
RESEARCH ARTICLE

Aqueous two-phase system to isolate

extracellular vesicles from urine for prostate

cancer diagnosis

Hyunwoo Shin1☯, Yong Hyun Park2☯, Yong-Goo Kim3, Ji Youl Lee2*, Jaesung Park1*

1 Department of Mechanical Engineering, POSTECH, Pohang, Republic of Korea, 2 Department of Urology,

Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea, 3 Department of

Laboratory Medicine, Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea

☯ These authors contributed equally to this work.

* jpark@postech.ac.kr (JP); uroljy@catholic.ac.kr (JYL)

Abstract

Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate

diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long

process time, and therefore have low diagnostic ability. To solve these the problems, a two-

phase system is adapted to isolate EVs from a patient’s urine. Urine from 20 prostate cancer

(PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-

isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic abil-

ity of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates

EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentri-

fugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine.

The results demonstrate that diagnostic ability based on ATPS is better than other conven-

tional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients’

urine. EVs contain cancer-related protein and genes, so these abundant sources enable

diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase

the specificity and sensitivity of diagnosis.

Introduction

Serum prostate-specific antigen (PSA) is a marker that is widely used to detect incipient can-

cer, and to provide a post-treatment prognosis. However, PSA can also increase during benign

hyperplasic conditions, so PSA does not exhibit sufficient diagnostic specificity [1]. To over-

come this limitation of PSA as a disease marker, approaches that analyse urinary sediments or

extracellular vesicles (EVs) have been introduced [2–4]. Urinary sediments may contain a few

red blood cells, white blood cells, epithelial cells, and microorganisms. Prostate cancer (PCA)

cells secrete proteins into urine in a way similar to circulating tumour cells (CTCs) passing

barriers between tumour and body vessels, and the sediments can contain PCA cells originated

from tumour tissues, as well [5, 6]. Although the sediments where CTCs are contained may be

used for cancer diagnosis based on RNA or protein analysis, the sediments are expected to
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contain only a few cancer cells, as CTCs are extremely rare [7]. Consequently, urinary sedi-

ments is deficient in cancer-associated RNA or protein sources, and require efficient CTC iso-

lation methods for use in PCA diagnosis.

EVs secreted by cells offer major advantages, such as abundance, stability and diversity, for

the purpose of cancer diagnosis [8]. Large quantities of EVs have been detected in several body

fluids, including blood, ascites and cerebrospinal fluid, whereas CTCs are rare and are there-

fore not identified [9–11]. However, EVs vary greatly in size (50 nm–500 nm) and biological

variety, so their use for clinical purposes presents a unique set of challenges. Currently, EVs

are isolated by a variety of methods, such as ultracentrifugation (U/C), size exclusion chroma-

tography and immunoaffinity. These methods commonly involve a lengthy and complicated

process with low yield, so they have compromised the utility of EVs for clinical diagnosis [12–

23].

Use of aqueous two-phase systems (ATPSs) can overcome these difficulties of isolating EVs.

ATPSs exploit the incompatibility of two aqueous phases of polymeric molecules. ATPSs parti-

tion different kinds of particles into the two phases in a short time. ATPSs have been used to

separate cells with different membrane-surface properties, to separate proteins, and to improve

the sensitivity of polymerase chain reaction (PCR) detection by extracting PCR inhibitors

[24–28].

In this study, a polyethylene glycol (PEG)/ dextran (DEX) ATPS was used to isolate EVs

from human urine. After EVs were isolated from patients’ urine, prostate hyperplasia (BPH)

patients and PCA patients were detected by quantifying mRNA and protein expression levels.

Compared to diagnosis methods based on urine sediments and serum PSA, the proposed

method successfully differentiates PCA from BPH with higher specificity and selectivity.

Materials and methods

Preparation of human samples

Twenty patients who had PCA and 10 patients who had benign prostate hyperplasia (BPH)

were recruited, and their Gleason score, tumor stage, and serum-PSA (S1 Table) were mea-

sured using biopsies. From each patient, a 10-ml sample of the urination in the morning was

collected in a sterile container, then preserved at -80 ˚C until they were used in the experi-

ments. The urine was centrifuged at 2,000 × g-force for 20 min at -4 ˚C. The supernatant was

isolated, then stored in a new tube at -80 ˚C. Sediment was suspended in 100 μl of phosphate-

buffered saline (PBS) and stored at -80 ˚C. All procedures used in the experiment were

approved by the Ethics Committee of South Korea (IRB number: KC14SISI0213), and all

experiments were performed in accordance with the approved guidelines and regulations.

Each participant gave written consent.

EV isolation with ATPS and U/C

Optimized PEG/DEX ATPS were adapted for EV isolation from urine. ATPSs were prepared

by dissolving the polymers directly in 5 ml of urine at 4 ˚C for 1 h. The solution became

opaque when the polymer was completely dissolved. The solutions were vortexed, then sepa-

rated into phases by centrifugation at 1,000 × g for 10 min at 4 ˚C. After separation, the top

phase and bottom phase could be distinguished by the presence of an interface. The top phase

was composed of a PEG-rich solution, and the bottom phase was composed of a DEX-rich

solution. During centrifugation the EVs migrated to the DEX-rich phase. The PEG-rich phase

was carefully extracted using a pipette, and transferred into a new tube. The solution near the

phase interface was removed separately using a pipette. The remaining DEX-rich phase was

transferred into a different tube for further analysis.

Aqueous two-phase system to isolate extracellular vesicles from urine for prostate cancer diagnosis
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To increase the purity of the isolated EVs, a serial protein depletion process was used [29].

Briefly, a polymer solution was prepared by dissolving PEG and DEX in PBS in the same com-

position as in the system used to isolate EVs. The solution was centrifuged at 1,000 × g for 10

min, then the PEG phase was collected. This PEG phase in the purification solution had the

same polymer composition as the PEG phase of the urine samples. After the first phase separa-

tion in urine, 4 ml of the (top) PEG phase was carefully removed without touching the inter-

face. The same volume of purification solution was then added to the remaining (bottom)

DEX-phase and interface, and the sample was mixed and centrifuged at 1,000 × g for 10 min.

These steps were repeated, and the recovery efficiency of the EVs and the purity of the isolated

EVs in each step were measured. After two repetitions of the steps twice, the recovery effi-

ciency and purity ceased to increase, so we used just two steps in downward assays [30].

EVs were also isolated from the urine by using “U/C-once” and “U/C-twice” methods to

compare their isolation efficiency. In the U/C-once method, 60 ml of the urine was diluted

with 5 ml of PBS containing EDTA (final concentration 5 mM), then ultra-centrifuged at

100,000 × g for 2 h. The supernatant was then discarded, and the EV pellet was resuspended in

100 μl of PBS for further analysis. In the U/C-twice method, the resuspended 100 μl solution

was diluted with 4 ml of PBS, ultra-centrifuged again at 100,000 × g for 2 h, then processed in

the same way as the U/C-once method.

Urine contains both EVs and proteins, so measurement of total protein content cannot be

used to quantify EVs. Instead, EVs were quantified by measuring the RNA content of the sam-

ples. Pre- and post-isolation samples from the ATPS and U/C were lysed using 0.8 ml TRI

Reagent (Sigma Aldrich) for 5 min at room temperature. Then 0.2 ml of chloroform was

added to the lysed samples, and they were centrifuged at 16,100 × g for 10 min to separate the

phases. Aqueous phase containing RNA was carefully extracted, and an equal volume of iso-

propyl alcohol (IPA) was added to it to precipitate the RNA. This aqueous phase/IPA mixture

was then centrifuged at 16,100 × g for 10 min to pelletize the RNA. The supernatant was dis-

carded, the RNA pellet was washed with 75% ethanol, and then centrifuged at 13,500 × g for

10 min. Finally, the washed RNA was dissolved in 20 μl of nuclease-free water, and the amount

of RNA was measured using a spectrophotometer (Genway, Genova) to quantify the amount

of EV in the sample. The amounts of protein in the pre- and post-isolation samples were quan-

tified using Bradford protein assays.

Protein- and RNA-based assays using EVs isolated by ATPS and U/C

Western blot, enzyme-linked immunosorbent assay (ELISA), qualitative RNA profile analysis,

and polymerase chain reaction (PCR) were performed to compare the accuracy of protein-

and RNA-based assays using EVs isolated by ATPS and U/C. In western blot, total EVs isolated

by U/C and ATPS from 5 ml urine were used, and EV-specific markers (tetraspanin proteins

CD9, CD81, and CD63) were identified. Qualitative RNA profile analysis was applied to the

total RNA extracted from EVs isolated by U/C and ATPS from 5 ml urine. In PCR, the total

RNA was amplified, and house-keeping genes (actin and GAPDH) were identified.

Prostate cancer diagnosis using serum-PSA, sediments, and EVs by ATPS

Optimized ATPS was used for PCA diagnosis. (Fig 1A) [29]. Diagnosis using EVs isolated by

the ATPS, and two conventional diagnosis methods (serum-PSA and sediments) were per-

formed (Fig 1B) [1, 31]. After using ATPS to isolate EVs from the patients’ urine, their expres-

sion of genes associated with PCA was quantified and compared with conventional methods

(sediments and serum PSA) [1, 31]. Prostate-specific membrane antigen (PSMA) is a PCA-
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PLOS ONE | https://doi.org/10.1371/journal.pone.0194818 March 27, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0194818


associated protein marker, and PCA antigen 3 (PCA3) is a PCA-specific gene marker [32, 33].

Accordingly, EVs derived from PCA cells are hypothesized to contain PSMA and PCA3 [3].

Patients’ states were identified by biopsy, then their serum-PSA concentrations were mea-

sured by immunometric assay using kits (Tandem-R) obtained from Hybritech. We prepared

5-ml urine samples from the patients, centrifuged the samples at 2000 × g for 20 min, then pre-

cipitated the sediments. The supernatant was transferred to another tube for use in isolating

EVs, and the pellet was dissolved in 100 μl of PBS. Diagnosis using sediments was performed

by ELISA and quantitative polymerase chain reaction (qPCR). In ELISA, PSMA in the sedi-

ments was measured and normalized by the creatinine concentration ([creatinine]) in urine to

represent its dilution factor [34, 35]. Urinary [creatinine] was measured by Jaffe’s method

using a commercial kit obtained from Cobas. In qPCR, the expression level of PCA3 in sedi-

ments, was measured and normalized by actin. PCA3 is highly expressed in PCA cells.

EVs of urine were collected only by ATPS for diagnosis because the ATPS isolates more

and higher-quality EVs than U/C does. In the same way, the concentration of PCA-specific

Fig 1. Scheme of experiments. (A) Use of ATPS to isolate EVs in urine. Red particles: proteins; black particles: EVs.

After the polymers are dissolved, the solution forms an ATPS, and particles segregate depending on their surface

property to one of the phases. Subsequent purification steps yield highly pure EVs. (B) Cancer cells and EVs in prostate

release to urine. EVs are isolated by ATPS from 5 ml urine. The diagnostic ability of serum-PSA, sediments, and EVs

was compared using samples from 20 patients who have prostate cancer (PCA) and 10 patients who have benign

prostate hyperplasia (BPH).

https://doi.org/10.1371/journal.pone.0194818.g001
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protein marker prostate-specific membrane antigen (PSMA) in the EVs was measured and

normalized by [creatinine] of urine. Additionally, PSMA in the EVs was normalized by CD9,

which represents the amount of EVs. In qPCR, the expression level of PCA antigen 3 (PCA3)

in EVs, which is highly expressed in PCA, was measured and normalized by actin.

The diagnostic ability of each method was compared by drawing a receiver operating char-

acteristic curve (ROC) using IBM SPSS Statistics 21 (IBM).

Western blot

Western blot was processed in the conventional method. Briefly, 2 μl of DEX-rich phase and

centrifuged EVs sample was mixed with 38 μl of distilled water and 10 μl of 5x SDS-PAGE

loading buffer (250 mM Tris–HCl, 10% SDS, 0.5% bromophenol blue, 50% glycerol). The mix-

tures were boiled at 100 ˚C for 10 min, separated using SDS polyacrylamide gel electrophoresis

(12% resolving gel, 120 V, 90 min), and then transferred to a PVDF membrane at 390 mA for

2 h, at 4 ˚C. The transferred PVDF membrane was treated with blocking solution (3% non-fat

milk, PBS), then treated with 0.1 mg/ml CD9, CD81, and CD63 primary antibody (Santa Cruz,

Armenian Hamster Anti-Mouse, diluted with blocking solution). Then 0.1 mg/ml HRP conju-

gated secondary antibody (Santa Cruz, anti-hamster IgG-HRP) in blocking solution was

applied for 1 h, and the presence of target protein was detected by adding chemi-luminescent

substrate (Femto, Amersham Pharmacia Biotech).

Enzyme-linked immunosorbent assay (ELISA)

The CD9 Exo ELISA Kit (EXOEL-CD9A-1, System Biosciences, Mountain View, CA, USA)

was used for measurement of EV level according to the manufacturer’s instructions. PSMA

level in EVs from human plasma was determined using the human glutamate carboxypepti-

dase 2 (FOLH1) ELISA kit (MBS901525, MY BioSource, Inc., San Diego, CA, USA) according

to the manufacturer’s instructions.

Qualitative RNA profile analysis

The qualitative profiles of previously-prepared RNA samples were analyzed using an Agilent

RNA 6000 Nano Kit (Agilent Technology) according to the manufacturer’s instructions.

Polymerase chain reaction

Reverse-transcript PCR was performed using a GoScript reverse transcription kit (Promega)

and amplified using a GoTaq polymerase chain reaction kit (Promega) following the manufac-

turer’s protocol. The sequences of primers used in PCR were: Actin forward 5’-AGA GCT
ACG AGC TGC CTG AC-3’ reverse 5’-AGC ACT GTG TTG GCG TAC AG -3’.
Actin was quantified using qPCR. cDNA samples were used as the template in a qPCR reaction

(20 μl final volume) containing 0.2 μM inner primer and 1X Power SYBR Green Master Mix

(Applied Biosystems). The qPCR program entailed thermo-cycles of 94 ˚C for 5 min; 40 cycles

of 94, 55 and 72 ˚C for 30 s each; then 72 ˚C for 10 min.

For nested quantitative PCR, initial rounds of amplification were performed with the

GoScript reverse transcription kit (Promega) and amplified using the GoTaq polymerase

chain reaction kit (Promega) following the manufacturer’s protocol. The sequences of primers

used in PCR were: PCA3_outer forward 5’-AGT CCG CTG TGA GTC T-3’ reverse
5’-CCA TTT CAG CAG ATG TGT GG-3’, and PCA3_inner forward 5’-ATC GAC
GGC ACT TTC TGA GT-3’ reverse 5’TGT GTG GCC TCA GAT GGT AA-3’.

PCA3 was quantified using nested qPCR, and actin was quantified using qPCR. The PCR
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program comprised thermo-cycles of 94 ˚C for 5 min; 15 cycles of 94, 52 and 72 ˚C for 30 s

each; and then 72 ˚C for 10 min. Amplified DNA samples were used as the template in a qPCR

reaction (20 μl final volume) containing 0.2 μM inner primer and 1X Power SYBR Green Mas-

ter Mix (Applied Biosystems). The qPCR program entailed thermo-cycles of 94 ˚C for 5 min;

40 cycles of 94, 52 and 72 ˚C for 30 s each; then 72 ˚C for 10 min.

Nanoparticle tracking analysis

Nanoparticle tracking analysis (NTA) was used to count the EVs. Samples treated using ATPS

or U/C were placed in the chamber of a Nanosight LM10 (Malvern Instruments, Ltd.) and

analyzed using NTA software (Malvern, Nanosight software version 2.3).

Transmission electron microscopy (TEM)

To visualize and examine the morphology of isolated EVs, TEM was performed; 5 μl of each

isolated sample was deposited on a formavar carbon film (FCF300-cu, Electron Microscopy

Science), then mixed with 7 μl of 2% uranyl acetate for 10 s to stain it. Samples were air-dried

for 30 min, and then imaged at 60-kV acceleration voltage on a transmission electron micro-

scope (JEM-1011, Japan).

Statistical analysis

All data were presented as means and standard deviations. Statistical analyses were performed

using IBM SPSS Statistics 21 (IBM). Data were first analyzed using ANOVA, and then differ-

ences between pairs of means were tested using Tukey’s test. Two-way ANOVA was per-

formed to identify interactions between EVs and proteins.

Results

EV isolation

During ATPS, most of the EVs and ~15% of the proteins from the urine migrated into the

DEX phase (Fig 2A). To minimize protein impurity for efficient downstream analysis, we per-

formed serial protein depletion processes that were first introduced in PBS-based solution

[29]. PEG phase was repeatedly replaced by fresh PEG extracted proteins from the DEX phase.

After the PEG phase had been replaced five times, the amount of proteins in the bottom DEX

phase decreased to one-fifth of that after single ATPS. However, the quantity of EVs was nearly

unchanged, and the recovery efficiencies of EVs in each protein-depletion process (PDP) were

not statistically different. After the third PDP, additional PDPs did not significantly decrease

protein-recovery efficiency, so we isolated EVs from urine by ATPS after the third PDP. The

decrease in protein-extraction efficiency after the third PDP may be a consequence of strong

interaction between the DEX phase and hydrophilic surfaces.

To evaluate ATPS EV-isolation efficiency, it was compared with U/C-once and U/C-twice.

The ATPS isolation method optimized by adjusting polymer concentration recovered approxi-

mately 100% of EVs from the urine, whereas the U/C-once recovered 21% and UC-twice

recovered 6.85% (Fig 2B). Protein recovery partially represents the amounts of impurities.

ATPS recovered 2.34% of protein, whereas U/C-once recovered 1.35% and U/C-twice recov-

ered 0.3%, but the relative purity ((EV-recovery efficiency)/(protein-recovery efficiency))

of ATPS was 41.5, which greatly exceeded those of U/C-once (15.5), and U/C-twice (22.8).

This result implies that ATPS isolates a higher quality and quantity of EVs than do existing

methods.

Aqueous two-phase system to isolate extracellular vesicles from urine for prostate cancer diagnosis
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ATPS achieved greater EV purity (P = (total number of EVs)/(total amount of protein))

than U/C once and U/C twice (Fig 2C). NTA results suggest that ATPS achieved P =

155.13×108/μg, U/C-once achieved P = 32.19×108/μg, and U/C-twice achieved P = 38.6×108/

μg. ELISA results suggest that ATPS achieved P = 230×108/μg U/C-once achieved P =

71.19×108/μg, and U/C- twice achieved P = 225×108/μg.

Fig 2. Characterization and conventional identification of ATPS compared to conventional methods. (A) Additional

purification steps of serial protein-depletion. After the procedure, the recovery efficiency of EVs was almost unchanged,

whereas the recovery efficiency of proteins decreased. (B) Recovery efficiency of EVs and protein in U/C-once, U/C-

twice, and ATPS. Recovery efficiency of EVs by ATPS was four times larger than by U/C-once, and 14 times larger than

by U/C-twice. (C) Purity of EVs in U/C-once, U/C-twice, and ATPS. Purity is the number of isolated EVs divided by

amount of isolated protein. Amount of EVs was measured by NTA and ELISA. Protein was measured by Bradford assay.

(D) Size distribution of EVs isolated from urine by U/C-twice and ATPS was measured using NTA. Size distributions of

total EVs in 5 ml urine: grey line; black line, estimated using ATPS; dotted line, estimated using U/C-twice. Grey line and

black line are similar; i.e., ATPS isolated ~100% of EVs. U/C twice isolated only a small fraction of EVs. (E, F) TEM did

not show any morphological differences between EVs isolated using U/C-twice and ATPS. The results were analyzed by

ANOVA with a post-significance Tukey’s test. pairwise significances: �p< 0.05, ��p<0.001.

https://doi.org/10.1371/journal.pone.0194818.g002
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NTA results also indicate that ATPS achieved higher the recovery efficiency of EVs than the

other methods (Fig 2D). The size distribution profiles of EVs in initial urine and EVs isolated

by ATPS were similar, and corresponded to the recovery efficiency (~97%) calculated by RNA

amounts (Fig 2B). In contrast, the number of EV isolated by U/C-twice was smaller than the

total number of EVs in initial samples, and the recovery efficiency of particles calculated by

NTA was <10%, which is similar to the RNA-based result (Fig 2B). EVs isolated using ATPS

did not differ morphologically from EVs obtained using U/C (Fig 2E and 2F).

Compatibility with diagnostic purpose

To compare EVs isolated by ATPS and U/C-twice, protein markers of EVs and RNA were ana-

lyzed (Fig 3). Western blotting was performed using total EVs isolated by these methods from

the same initial 5 ml of urine (Fig 3A and S1 Fig). EV surface markers CD9, CD81 and CD63

were detected easily in the EVs isolated by ATPS, but were not detected in EVs isolated by U/

C-twice because the band signal was too weak. The difference was induced by recovery effi-

ciency (ATPS ~97%, U/C- twice ~7%). However, if the quantity of EVs obtained using UC-

twice was increased by 14 times, strong bands of CD9, CD81, and CD63 were observed, similar

to those of ATPS. This result confirmed the reason that that the bands of U/C-twice were not

detected is that the method has low isolation efficiency.

To examine the possibility of diagnostic application using RNAs in EVs, RNA profile and

PCR using EVs isolated by the methods were performed. For EVs isolated by ATPS and using

U/C-twice from 5 ml urine, RNAs were isolated and compared using a bio-analyzer (Fig 3B).

Fig 3. ELISA and PCR of EVs isolated by ATPS and U/C-twice. (A) Existence of EV surface marker was analyzed by

CD9, CD81, and CD63 western blot. Total protein isolated from 5 ml urine using ATPS and U/C-twice was used for

ATPS and U/C-twice samples. Final volume of isolated EVs samples by the methods was 250 μl, and 40 μl of the

samples were used in western blots; 1.5 μg (ATPS) and 0.2 μg (U/C-twice) of protein was used in each well. (B) RNA

profile comparison between ATPS and U/C-twice. The total RNA isolated from 5 ml urine using ATPS and U/C was

compared. RNA profiles of ATPS and U/C differed significantly. (C) PCR of actin was performed using RNA extracted

from EVs isolated by ATPS and U/C-twice from 5 ml urine. Isolated total RNA was used for PCR; ~800 ng (ATPS),

and ~ 50 ng (U/C 1, 2, 3, and 4) of RNA was used.

https://doi.org/10.1371/journal.pone.0194818.g003
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The bio-analyzer detected a large amount of RNA in ATPS, but could not detect RNA contents

of U/C-twice because of its poor isolation efficiency (6.8%) and the small volume of urine (5

ml). These results indicate that ATPS provides better RNAs than U/C-twice, and that RNAs

isolated from EVs using ATPS can be used as a biomarker with only 5 ml of urine.

PCR was performed using total RNA extracted from EVs isolated by ATPS and U/C-twice

from 5 ml urine (Fig 3C and S2 Fig). EVs isolated by ATPS yielded a strong actin band, but

EVs isolated by U/C-twice showed no such band. These results may be due to the different

recovery efficiency of the methods (ATPS: 97.19%; U/C-twice: 6.85%). ATPS provided suffi-

ciently high recovery efficiency for the downstream analyses, but the low recovery efficiency

and purity of EVs in U/C-twice reduced the effectiveness of protein- and RNA-based assays,

which were conventionally used for diagnosis. Some assays may not be possible with EVs iso-

lated by U/C-twice, due to its low recovery efficiency.

Diagnosis of prostate cancer

After isolating sediments and EVs from 5 ml of patients’ urine, the amount of PSMA was mea-

sured and normalized by [creatinine] of the urine to reduce the variable concentration of the

urine samples (Fig 4A). The average value of PSMA/[creatinine] was slightly higher in the

Fig 4. Prostate cancer-associated gene expression using ATPS and sediments. (A) Amounts of prostate-specific

membrane antigen (PSMA) (normalized by creatinine concentration in urine) obtained using sedimentation and EVs

isolated by ATPS in prostate cancer (PCA) and prostate hyperplasia (BPH) patients. (B) Amounts of prostate-specific

membrane antigen (PSMA) (normalized by CD9) obtained using EVs isolated by ATPS in PCA and BPH groups. (C)

RNA expression level of prostate cancer antigen 3 (PCA3) (normalized by actin) obtained using sedimentation in PCA

and BPH groups; y-axis scale is log2. Large value means that PCA3 was highly expressed. (D) RNA expression level of

PCA3 (normalized by actin) in EVs obtained using ATPS, in PCA and BPH groups. qPCR was performed to measure

gene expression levels.

https://doi.org/10.1371/journal.pone.0194818.g004
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cancer group than in the BPH group in both sediments and EVs (sediments: cancer, 7.36,

BPH, 6.03; EVs: cancer, 11.94, BPH, 10.57the), but the differences were not statistically signifi-

cant because of a wide standard deviation (p> 0.1). However, differences between the groups

were significant when PSMA was normalized by CD9, which is an EV-specific marker (cancer,

46.21, BPH, 10.93, p< 0.05) (Fig 4B). This result indicated that PSMA expression was higher

in EVs from cancer patients than from BPH patients.

For RNA-based diagnosis, expression levels of PCA3 and actin were measured by applying

qPCR to sediments and EVs, and the gene expression level of PCA3 was normalized by actin,

which is a house-keeping gene (Fig 4C and 4D). Although the same gene markers (PCA3 and

actin) were used in both diagnoses using sediments, the normalized expression levels of PCA3

were clearly different. In EVs, PCA3/actin was 0.32 in cancer patients, but -2.21 in BPH

patients. In sediments, PCA3/actin was 2.33 in cancer patients, but 2.59 in BPH patients. In

EVs, the average value of expression levels was higher in the cancer group than in the BPH

group. However, differences between the groups were significant only in EVs (p<0.05). In

both assays, diagnosis was better using EVs than using sediments.

Sensitivity and specificity of differential diagnosis of PCA and BPH using protein (PSMA)

in EVs were assessed using receiver operating characteristic (ROC) curves (Fig 5A). The area

of PSMA of EVs normalized by CD9 (PSMA/CD9 of EVs) was larger than the other diagnoses,

which means that the diagnosis using PSMA/CD9 of EVs provides better diagnostic reliability

than the other methods. Assessments of sensitivity and specificity of diagnosis using RNA

(PCA3) of EVs were also performed in the PCA and the BPH group using a receiver operating

characteristic (ROC) curve; diagnosis using EVs was also better than using sediments (Fig 5B).

When diagnosis using protein and RNA was combined, the diagnostic ability was improved in

both EVs and sediments (Fig 5C). The ROC curve of serum PSA diagnosis indicates that

serum PSA diagnosis provides lower diagnostic ability than diagnosis using EVs and sediments

combining RNA and protein (Fig 5D).

Using the ROC curve, the areas under the curve (AUC), sensitivity (true positive rate), and

specificity (true negative rate) of the diagnosis methods were measured (Table 1). Diagnosis

using EVs obtained using ATPS correctly distinguished all 10 PCA patients from the BPH

patients when RNA and protein were combined. In both sediments and EVs, combining pro-

tein and RNA for diagnosis achieved a notable improvement in AUC, sensitivity and specific-

ity of diagnosis. When data from sediments were used, protein achieved AUC = 0.467, RNA

achieved AUC = 0.657 and protein + RNA achieved AUC = 0.92. In EVs, protein achieved

AUC = 0.96, RNA achieved AUC = 0.883, and protein + RNA achieved AUC = 1.

Sensitivity and specificity were also improved by combining protein and RNA in sediments

and EVs. The diagnosis accuracy was higher in the method that uses protein + RNA of EVs

than in the method that uses sediments. This result implies that protein and RNA of EVs origi-

nated from PCA were more abundant than sediments. As a result, use of ATPS instead of

serum PSA for diagnosis increased the true positive rate by 30%, and the true negative rate by

34.1%. ATPS increased the true positive rate by 20% compared to the sedimentation method.

Discussion

We isolated EVs using DEX/PEG ATPS. Isolation of EVs in ATPS can be affected by: (1) van

der Waals interaction force; (2) hydrogen bonding; (3) electrostatic interaction; (4) polymer

and ion binding or repulsion; and (5) hydrophobic and hydrophilic interaction. Although

those factors cannot be decoupled successfully, and analysis of factors that drive EVs separa-

tion is not straightforward, the main contributing factors are expected to be hydrophobic- and

hydrophilic interactions because the other factors can be reasonably ruled out: (1) van der
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Fig 5. Diagnostic ability of conventional methods and ATPS. (A) Receiver operating characteristic (ROC) curve based on ELISA for diagnosis

using ATPS and sediments. PSMA/creatinine or PSMA/CD9 was measured for diagnosis. (B) ROC curve based on qPCR for diagnosis using

ATPS and sediments. PCA3/actin was measured for diagnosis. (C) ROC curve for diagnosis by combining ELISA and qPCR using ATPS and

sediments. (D) ROC curve for serum-PSA.

https://doi.org/10.1371/journal.pone.0194818.g005

Table 1. AUC, sensitivity, and specificity of methods to distinguish PCA from BPH.

Method Marker AUC Sensitivity Specificity

Serum PSA Protein (PSA) (n = 30) 0.759 0.7 0.659

Sediments Protein (PSMA/creatinine) (n = 10) 0.467 0.4 0.667

RNA (PCA3/actin) (n = 15) 0.657 0.75 0.675

Protein+RNA (n = 10) 0.92 0.8 1

EVs Protein (PSMA/creatinine) (n = 10) 0.48 0.8 0.4

Protein (PSMA/CD9) (n = 10) 0.96 1 0.8

RNA (PCA3/actin) (n = 19) 0.883 0.857 0.909

Protein+RNA (n = 10) 1 1 1

https://doi.org/10.1371/journal.pone.0194818.t001
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Waals interaction forces mainly affect separation at high polymer concentration, but the poly-

mer concentration of the ATPS is< 10%; (2) hydrogen bonding forces between EV and PEG

or EV and DEX are both weak; (3 and 4) the polymers that comprise ATPS do not have any

charge and cannot be ionized.

Hydrophobic and hydrophilic interactions are favored because the DEX phase is more

hydrophilic than the PEG phase, so the EVs partition into the DEX phase. In addition, most

EVs membranes are hydrophilic because they are derived from the cell membrane. We dem-

onstrated the advantages of a high-yield EV-isolation method that uses a concentration-

adjusted PEG/DEX ATPS. When diagnosing PCA, the largest advantages of ATPS are effi-

ciency, purity, and simplicity. Biased affinity of EVs to DEX-rich phase results in recovery effi-

ciency approximately 14 times higher than what was achieved by U/C-twice. The different

affinities of EVs and proteins to each phase separates these particles, and makes high purity

possible.

The important advantage of ATPS is that it does not need any special equipment. Simply

adding polymers to sample solution causes formation of an ATPS, and EVs move spontane-

ously to the DEX-rich phase. We used centrifugation to accelerate phase separation, this step is

optional because gravity induces phase separation. In short, to obtain a large amount of highly

purified EVs, the only necessary process is addition of polymers.

These advantages facilitate research based on EVs; for example, diagnostic applications. In

clinical diagnosis, accuracy and processing time determine the practicality of diagnosis meth-

ods. Sensitivity and specificity of disease markers are related to accuracy, and simplicity is asso-

ciated with processing time. The proposed method increases the sensitivity and specificity of

known markers (PCA3 and PSMA) by using a large amount of high-purity EVs. Furthermore,

use of ATPS simplifies the the assay protocol for PCA.

Because ATPS isolates a large quantity of high-quality EVs from patients’ urine, a large

amount of genes and protein derived from PCA can be obtained. We performed diagnosis

using both gene and protein markers (PCA3 and PSMA). Diagnosis had poor sensitivity and

specificity when a single marker was used, but the diagnostic ability was increased by combin-

ing gene and protein markers; this combination reduced false diagnosis by>30% compared to

conventional diagnostic methods. Therefore, ATPS offers a powerful tool for specific and sen-

sitive diagnosis. We used only two kinds of markers for PCA diagnosis, so we expect that diag-

nostic ability would be improved by combining more markers.

However, diagnosis based on various markers is labor-intensive and time-consuming. The

isolation of EVs itself only takes about 5% of total process time; the other 95% is consumed by

PCR and ELISA. Thus, for use of EVs as a diagnosis tool to be clinically useful, simplified

marker-detecting processes must be developed.

Supporting information

S1 Fig. Full images of blots in Fig 3A. Cropped image within the manuscript is indicated in

black box. Existence of EV surface marker was analyzed by CD9, CD81, and CD63 western

blot. The total protein isolated from 5 ml urine using ATPS and U/C-twice was used for ATPS

and U/C-twice samples. Final volume of isolated EVs samples by the methods was 250 μl, and

40 μl of the samples were used in western blots; 0.2 μg (U/C-twice) and 1.5 μg (ATPS) of pro-

tein was used in each well. EV surface marker CD9, CD81, and CD63 were detected easily in

the EVs isolated by ATPS, whereas those markers were not detected in the EVs isolated by

U/C-twice because the band signal was too weak.

(TIF)
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S2 Fig. Full images of gels in Fig 3C. Cropped image within the manuscript is indicated in

white box. PCR of actin was performed using RNA extracted from EVs isolated by ATPS and

U/C-twice from 5 ml urine. Isolated total RNA was used for PCR; approximately 50 ng (U/C

1, 2, 3, and 4), approximately 800 ng (ATPS) of RNA was used.

(TIF)

S1 Table. Characteristics of the cancer patients.

(TIF)
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