.91

Figure 7 gives a description of the typical pulse trains at the maximum average output power
captured by the digital oscilloscope (MDO4104C, Tektronix, Beaverton, OR, USA) with 1 GHz and a
fast photodiode detector (ET-5000, Electro-Optics, Traverse City, MI, USA). Finally, we gauged spatial
beam profile (M2) of Q-switched Ho:YLF laser with T = 3% OC in the highest output level using
the 90/10 knife-edge way. We calculated that the horizontal and vertical values are about 1.2 and 1.1
respectively, as shown in Figure 8.
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5. Conclusions

In conclusion, GDY nanomaterial was successfully preparative using the liquid/liquid interface
method and as a SA employed in Ho pulsed laser around 2.1 µm. A maximum average output power
of 443 mW was obtained, corresponding to a pulse energy of 14.91 nJ and a peak power of 10.8 W.
For all we know, this is the first report presenting a GDY-based Q-switched Ho-doped laser by Tm:
Fiber laser pump. The optical modulator of GDY material has simple preparation process, low cost,
flexible design, and is expected to be commercialized. In the future, by optimizing the parameters
of the GDY-SA and designing resonator, ultrafast laser will promising be obtained near the 2.1 µm
mid-infrared region.
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