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A G e W N

Simple Summary: Recent studies exploring the application of radiomics features in medicine have
shown promising results. However, variation in imaging parameters may impact the robustness of
these features. Feature robustness may then in turn affect the prediction performance of the machine
learning models built upon these features. While numerous studies have tested feature robustness
against a variety of imaging parameters, the extent to which feature robustness affects predictions
remains unclear. A particularly notable application of radiomics in clinical oncology is the prediction
of Human Papillomavirus (HPV) association in Oropharyngeal cancer. In this study we explore how
CT scanner type affects the performance of radiomics features for HPV association prediction and
highlight the need to implement precautionary approaches so as to minimize this effect.

Abstract: Studies have shown that radiomic features are sensitive to the variability of imaging
parameters (e.g., scanner models), and one of the major challenges in these studies lies in improving
the robustness of quantitative features against the variations in imaging datasets from multi-center
studies. Here, we assess the impact of scanner choice on computed tomography (CT)-derived
radiomic features to predict the association of oropharyngeal squamous cell carcinoma with human
papillomavirus (HPV). This experiment was performed on CT image datasets acquired from two
different scanner manufacturers. We demonstrate strong scanner dependency by developing a
machine learning model to classify HPV status from radiological images. These experiments reveal
the effect of scanner manufacturer on the robustness of radiomic features, and the extent of this
dependency is reflected in the performance of HPV prediction models. The results of this study
highlight the importance of implementing an appropriate approach to reducing the impact of
imaging parameters on radiomic features and consequently on the machine learning models, without

removing features which are deemed non-robust but may contain learning information.

Keywords: radiomics; computed tomography; robustness; human papillomavirus; oropharyngeal cancer

1. Introduction

Recent advances in radiomics, the process of extracting descriptors from radiological
images by mathematical algorithms, have led to a large set of quantitative imaging features
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becoming available to both research and clinical communities. A number of radiomics-
driven computer models have shown promising results for personalized medicine, es-
pecially in oncological applications [1-4]. Radiomic features exhibit different levels of
complexity, and express properties of lesion shape and voxel intensity histograms, as well
as the spatial arrangement of intensity values at the voxel level (texture). They can be
extracted either directly from the images or after applying different filters or transforma-
tions [5-7].

However, the introduction of radiomics into clinical practice has been lacking. This
is largely due to low reproducibility, caused by variation in imaging parameters [8] and
segmentation (intra observer variability) [9], which affects classifier performance and
is of paramount importance in ensuring the successful application of radiomics to the
field of oncology [10,11]. The effects of variability in image acquisition on the robustness
of radiomic features have been found to be greater than that of segmentation [12] and
inter-observer variability [13]. Consequently, conclusions regarding the performance of
radiomic models must be treated with caution [14] since the results are vulnerable to image
acquisition variability [15].

A prediction task that has received broad attention in the literature is the prediction of
human papillomavirus (HPV)-associated oropharyngeal cancer (OPC) from radiological
images [16-20]. HPV-positive OPC is now recognized as a distinct disease, with implica-
tions for treatment and prognosis [21,22]. HPV status is currently ascertained from tumor
tissue using immunohistochemistry to visualize expression of the p16 protein, or by using
in situ hybridization for viral DNA. As such, standard HPV testing is invasive as it requires
tissue sampling. Therefore, seeking a non-invasive yet accurate way to assess HPV status is
an important research goal. Recently, a statistical radiomics approach analyzing Computed
Tomography (CT) images has emerged as a potential non-invasive approach to predicting
HPV status in OPC patients [16,17,19,23]. Despite recent improvements [23], the predictive
performance of these models is still limited. One possible reason for this deficiency is
vulnerability to variation in imaging parameters. Therefore, as radiomics is used to predict
HPYV status, it is important to assess the impact of the imaging parameters, e.g., scanner
type, on predictions.

In this study, we evaluated the impact of imaging domain attributable to the CT scan-
ner typeon the prediction of human papillomavirus (HPV) association of oropharyngeal
cancer (OPC) using radiomics models. We leveraged a large image database compiled
consecutively from treated OPC patients at the Princess Margaret Cancer Centre with the
aim of assessing the influence of scanner manufacturer on feature reproducibility and the
prediction of HPV status. We found that the scanner manufacturer affects the prediction
of HPV status by machine learning models built onCT-derived radiomic features. Our
results also indicate that robust features might reduce overfitting in radiomic models and
subsequently affect the accuracy of the prediction.

2. Methods
The schematic overview of this study is shown in Figure 1.

2.1. Dataset

Patient data were retrospectively (2006-2016) collected from the Princess Margaret
Cancer Centre University Health Network and were approved by the institutional review
board (REB 17-5871). All experiments were performed in accordance with the relevant
guidelines and regulations of the institution. The primary patient cohort in this paper
was collected by consecutively searching the institutional database for in-patients who
met the following criteria: (1) had Oropharyngeal cancer (OPC); and (2) had completed
p16 immunohistochemistry. In total, we analyzed CT images from 1294 OPC patients with
known HPV status determined by p16 immunohistochemistry (Figure S1). Mean patient
age was 61 years £ 10.5 (standard deviation). HPV status was positive in 824 patients
(641 Toshiba and 183 GE) and negative in 470 patients (385 Toshiba and 85 GE). Distribution
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of HPV status was almost the same in the two groups (+HPV: 0.78[Toshiba]/0.22[GE];
—HPV: 0.81[Toshiba] /0.19[GE]). Intravenous contrast was used in 371 patients (all from
the Toshiba scanner). The dataset was subsequently stratified by CT scanner manufacturer
(Toshiba, GE, and both (Mix)). Next, the following nine configurations of train—test sets
were made: (1) Toshiba-Toshiba, (2) GE-GE, (3) Toshiba-GE, (4) GE-Toshiba, (5) Mix-Mix,
(6) Toshiba-Mix, (7) GE-Mix, (8) Mix-Toshiba, and (9) Mix—GE. The Mix group contained
the same number of samples from two scanner manufacturers (Toshiba and GE). The first
and second terms of each configuration represent the scanner type (i.e., Toshiba, GE or
Mix) of the train and test sets respectively.

Data (Mix; 1294[HPV+/-:824/470], GE: 268[HPV+/-:183/85], Toshiba: 1026[P:641,N:385])

_________________________

_________________________

¥

Resampling 80% (Mix: 214, GE:214, Toshiba: 214) <
Training 75% Test 25%
(Mix: 160, GE:160, Toshiba: 160) (Mix: 54, GE:54, Toshiba:54)
L]

Imbalance adjustment

(undersampling the majority class Repeated 1000 times

Robust features
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i paranlﬁeters :
Tuning |
target releavant . . .
|I—30 featuress| Randomised grid search |
features (MRMRe) 5-fold CV :

________________________________________________________________

Figure 1. Schematic diagram of the research methodology. Downstream processes are as follows: sampling original patient

cohort, train and test set splitting, class imbalance adjustment followed by selecting robust (Wilcoxon rank-sum) and

HPV-relevant features (mRMRe), and finally model validation by estimating AUC values over the test set. The overall

process is repeated 1000 times (also w/random variables) to evaluate the statistical significance of the reported values.

2.2. Feature Extraction

For each patient, the primary gross tumor volume (GTV) was contoured by the treating
oncologist (single observer). Prior to extraction, images were resampled to 1 X 1 X 1 mm
voxels and the intensities were normalized with a bin width of 25 Hounsfield units (HU).
We extracted a total of 1874 radiomic features from each patient’s manually segmented GTV
using PyRadiomics (version 3) [24]. The extracted features belong to six feature classes.
This includes Shape features describing the shape and geometric properties of the region
of interest (ROI) such as volume, maximum diameter along different orthogonal directions,
maximum surface, tumor compactness, and sphericity. First-order statistics features de-
scribe the distribution of individual voxel values without concern for spatial relationships.
These are histogram-based properties reporting the mean, median, maximum, and mini-
mum values of the voxel intensities on the image, as well as their skewness (asymmetry),
kurtosis (flatness), uniformity, and randomness (entropy). Second-order statistics features
include the so-called textural features [25], which are obtained by calculating the statistical
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inter-relationships between neighboring voxels. They provide a measure of the spatial
arrangement of voxel intensities, and hence of intra-lesion heterogeneity. Such features can
be derived from the grey level co-occurrence matrix, quantifying the incidence of voxels
with the same intensities at a predetermined distance along a fixed direction, or from
the grey level run-length matrix quantifying consecutive voxels with the same intensity
along fixed directions [26]. Feature breakdown according to the group they belong to is as
follows: 14 Shape, 320 GLRLM (Gray Level Run Length Matrix) and GLSZM (Gray Level
Size Zone Matrix), 360 FO (First Order Statistics), 480 GLCM (Gray Level Co-Occurrence
Matrix), 280 GLDM (Gray Level Dependence Matrix) and 100 NGTDM (Neighboring Gray
Tone Difference Matrix).

Features are also obtained after mathematically transforming the images through the
application of imaging filters, with the aim of identifying repetitive or non-repetitive pat-
terns, suppressing noise, and highlighting details. These filters include wavelet transforms,
square, square root, gradient, exponential, and Laplacian transforms of Gaussian [27].
Further explanation about the details of the aforementioned filters can be found in PyRa-
diomics documentation. The distribution of features based on the imaging filter is as
follows: Original (unfiltered images) 88, Exponential, Gradient, Square and Square-root
each 88; Local Binary Pattern (Ibp) and Laplacian of Gaussian (LoG) each 264; and Wavelet
704. Finally, all the radiomic features were scaled by subtracting the median and dividing
by the interquartile (the range between the 1st quartile and the 3rd quartile).

2.3. Data Sampling and Splitting

Figure 1 shows the overall workflow of this study. Initially, 80% of the data was
resampled without replacement and then was split into train and test sets in the proportion
of 75/25. The remaining 20% was held out for final validation. Subsequently, the training
set was used for feature selection (discussed later) and model training, and the resultant
model was tested on the test set. The above process was repeated 1000 times to evaluate
the statistical significance of the obtained results. The median value of the obtained
performance metric is reported in Figure 1.

2.4. Reproducibility Analysis and Feature Selection

T-Distributed Stochastic Neighbor Embedding (t-SNE) clustering was applied to vi-
sualize potential scanner dependencies in the radiomic features. t-SNE is a non-linear
technique for dimensionality reduction that is particularly well suited to the visualization
of high-dimensional datasets. The algorithm starts by calculating the probability of similar-
ity between points in high-dimensional space, and then tries to present these similarities as
distances for a meaningful representation of data points in lower-dimensional space. We
test whether the distribution of observations obtained between the two different groups
on selected variables are systematically different using the Wilcoxon rank-sum test. Our
assumption was that features with the same distributions across two scanner manufacturers
will have the least scanner dependency (we define these features as “robust” if their associ-
ation with scanner manufacturer is not statistically significant). We corrected the p-values
for tests and computed the false discovery rate (FDR) using Bonferroni correction [28] with
a threshold set at 5% for significant dependency.

2.5. Feature Selection

In order to select relevant features for HPV prediction, we used the Minimum Redun-
dancy, Maximum Relevance (nRMR) Ensemble Feature Selection (mRMRe) implemented
in the PymRMRe package (version 1.0.4) [29]. This technique is a feature selection approach
that selects the features with a high correlation with the class (maximum relevance) and a
low correlation between themselves (minimum redundancy). We used the F-statistic to
calculate the correlation with the class (relevance) and the Pearson correlation coefficient to
calculate the correlation between features (redundancy).
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2.6. Tuning and Training

Imbalance adjustment was done by under-sampling the majority class (HPV positive),
and a Random forest (RF) classifier was trained to predict HPV status (Figure 1). We used
the GridSearchCV function in Scikit-learn (0.23.2) for exhaustive searches over the specified
values of the model’s hyper-parameter such as the number of trees, maximum depth of
the tree, and the minimum number of samples required to be at a leaf node. Each model
was trained on the 1000 features selected by mRMRe. Finally, RF models were trained
with and without robust features. The predictive performance of the HPV status classifiers
were assessed by calculating the area under the curve (AUC) (i.e., the area under the curve
of receiver operating characteristics). For training, five-fold cross-validation was applied
in which training sets were randomly partitioned into five groups. One group was used
for testing, and the other groups were retained for training. For each combination, the
training—testing procedures were repeated 100 times until each sample in the data set was
assigned a prediction score. The final AUC was estimated based on the average prediction
score (1000 times). In parallel, all the above processes were repeated by replacing actual
target labels with random binary labels to compare the result with random models.

3. Results

In order to visualize the distribution of scanner manufacturers in high-dimensional
feature space, we performed t-SNE dimensionality reduction directly on the scaled features,
plus a silhouette analysis for all samples. Cases have been labelled with the type of scanner
manufacturer (Figure 2A). Clustering showed considerably higher dependency on the
scanner manufacturer (average Silhouette score ~0.4) than HPV status (average Silhouette
score ~0.03) when all radiomics features were used. We also labelled the clustered data with
the HPV status and found that the observed clusters were not related to the patient’s HPV
status (Figure 2B) (average Silhouette score ~0.03). We performed a Wilcoxon rank-sum
test to identify features that are robust between Toshiba and GE scanners (FDR > 5%).
We found that 53% (989 of 1874) of the radiomic features were significantly associated
with scanner classification (FDR < 5%). We then computed the t-SNE clusters again us-
ing only the robust (FDR > 5%) features and confirmed that the data did not cluster by
scanner group (Figure S2). To illustrate the distribution of robust features, the average
(over 100 separate runs) proportion of robust features according to the total number of
features in each class and a total number of robust features were also estimated. On average
740 (£90) features (out of 1847) were significantly associated with the scanner manufac-
turer (FDR < 5%). The greatest number of robust features belonged to the GLCM group
(24 + 1.1%) when numbers were normalized to the total number of robust features
(Figure 3A). However, when the number of robust features was normalized to the num-
ber of features in that class most of the GLDM and NGTDM (55%) features were robust
against the scanner manufacturer (Figure 3C). Also for each group, the distribution of
robust features after applying different image filters was compared to the original images
(Figure S3). All feature groups showed improvements in the number of robust features
after applying LoG, LBP and Wavelet features, implying that these filters could be of great
importance in increasing feature robustness. The filter group with the largest proportion of
robust features (the number of robust features normalized by the total number of features
in that group) was the Exponential (86%), compared to original non-filter features (78%)
(Figure 3B,D).



Cancers 2021, 13, 2269

6 of 13

oo:;
.

e -
..‘H'.sw x ,&%W'

el

:;‘o

o®e

% '."
agf, oy B2 -'.;,‘;':f.{;;a;,..;? i 4 2o

.} d:‘. o, L] ::.'.. .”.. .000 ot 05 .0.“".0 @
a0 et S g g % e
m.??:\':.e o "'. - ...“\ . :'é'i" ‘. 02 o::\-’s'o
» - & "o#‘ oe’te ".' of 3 S
TR I B o Lt R
:'o S'{".’ .%; P ."'°
D R A N s
0"‘."'\. o..."rgt . MO‘
bt L0 % o
:}'.:o £ "}?V
Manufacturer -
TOSHIBA = ‘QE’. o
GE L+ .

HPV Status
» Negative
e Positive

Cluster Labels

Cluster Labels

Average Silhouette Score: 0.41

Cluster lapel

1
T

-0.2 00 02 04 0'.6 0.8

Silhouette coefficient

Average Silhouette Score: 0.03

T

-04 -02 00 02 04 06 038

Silhouette coefficient

Figure 2. t-SNE clusters labeled by scanner manufacturer ((A) red: GE, blue: Toshiba) and the samples” HPV status ((B)
orange: HPV negative, green: HPV positive). The corresponding silhouette analysis and average silhouette score is shown
on the right. The impact of scanner manufacturer is clearly seen when samples are labeled by manufacturer type. However,
radiomic features do not show intrinsic dependency on the sample’s HPV status.
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been normalized to the total number of robust features and (C,D) have been normalized to the number of features in each
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The distribution of the selected robust features deemed HPV-relevant (after mRMRE
feature selection) is presented in Figure 4. This result showed that first order statistics
(Figure 4A) and Wavelet filters (Figure 4C) give rise to the largest number of robust features
among feature groups and filter groups respectively. However, after removing non-robust
features, GLDM and NGTDM features comprise the largest group of HPV-relevant features
(Figure 4B). However, Wavelet features were still the most HPV-relevant features even after
removing non-robust features (Figure 4D).
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Figure 4. Percentage of HPV-relevant features for different samples (GE, Toshiba and mix) according to the type of

feature group

Length Matrix;

and imaging filters prior to robustness evaluation (A,B) and after (C,D). (A,B): GLRLM: Gray Level Run
GLSZM: Gray Level Size Zone Matrix; FO: First Order Statistics; GLCM: Gray Level Co-Occurrence Matrix;

GLDM: Gray Level Dependence Matrix; NGTDM: Neighboring Gray Tone Difference Matrix. (C,D): Orig: Original; Exp:
Exponential; Gra: Gradient; LBP: Local Binary Pattern; Log: Logarithm; LoG: Laplacian of Gaussian; Sq: Square, SqR;
Square Root; and WL: Wavelet.

We also evaluated the number of common features selected from different groups
(i.e., Toshiba, GE and Mix) out of all the available features (Figure 5A) and robust features
(Figure 5B). As is shown in the Venn diagram (Figure 5), 7 (p-value < 1073 features were
found to be common across different scanners when all features were used for modelling.
This number increased to 14 (p-value < 10~%) when only robust features were used. The
number of common features between Toshiba—GE, Toshiba-Mix and GE-Mix was 1, 16, and
0 respectively when all features were used for feature selection and 0, 14, and 2 respectively
when only robust features were applied. After removing non-robust features, the number
of common features among all groups increased from 7 to 14 features.

GE Toshiba GE Toshiba
6

Mix

Mix

A B

Figure 5. Venn diagram of the common radiomic features selected out of samples from different CT scanner types from (A)

all radiomic features and (B) only robust features.

Scanner Grouping and Prediction of HPV Status

The highest and lowest median AUC values were 0.79 (p-value < 10~%) and 0.70
(p-value: 5.4 x 1073) and obtained with the Toshiba-Mix and Toshiba-GE respectively
(Figure 6 and Figure S4).
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Figure 6. The prediction accuracy (AUC) of HPV status obtained by the RF Classifiers for 9 configurations of scanner

manufacturers, used for training and tests after 100 runs. The Wilcoxon rank-sum test was applied to select robust features

against the scanner models (adjusted p-value > 10~2, Bonferroni correction). The mRMRe was used to select HPV-relevant

features. The model was trained and tested on different sets based on their scanner manufacturer (T: Toshiba, G: GE, M:

mix) with a different number of features (nNRMRe and mRMR + Robust). The corresponding scatter plots (color circles

below each violin plot) are from the same model but with random dependent variables.

For models trained on one scanner manufacturer, the highest and lowest results in
terms of median AUC were obtained when they were tested on the Mix sample (i.e., GE-
Mix [0.75, p-value: 4 X 10~4], Toshiba-Mix [0.79, p-value < 10~# ]) and other scanner
manufacturers (i.e., GE-Toshiba [0.73, p-value: 7 x 10*], Toshiba-GE [0.70, p-value:
5.4 x 1073]) respectively.

The RF model was trained and tested on both samples (Mix) and reached a median
training and validation AUC of 0.79 (p-value < 10~*) and 0.74 (p-value: 4 x 10~%) respec-
tively. Furthermore, this model was trained on robust features (FDR > 0.05) and reached a
median AUC of 0.77 (p-value < 10~%)and 0.73 (p-value: 4 x 10~%) in training and validation
respectively. This result reveals that robust features tend to reduce the difference between
the training and validation AUC which can be best described as reduction in the models’
overfitting. Models trained on Mix but tested on one scanner manufacturer resulted in
AUC values of 0.78 (p-value < 10~%) and 0.76 (p-value: 6 x 10~*) for Mix-Toshiba and
Mix—GE models respectively.

The training AUC in all models decreased after removing non-robust features (GE:
0.80—0.77, Toshiba: 0.81—0.79, Mix: 0.79—0.77).

The models with single scanner manufacturer did not result in a significantly different
AUC value (GE-GE: 0.74 (p-value < 10~%), Toshiba-Toshiba: 0.75 (p-value: 6 x 10~%))
compared to the models with both scanners (Mix-Mix: 0.74). After removing non-robust
features, the Mix-Mix model reached a train and validation AUC of 0.77 (p-value < 1074
and 0.73 (p-value: 4 x 10~%) respectively (Figure 6).

4. Discussion

Our goal was not to find a model that led to a good classification of HPV status
but to assess the impact of different CT scanners on the prediction performance of the
radiomic model. To do this, we assessed the effects of different scanner manufacturers
on the robustness of radiomic features and their use for the prediction of HPV status in
OPC patients, an increasingly common type of head and neck cancer. Although there are
many studies investigating the robustness of radiomic features, few have reported the
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impact of feature robustness on the predictive performance of radiomic models. In this
study, the scanner manufacturer affects the models” accuracy in predicting HPV status
using hand-engineered radiomics features.

Scanner dependency is an important aspect of radiomics research that has previously
been evaluated in phantom studies [14,30]. In these studies, the researchers used CCR
phantom images from different scanners by different manufacturers and concluded that
most features have significant scanner dependency and pointed out the importance of
minimizing this effect in future radiomics studies. Other studies highlighted that different
CT scanners have been proven to have variation in their Hounsfield units even with the
same acquisition parameters [31,32]. Perrin et al. showed that when they included all
patients from all scanners, the number of liver tumor-derived robust features (concordance
correlation coefficient > 0.9) from the same scanner model decreased from 75 to 35 (out of
254) [33]. This retrospective study evaluated the impact of scanner manufacturer on the
prediction of HPV status using CT-derived radiomic features. To the best of our knowledge
this is the first study evaluating scanner dependency using patient data.

To evaluate the effect of domain dependency on the prediction of HPV status, RF
classifiers were trained and tested on samples from different scanners (GE vs Toshiba
vs. Mix). A total of 1874 radiomic features were extracted from the GTV of 1294 OPC
patients. The t-SNE clustering and the Wilcoxon rank-sum tests were then utilized to
visualize the dependence of radiomic features on scanner manufacturers. This allowed
us to quantitatively measure the statistical variation between features from each scanner
manufacturer. The t-SNE clustering showed that radiomic features are dependent on the
scanner manufacturer.

We found that most of the robust features belonged to the GLCM group, which was in
accordance with previous studies [34,35]. In a study evaluating the variations of radiomic
features extracted from 20 NSCLC patients from different scanners, Busyness and texture
strength of the NGTDM class were the most and least robust features, respectively [14].
Based on the definition in [36], NGTDM textural features reflect the intensity differences
between a voxel and its neighboring voxels. With the exception of Wavelet imaging,
filters do not significantly change the distribution of robust features from the non-filtered
images (Original). One reason behind the superiority of Wavelet filters could be the
greater number of features (744 vs. 93) in this group compared to other groups which
may overestimate the positive effects of this filter. However, Wavelet features have shown
interesting applications in radiomics studies mostly because of their potential to highlight
hidden texture information [37].

Finally, different combinations of samples from different scanner manufacturers (GE,
Toshiba, and Mix) have been resampled to evaluate the effect of scanner manufacturer
on the prediction of HPV status. We identified that the prediction model that yielded
the best AUC (equal to 0.79) was the Toshiba-Mix configuration along with the use of all
the radiomic features for training. Among all configurations, inverse models, the models
trained and tested on two different scanner types (i.e., GE-Toshiba and Toshiba—GE),
resulted in worst AUC values (0.73 and 0.7 respectively) which highlights the effects of
scanner type on the prediction result. We also observed a lower inconsistency across models
trained and tested on the same data set (i.e., GE-GE: 0.74, Toshiba-Toshiba: 0.75, Mix—Mix:
0.74). However, when restricted to a more clinically suitable condition, models trained
on the Mix dataset and tested on one scanner (Mix—Toshiba, Mix-GE) saw an improved
AUC value compared to inverse models, but not one as good as the best performing model
(Toshiba-Mix). However, this finding is highly dependent on the clinical outcome of interest
(i.e., HPS status), and is subject to change if other outcomes are going to be predicted. We
also found a bias in the results in favor of one scanner manufacturer (Toshiba).

One interesting result of this study is that removing non-robust features reduced the
accuracy of the predictions in all configurations. A hypothesis behind this might be that
non-robust features are not necessarily irrelevant for the prediction of HPV status, and by
removing them, the predictive model lacks enough learning information. Our assump-
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tion was that focusing on robust and HPV-relevant features might be more predictive
than non-robust but HPV-relevant features. However, this finding shows that removing
non-robust features does affect model performance and highlights the applicability of
feature harmonization techniques like ComBat [38], providing it becomes applicable to
upcoming samples.

The current study has multiple limitations. First, we did not have the same patients
imaged in the two groups of scanners, which is the standard approach in this type of study;
as a result we were not able to use the common reproducibility metric used in other similar
studies for variables such as Intra-class correlation (ICC) [12], Concordance Correlation
coefficient (CCC) [13], or Coefficient of Variation (COV) [39]. However, this is acceptable
since we were dealing with real patient data, and it is not currently feasible to collect this
number of samples (1294 patients) with HPV status and two sets of images from different
scanner manufacturers. Another limitation was that the samples from one scanner (Toshiba)
had undergone contrast agent administration while the other group were non-contrast
examinations. Although the GTV area is a very small region, we believe that the contrast
media administration is a major contributor to the clustering since it significantly affects
the CT Hounsfield values and can variably change internal CT numbers within tumors by
highlighting regions with more/less contrast uptake and/or vasculature. The effects of
contrast enhancement have been studied in the delayed phase of CT images for NSCLC
patients, which shows that radiomic features are substantially affected. Furthermore,
the variability of radiomic features due to contrast uptake was found to be dependent
largely on patient characteristics [40]. However, in this study, we focused on the effects of
domain dependency on prediction performance, disregarding the exact differences between
the domains.

5. Conclusions

In this study, the scanner manufacturer grouping affects prediction accuracy of HPV
status using hand-engineered radiomics features. The optimal prediction accuracy was
achieved when the training set included only one specific type of scanner (i.e., Toshiba)
which reflects a bias in radiomic features owing to the scanner type and/or scanning
methods used on that device. Furthermore, incorporating robust features neither improved
predictions nor the robustness of radiomic models across different configurations. This
result demonstrated the importance of imaging parameters, such as hardware parame-
ters and protocols, for training radiomic-based classifiers. Future directions for this line
of study include evaluating how this finding will translate into clinical applications of
radiomic models and potential solutions such as feature harmonization to remove this
scanner dependency.
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