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SUMMARY

RNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating 

splicing, RNA stability, and protein translation. Stimulus-induced alterations in RBP function 

contribute to global changes in gene expression, but identifying which RBPs are responsible for 

the observed changes remains an unmet need. Here, we present Transite, a computational 

approach that systematically infers RBPs influencing gene expression through changes in RNA 

stability and degradation. As a proof of principle, we apply Transite to RNA expression data from 

human patients with non-small-cell lung cancer whose tumors were sampled at diagnosis or after 

recurrence following treatment with platinum-based chemotherapy. Transite implicates known 

RBP regulators of the DNA damage response and identifies hnRNPC as a new modulator of 

chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a 

framework for the identification of RBPs that drive cell-state transitions and adds additional value 

to the vast collection of publicly available gene expression datasets.

In Brief

Krismer et al. present a computational approach to identify RNA-binding proteins (RBPs) that 

modulate post-transcriptional control of gene expression using RNA expression data as inputs. By 

applying this approach to publicly available patient datasets, they identify and experimentally 

confirm that the RBP hnRNPC contributes to chemotherapy resistance in lung cancer.

Graphical Abstract
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INTRODUCTION

RNA-binding proteins (RBPs) are major modulators of gene expression at the post-

transcriptional level, where they control RNA splicing, stability, localization, degradation, 

and translation (Gerstberger et al., 2014; Lunde et al., 2007). RBPs play critical roles in cell 

differentiation and tissue development, and aberrant RBP function is implicated in a wide 

range of diseases, including neurodegenerative disorders and neuropathies, myopathies, 

autoimmune paraneoplastic syndromes, and cancer (Lukong et al., 2008). For mRNAs, the 

role of RBPs in modulating global changes in gene expression at both the RNA and the 

protein level becomes particularly important under conditions in which new gene 

transcription is repressed, such as during inflammation, cell stress, and in response to 

genomic damage (Stumpo et al., 2010; Sugiura et al., 2011; Pereira et al., 2017). Under 

these conditions, changes in gene expression have been shown to result, in part, from 

alterations in RBP activity (Perron et al., 2018). Furthermore, mutations affecting the 

expression or function of specific RBPs have been implicated in a variety of diseases, 

including cancer (Cooper et al., 2009; Licatalosi and Darnell, 2010; Lukong et al., 2008; 

Pereira et al., 2017).

A large subset of RBPs recognize short linear sequence motifs of 6–8 nt within their target 

RNAs. Other RBPs recognize specific structural features in their bound RNA targets, or bind 

to RNA promiscuously without clear specificity. However, for those RBPs that recognize 

sequence-specific motifs, the presence of the motifs in the RNAs and sequence-specific 
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binding by the RBP, as defined by cross-linking immunoprecipitation (CLIP), are highly 

correlated (Van Nostrand et al., 2018). This sequence-specific recognition affords the 

opportunity for computational approaches to infer the activity of this class of RBPs using the 

sequence enrichment of differentially expressed genes (Coppin et al., 2018). The identity of 

these motifs has been determined for a subset of all known RBPs using various in vitro-

based oligonucleotide selection methods such as SELEX (Tuerk and Gold, 1990), 

RNAcompete (Ray et al., 2009), and RNA Bind-n-Seq (Zykovich et al., 2009), and directly 

confirmed for a smaller set of RBPs through the experimental analysis of RBP-RNA 

interactions using CLIP sequencing (CLIP-seq) and various extensions thereof. The RNA 

targets for most RBPs, as determined by CLIP-seq, however, have not been identified due to 

a variety of technical challenges, including cost, limited antibody specificity, and high 

background binding. Furthermore, the direct experimental identification of RNA targets of 

RBPs likely depends on the experimental situation under which the CLIP-seq was 

performed. This lack of direct CLIP-seq data has limited our ability to directly map specific 

RBPs onto global changes in RNA levels, including those in patient-based gene expression 

datasets, that have been observed following various stimuli or clinical treatments. However, 

it is worth noting that not all RBPs recognize linear motifs; some notable examples (RNA-

induced silencing complex [RISC]-loading complex subunit TARBP2) recognize structured 

elements, whereas others show little to no sequence specificity at all.

RBPs appear to play a particularly important role in orchestrating the DNA damage response 

(DDR) by regulating mRNA expression changes that control the onset and duration of cell-

cycle checkpoints and drive DNA repair (Reinhardt et al., 2011; Riegerand Chu, 2004; 

Gasch et al., 2001). Unbiased large-scale screening efforts have converged on RBPs as one 

of the most enriched classes of proteins modulating the DDR, even more so than annotated 

DNA damage repair proteins (Matsuoka et al., 2007; Paulsen et al., 2009; Hurov et al., 2010; 

Floyd et al., 2013; Adamson et al., 2012). In addition, emerging evidence from a number of 

labs has identified RBPs as critical targets of DDR kinases, including both upstream sensor 

kinases such as ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia and Rad3-

related protein), and DNA-PK, and downstream effector kinases such as Chk1 (checkpoint 

kinase-1) and mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MK2) 

(Matsuoka et al., 2007; Paulsen et al., 2009; Wilker et al., 2007; Fan et al., 2002; Kim et al., 

2010). The discovery of RBPs as integration points of the cellular response to genomic 

damage has important clinical applications, since the efficacy of many commonly used 

chemotherapeutic drugs is dependent on the integrity (or lack thereof) of the DDR (Ciccia 

and Elledge, 2010; Jackson and Bartek, 2009). For example, we found that a key target of 

the DNA damage-activated MK2 pathway was the RBP hnRNPA0 (heterogeneous nuclear 

ribonucleoprotein A0), which was required for the maintenance of the G1/S and G2/M 

checkpoints following cisplatin treatment (Cannell et al., 2015; Reinhardt et al., 2010). 

Furthermore, this finding has clear clinical relevance for the response of non-small-cell lung 

cancers (NSCLCs) to chemotherapy in both mouse models and human patients, in which the 

expression levels of 2 critical hnRNPA0 target RNAs, Gadd45α (growth arrest and DNA 

damage-inducible protein α [GADD45α]) and p27 (cyclin-dependent kinase inhibitor 1B), 

predicted the clinical response of mouse and human tumors to platinum-based therapy. 

Despite these types of data and the recent surge of interest in the roles of RBPs in cancer 
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chemosensitivity and resistance (Hong, 2017; Pereira et al., 2017; Reinhardt et al., 2011), 

general methods for the systematic identification and prioritization of RBPs that influence 

various biological responses, including the DDR in clinically relevant patient-based gene 

expression datasets, are lacking.

To address this, we developed a computational approach called Transite that leverages 

preexisting gene expression data and known RBP-binding preferences to infer RBPs that 

may be responsible for alterations in RNA levels under a given condition or perturbation. 

This approach is analogous to our previous computational tool Scansite, which predicts the 

substrates of kinases and modular signaling domains based on phosphorylation and peptide-

binding motifs (Obenauer et al., 2003). With Transite, we hope to expand the utility of RBP 

biology to the wider scientific community.

RESULTS

The overall approach used by Transite to map RBPs to sets of differentially expressed genes 

is illustrated in Figure 1. Transite starts with a list of differentially expressed genes between 

two conditions (i.e., treated versus untreated samples), identifies short linear oligonucleotide 

motifs or k-mers that are enriched or depleted within specific regions of the transcripts they 

encode (i.e., 5′ UTR, CDS, or 3′ UTR), and then matches these motifs to likely RBPs that 

bind them using a compendium of known RBP motifs (see STAR Methods). Transite’s 
default setting is to analyze 3′ UTR sequences, since motifs that regulate mRNA stability 

typically reside within the 3′ UTR, but also allow the same analysis to be performed on the 

CDS or the 5′ UTR. Two different approaches are used, depending on whether the set of 

differentially expressed genes is separated into distinct foreground and background sets or 

instead is analyzed as a continuous list of genes ordered by change in expression level. For 

the former approach, in which foreground sets are predetermined by differentially expressed 

genes, we developed transcript set motif analysis (TSMA), which looks for enriched or 

depleted oligonucleotide motifs based on systematic differences between the foreground sets 

and the total gene expression data (i.e., the background). For the latter approach (i.e., a list 

of ranked genes) we developed spectrum motif analysis (SPMA), which analyzes motif 

enrichment along that ordered list of transcripts, similar to the approach taken by gene set 

enrichment analysis (GSEA) (Subramanian et al., 2005). This approach exploits information 

across the entire spectrum of changes rather than limiting analysis to the up- and 

downregulated extremes, and allows motif enrichment or depletion to be visually displayed 

as a color spectrum. Both TSMA and SPMA then use two distinct methods, a k-mer-based 

and a matrix-based method, to score for and infer candidate RBP in the differentially 

expressed genes. The k-mer-based and matrix-based implementations of TSMA and SPMA 

are explained in more detail below.

TSMA Identifies Enriched and Depleted k-mers within Assigned Sets of Upregulated and 
Downregulated Genes and Maps Them onto RBPs

TSMA identifies the overrepresentation or underrepresentation of all of the possible 

hexamers or heptamers, as well as binding motifs for 174 well-characterized RBPs in a set 
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(or sets) of transcripts (i.e., a foreground set), relative to the background of the entire 

population of transcripts measured in an experiment (Figure 2A).

Two different methods are used to assign transcript targets to specific RBPs. One of the 

methods, k-mer-based TSMA, also identifies statistically significantly overrepresented and 

underrepresented hexamers or heptamers within the foreground set, irrespective of whether 

they can be associated with a known RBP motif. Matrix-based TSMA leverages the full 

position weight matrix (PWM) representations (see STAR Methods for details) of known 

RBP motifs to nominate RBPs whose motifs are overrepresented or underrepresented in the 

foreground set.

In the k-mer-based approach, after foreground and background sets are defined (Figure 2A) 

and the preferred sequence region is selected (5′ UTR, CDS, or 3′ UTR), the sequences of 

both sets are broken down into overlapping hexamers or heptamers (i.e., k-mers of length 6 

or 7, respectively) (Figure 2B, left column, step 1), and for each k-mer, its frequencies in the 

foreground and background set are determined. While Transite supports both hexamer and 

heptamer matching, hexamers are recommended, since computer runtime increases 

exponentially with k, and the results for heptamers mirror those for hexamers in our 

experience.

The enrichment value of a particular k-mer i, ei, is then calculated as follows:

ei =
fi/nF
bi/nB

,

where fi and bi are the absolute counts of k-mer i in the foreground and background set and 

nF and nB are the total counts of all k-mers in the foreground and background, respectively.

The statistical significance of the enrichment for each k-mer is then determined. First, a 

contingency table Ci for k-mer i is defined as

Ci =
fi nF − fi
bi nB − bi

.

Second, the p value pi for Ci is approximated with Pearson’s χ2 test. If pi < 5α, where α is 

the decision boundary, pi is replaced by the p value obtained by Fisher’s exact test for Ci. 

This stepwise procedure reduces the computation time dramatically (~50-fold), because the 

computationally expensive Fisher’s exact test is used only in cases in which the approximate 

p value from the computationally inexpensive χ2 test is close to the decision boundary and is 

avoided in cases in which a precise p value is unnecessary. Furthermore, Fisher’s exact test 

is always used if at least one of the expected counts is <5, because this constitutes a violation 

of the assumptions of the approximate test. The p values are subsequently adjusted for 

multiple hypothesis testing. Available p value adjustment methods in Transite include 

Holm’s method (Holm, 1979), Hochberg’s method (Hochberg, 1988), Bonferroni’s method 

(Dunn and Dunn, 1961), Benjamini and Hochberg’s method (Benjamini and Hochberg, 

1995), and Benjamini and Yekutieli’s method (Benjamini and Yekutieli, 2001).
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The list of all of the k-mers with their associated enrichment values and statistical 

significance in the foreground sets is then reported. This is particularly important because it 

provides an unbiased way to identify overrepresented and underrepresented sequences and 

novel motifs regardless of whether they conform to known RBP-binding motifs. Although 

we think that the most likely explanation for RBP motif enrichment in 3′ UTRs of 

differentially expressed mRNAs is related to changes in mRNA stability, when analyzing 

preexisting datasets, it is important to acknowledge the possibility that these enrichments 

could also reflect the transcriptional effects of DNA-binding proteins’ binding to these 

motifs in the corresponding DNA. The results are visualized using volcano plots that show 

the enrichment values on the x coordinate (log transformed) and the associated p values on 

the y coordinate (log transformed and multiplied by −1) for all k-mers. An example is shown 

in Figure 2B, in which the black dots represent k-mers without significant enrichment or 

depletion, while blue dots denote significantly depleted k-mers and red dots significantly 

enriched k-mers. The k-mers corresponding to the motif of one particular RBP are indicated 

by yellow circles.

Over- and underrepresented k-mers are then mapped onto specific RBPs. A set of k-mers 

associated with each RBP is generated from the known RBP motif PWMs, as described in 

STAR Methods. These RBP-specific k-mers are then assigned the enrichment values 

calculated from the data, as shown by the yellow dots in the volcano plot in Figure 2B. The 

geometric mean of the enrichment values of all k-mers that are associated with that 

particular RBP is then calculated and analyzed for its statistical significance using Monte 

Carlo sampling. A null distribution of mean enrichment values associated with the k-mers of 

an RBP is generated by repeated random selection of foreground sets from the background. 

The null distribution is used to obtain an estimate of the significance of the true mean 

enrichment value of the RBP-associated k-mers observed in the experimental data, which is 

shown as a red dashed line in the histogram in Figure 2B, step 3. A ranked list of RBPs and 

their associated p values, corrected for multiple hypothesis testing, is then provided.

An alternative to k-mer-based TSMA is a matrix-based approach, in which the sequence 

motifs of 174 RBPs are maintained as PWMs. All of the sequence positions in the 

transcripts within the foreground and background gene sets are then scored, as shown in step 

1 of the right column of Figure 2B. The PWM slides along the sequence and assigns a score 

to each position; scores above a certain threshold are considered putative binding sites (hits) 

(see STAR Methods). These hits are tallied in both the foreground and the background set, 

and enrichment values and associated p values calculated analogously to the k-mer-based 

approach. Again, all of the p values are multiple testing corrected.

One disadvantage of the matrix-based TSMA method relative to the k-mer-based approach is 

that a PWM assumes independence among positions, making it impossible to construct a 

PWM that assigns high scores to AAAAAA and CCCCCC but a low score to ACACAC. An 

advantage of our matrix-based approach, however, is that it retains positional hit information 

within the sequence and therefore facilitates the detection of closely spaced clusters of 

putative binding sites. Homotypic clusters of binding sites on DNA, for example, have been 

shown to be important for transcription factor binding (Gotea et al., 2010) and have been 

postulated to be involved in RNA regulation (Plass et al., 2017; Mukherjee et al., 2011), but 
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a clear experimental demonstration of their general importance for RBP binding to RNA has 

not been unambiguously shown.

SPMA Identifies RBPs with Non-random Arrangement of Putative Binding Sites in a 
Ranked List of Transcripts

A limitation of the TSMA method described above is that it will only capture those RBPs for 

which putative binding sites are statistically significantly enriched among a pre-defined 

foreground set of differentially expressed genes relevant to a background set. As an 

alternative method, we developed SPMA, an approach that more broadly and generally 

identifies non-random distributions of RBP target sites in an ordered list of genes without 

having to pre-define a specific foreground set (compare Figures 2A and 3A).

Instead of using an arbitrary threshold (e.g., p ≤ 0.05) to assign transcripts to a single 

foreground set, SPMA subdivides the entire list of rank-ordered transcripts into a number of 

bins of equal width. Each bin is considered its own foreground set, and enrichment scores 

for k-mers or PWM motifs are then calculated as described above. The enrichment scores 

for each RBP across the bins are then visualized as one-dimensional heatmaps, where red-

blue coloring encodes the putative binding site enrichment values, as shown in Figure 3B, to 

generate spectrum plots. RBPs that are involved in regulating differential gene expression 

should show non-random red-blue color patterns in the spectrum plot, indicating progressive 

RBP-binding motif enrichment in the upregulated genes, the downregulated genes, or both. 

As shown in the upper left plot of Figure 3C, genes that are upregulated in condition 1 show 

a progressive overrepresentation of putative binding sites for a particular RBP, consistent 

with that RBP enhancing mRNA stability. In contrast, as shown in the upper right plot of the 

same panel, genes that are downregulated in condition 1 show a progressive 

overrepresentation of binding sites for a different RBP, consistent with this RBP 

destabilizing its mRNA targets.

SPMA generates one spectrum plot for each RBP motif in the motif database. With 174 

motifs available, it is imperative to provide an analytical means to aid in the identification of 

biologically meaningful spectrum plots that exhibit non-random patterns. Each spectrum 

plot is therefore examined for whether the distribution of enrichment values among the bins 

is non-random or random, based on three criteria: (1) the adjusted R2 of a polynomial model 

fit, (2) the local consistency score, and (3) the number of bins with a significant enrichment 

or depletion of putative binding sites. The significance of the enrichment values is calculated 

in an identical fashion to the significance calculation in TSMA. For the first approach, 

polynomial regression models of degrees ranging from 0 through 5 are fitted to the spectrum 

of enrichment values, and the model that best reflects the true nature of the data is selected 

by means of the F test (see STAR Methods for details on the polynomial model approach). 

Examining the coefficient of the linear term in the polynomial depicts the general increase or 

decrease in RBP enrichment along the bins, as illustrated in the first two examples of Figure 

3C, respectively. If there is strong evidence for a non-linear relationship, then this can also 

be captured by the model, as seen in the third example shown in the lower left panel of 

Figure 3C. With the second approach, a local consistency score quantifies the local noise of 

the spectrum by calculating the deviance between the linear interpolation of the scores of 
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two bins separated by exactly one other, and the observed score of the center bin, for each 

position in the spectrum. The lower the score, the more consistent the trend in the spectrum 

plot (see STAR Methods for a formal definition of the local consistency score). Spectrum 

plots are classified as non-random if (1) the adjusted R2 of the polynomial fit is ≥0.4 and (2) 

the p value associated with the local consistency score is ≤5 × 10−6, and (3) at least 10% of 

the bins have significant (α = 0.05) enrichment or depletion of putative binding sites.

Website and R Package for Transite Available for Customizable Use

To make the RBP analysis of gene expression datasets widely available to the scientific 

community, the Transite analysis platform is hosted at https://transite.mit.edu. Both the 

TSMA and SPMA methods are web accessible, and familiarity with the R programming 

language is not required (Figure 4). The full functionality of Transite is also provided as an 

R/Bioconductor package (https://doi.org/10.18129/B9.bioc.transite) to facilitate a seamless 

integration of these algorithms into existing bioinformatics workflows. The source code of 

the Transite package is hosted on GitHub (https://github.com/kkrismer/transite). Both the 

website and the R package also allow motif enrichment analysis with user-defined motifs, in 

addition to the 174 motifs provided by the Transite motif database, enabling users to search 

for enrichment of any RBP motif in a discrete set of genes or a rank-ordered list.

Transite Correctly Maps Observed Changes in RNA Abundance following ZFP36 
Overexpression or ELAVL1 Knockdown onto Their Respective RBPs

To test the ability of the Transite algorithms to correctly map changes in RNA expression 

onto specific RBPs, we used a publicly available dataset in which RNA expression levels 

were measured following overexpression of the RBP mRNA decay activator protein ZFP36 

(also known as TTP). ZFP36 is known to destabilize its target RNA transcripts by binding to 

sequence elements in the 3′ UTR (Lai et al., 2003). Mukherjee et al., 2014 reported 

microarray measurements of differential RNA expression in HEK293 cells following the 

inducible overexpression of an EGFP-ZFP36 fusion protein (GEO: GSE53185). The RNA 

expression fold change and associated p values per gene between the induced and un-

induced groups, as reported by the authors, were used as input for Transite. Genes that were 

statistically significantly downregulated and upregulated following ZFP36 overexpression 

(i.e., p < 0.05 after multiple testing corrections) were chosen as foreground sets for TSMA. 

Volcano plots showing k-mer enrichment and depletion in these gene sets are shown in 

Figure 5A, and the top 10 empirically identified k-mers are listed in Tables S1 and S2. The 

left panel in Figure 5A shows that k-mers corresponding to the ZFP36-binding motif, shown 

in yellow, are among the most highly enriched k-mers in transcripts that were found to be 

downregulated, while the right panel shows conversely that ZFP36-associated k-mers were 

highly depleted in the genes that were upregulated after ZFP36 overexpression. This was 

even more apparent in the spectrum plot following SPMA of this dataset (Figure 5B), which 

revealed a highly consistent nearly monotonic increase in ZFP36-binding sites when the 

genes were ranked from those most upregulated to those most downregulated after ZFP36 

overexpression. On this basis, ZFP36 emerged as the single best RBP out of all 174 RBPs in 

the database whose motif could rationalize the observed gene expression changes.

Krismer et al. Page 9

Cell Rep. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://transite.mit.edu/
https://doi.org/10.18129/B9.bioc.transite
https://github.com/kkrismer/transite


To further validate the utility of Transite to infer RBPs that modulate gene expression 

changes, we used a second publicly available dataset (GEO: GSE29778), in which gene 

expression changes were measured following small interfering RNA (siRNA) knockdown of 

ELAV-like protein 1 (ELAVL1, also known as HuR) to 20% of its endogenous levels 

(Mukherjee et al., 2011). ELAVL1 stabilizes its target RNA transcripts and likely facilitates 

their pre-mRNA processing; hence, its knockdown should result in the reduced expression of 

its target RNAs. In addition to RNA stability, ELAVL1 is known to play a role in the 

regulation of alternative splicing of some of its targets (Chang et al., 2014; Akaike et al., 

2014). As shown in Figure 5C, analysis of this dataset using SPMA resulted in spectrum 

plots in which the enrichment values for the ELAVL1 motifs closely varied in direct 

proportion to the extent of RNA downregulation that was observed (Figures 5C, S1, and S2). 

Figure 5D shows the top 5 RBP motifs that were enriched in the upregulated and 

downregulated genes, revealing that genes downregulated after ELAVL1 knockdown were 

enriched in U-rich RBP motifs, including those that correspond to the ELAVL1 motifs in the 

Transite motif database. In contrast, genes that were upregulated after ELAVL1 knockdown 

were enriched in alternative RBP motifs that lacked U-rich regions and corresponded to the 

binding motifs of other RBPs. Furthermore, the single most highly enriched k-mer in the set 

of downregulated genes, AUUUAA, which was empirically identified by k-mer-based 

TSMA (Figure 5E; Tables S3 and S4), perfectly matches the motif of ELAVL1 that was 

experimentally determined using photoactivatable-ribonucleoside-enhanced CLIP (PAR-

CLIP) and RNP immunoprecipitation-microarray (RIP-ChIP) (Mukherjee et al., 2011). 

These data indicate that Transite can capture the specific RBPs responsible for the gene 

expression changes caused by the manipulation of RBP levels, thus validating our approach 

and providing confidence that predictions derived from more complex perturbations are 

more likely to reflect real changes in RBP binding or activity.

RBPs Involved in the DDR Are Identified by Transite Using Cancer Patient RNA Expression 
Data

As an application of Transite-based RBP scoring, we next analyzed a gene expression 

dataset from patients with NSCLC who were either treatment naive or their cancer had 

recurred after platinum-based chemotherapy treatment (GEO: GSE7880). Differences in 

RNA transcript abundance were ranked between the set of tumors that were sampled pre-

treatment and the separate set of tumors that were sampled after recurrence following 

treatment, and the ranked transcripts were then analyzed by Transite to identify potential 

RBPs that may influence the response to Pt treatment. Changes in transcript abundance were 

ranked based on the signal-to-noise ratio, in which transcripts upregulated in recurrent 

patients had positive values and those upregulated in treatment-naive patients had negative 

values (see Figure 6A for schematic). k-mer-based TSMA, focusing on the 3′ UTRs of the 

differentially regulated genes, revealed a set of enriched k-mers in the patients whose tumors 

failed Pt treatment that were largely U-rich (Table S5). These k-mers mapped to the motifs 

of ELAVL1 and TIA1 as the top 2 hits (Figure 6B, top). SPMA revealed these same top 2 

RBPs, as shown in the bottom part of Figure 6B. Individual spectrum plots for ELAVL1 

(Figure 6C) and TIA1 (Figure 6D) demonstrated consistent behavior of these motifs across 

the gene expression continuum, being enriched in 3′ UTRs of genes that were upregulated in 

patients with recurrent tumors after Pt treatment and depleted in 3′ UTRs of genes that were 
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upregulated in naive patients. The upregulation of ELAVL1 and TIA1-target mRNAs was 

further validated by analyzing the distribution of previously known CLIP-seq-identified 

targets (Kishore et al., 2011; Wang et al., 2010) for these 2 RBPs (Figure 6E and 6F), 

suggesting that our motif-based approach can identify bona fide target genes of a given RBP 

for which CLIP-seq data are available. Moreover, both ELAVL1 and TIA1 are known to be 

involved in the DDR (Masuda et al., 2011; Lal et al., 2006; Mehta et al., 2016; Díaz-Muñoz 

et al., 2017). The fact that two well-known players in the DDR were among the top hits of 

the motif analysis provides confidence that the predictions of Transite are likely to reflect the 

regulators of the DDR and drivers of chemoresistance.

Motif Analysis of Recurrent NSCLCs after Cisplatin Treatment Identifies hnRNPC as a 
Potential Modulator of Drug Resistance

We were particularly interested in using Transite as a tool to identify new RBPs potentially 

involved in chemosensitivity or resistance to DNA-damaging chemotherapy agents using 

data from human clinical trials. We therefore chose to focus on hnRNPC, one of the highest-

scoring RBPs that emerged from both TSMA and SPMA analyses of chemoresistant 

NSCLC patients, and one that, to our knowledge, has not been strongly implicated in the 

response to chemotherapy-induced DNA damage (Shkreta and Chabot, 2015). As shown in 

Figure 7A, the spectrum plot of the distribution of putative hnRNPC binding sites shows a 

strong enrichment of mRNAs with hnRNPC motifs in their 3′ UTRs in patients whose 

tumors recurred after Pt therapy. This Transite prediction was independently confirmed by 

the analysis of individual-nucleotide resolution CLIP (iCLIP)-defined target mRNAs for 

hnRNPC (König et al., 2010) (which also showed an overrepresentation of hnRNPC targets 

in upregulated transcripts in recurrent patients; Figure 7B), with those with binding in the 3′ 
UTR showing the strongest enrichment. Since hnRNPC has not been studied closely in the 

context of mRNA stability regulation, we wanted to ascertain whether hnRNPC does indeed 

regulate mRNA levels. To do this, we used publicly available data from the ENCODE 

Project Consortium (2012), in which hnRNPC was knocked down in HepG2 cells by small 

hairpin RNA (shRNA) followed by RNA-seq to measure gene expression. Transite analysis 

of the gene expression changes upon hnRNPC knockdown (Figure 7C) demonstrated clear 

enrichment of hnRNPC motifs in the 3′ UTRs of downregulated transcripts, suggesting a 

general role for hnRNPC in maintaining the expression of its 3′ UTR target mRNAs. These 

observations were further confirmed by examining CLIP-defined target mRNAs of hnRNPC 

(Figure 7D). Further analysis of these knockdown data by GSEA (Figure 7E) revealed that 

downregulated genes upon hnRNPC knockdown were enriched for numerous gene sets 

relating to resistance to chemotherapy and regulation of the DDR, highlighting a potential 

functional role for hnRNPC in chemoresistance.

To experimentally test these Transite and GSEA predictions, we examined the effect of 

knockdown or overexpression of hnRNPC in T6a murine lung carcinoma cells on their 

sensitivity and resistance to cisplatin treatment. As shown in Figure 7H, colony-formation 

assays in T6a cells demonstrated that hnRNPC overexpression promoted resistance to 

cisplatin, as shown by a 1.6-fold increase in the number of surviving colonies (Figure 7H, 

red bar). Conversely, siRNA downregulation of hnRNPC significantly enhanced T6a cell 

sensitivity to cisplatin, as shown by a 5-fold decrease in the number of colonies formed by 
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cells treated with hnRNPC siRNA compared to those of control siRNA-treated cells after 

cisplatin treatment (Figure 7H, blue bar). We further tested these predictions by performing 

colony-formation assays in H2009 human lung carcinoma cells. As shown in Figure 7I, 

hnRNPC overexpression in H2009 cells promoted resistance to cisplatin, as shown by a 1.6-

fold increase in the number of surviving colonies (Figure 7I, red bar). Conversely, siRNA 

knockdown of hnRNPC enhanced H2009 cell sensitivity to cisplatin as demonstrated by a 

1.75-fold decrease in the number of colonies formed (Figure 7I, blue bar). Western blots of 

hnRNPC in T6a and H2009 cells are shown in Figures 7F and 7G, respectively. These data 

indicate that hnRNPC mediates the resistance of NSCLC cells to cisplatin chemotherapy, 

which is consistent with what was seen in the patient data, and demonstrates that our 

computational approach can identify new RBPs influencing the DDR.

To independently validate the importance of hnRNPC in mediating chemotherapy response 

in patients, we took advantage of data from a unique adjuvant chemotherapy trial, JBR.10 

(Figure 7J; Winton et al., 2005). In this trial, early-stage NSCLC patients had their tumors 

surgically resected and subjected to gene expression profiling (GEO: GSE14814). Patients 

were then randomized to receive cisplatin/vinorelbine combination chemotherapy or 

observation and palliative care, allowing us to specifically query the role of hnRNPC in the 

response to chemotherapy. We focused our analysis on stage 2 patients, since the benefit 

from adjuvant chemotherapy is most pronounced in this population. The separation of 

patients based on hnRNPC expression level revealed that patients whose tumors displayed a 

low expression of hnRNPC benefited significantly from chemotherapy in terms of survival 

(Figure 7J, right panel, p = 0.028), while patients whose tumors had high levels of hnRNPC 

expression did not show significant benefit (Figure 7J, left panel, p = 0.68). We did not find 

a similar relationship between chemoresistance and expression of RBPs not implicated by 

Transite (Figure S3). The data in Figure 7 identify hnRNPC as a new RBP involved in the 

response to Pt drug treatment in NSCLC and suggest that Transite is an effective tool for 

identifying novel RBPs that contribute to chemoresistance in human cancer patient RNA 

expression datasets.

DISCUSSION

Despite their crucial role in the post-transcriptional regulation of gene expression, the 

majority of RBPs have unknown functions. To help understand the influence of RBPs on 

their target transcripts, we developed Transite, a computational method for the analysis of 

the regulatory role of RBPs in various cellular processes for which differential gene 

expression data or other relevant gene sets are available. Our analysis is based on the fact 

that most RBPs recognize short linear oligonucleotide sequences whose overrepresentation 

can be computed from gene expression data, and that a large collection of preexisting motif 

data for RBPs has been compiled in publicly available databases (Ray et al., 2013; Cook et 

al., 2011).

It is important to note that Transite, in its current form, has significant limitations. Not all 

RBPs have strong motif preferences that are amenable to this type of motif-based analysis. 

Furthermore, there may be considerable redundancy in motif recognition by different RBPs, 

making prediction of a single RBP challenging. Moreover, the in vitro-derived motifs for 
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RBPs may not always reflect in vivo binding preferences. These caveats have raised 

questions about the ability of consensus motifs and PWMs to uniquely predict individual 

RBP mRNA targets a priori on a genome-wide scale and have led to the development of 

more sophisticated approaches for predicting specific RBP RNA targets (Perron et al., 2018; 

Weyn-Vanhentenryck and Zhang, 2016). In contrast to those approaches, Transite does not 

attempt to predict specific mRNAs bound by a particular RBP. Instead, Transite simply 

looks at the statistical distribution of RBP motif representation in sets of expressed genes to 

infer putative roles for specific RBPs in some biological processes, which can then be 

directly tested experimentally. It is worth noting that Transite is best suited to picking up 

signals from cytoplasmic 3′ UTR binding proteins that affect mRNA stability or translation, 

if measured by ribosome profiling.

By using 2 approaches to identify non-random distributions of RBP-binding motifs, 

followed by back-mapping of those motifs onto those of 174 known RBPs, Transite 
identified 3 RBPs involved in the human DDR, which we could further validate based on 

independent CLIP-seq data of their known mRNA targets in cells, rather than using motifs 

derived from in vitro sequence libraries. These findings suggest that, although there are 

limitations to using in vitro-derived motifs, Transite serves as a discovery tool for new 

biology. Moreover, since users can define their own motifs in addition to those from the 

database, users are able to upload motifs from CLIP-seq data of their favorite RBP and use 

that as a means to analyze enrichment in preexisting datasets. As more RBP motifs become 

available, they will be incorporated in future versions of the Transite analysis platform.

To further demonstrate the utility of Transite, we performed an analysis of human NSCLC 

patient data and were able to recover previously known RBP biology and also identify novel 

sources of RBP-mediated chemoresistance. Well-known players in the DDR such as 

ELAVL1 and TIA1 were among the top hits in the tumor resistance gene expression dataset, 

showing that our approach is consistent with previous DDR literature. Transite was also able 

to identify hnRNPC as a new potential modulator of cisplatin sensitivity in NSCLC patients. 

Experimental validation of the in silico prediction further provides independent support for a 

critical role for hnRNPC in mediating the resistance of NSCLC cells to chemotherapy, 

which was independently correlated with clinical responses in an additional NSCLC patient 

dataset.

Transite is a versatile tool that can be used with any type of gene expression data, the only 

requirements being a list of gene identifiers and some means to separate foreground and 

background sets or rank the gene list. Examples of the other types of data that are 

compatible with a Transite style of analysis include (1) searching for RBP motif enrichment 

in 5′ or 3′ UTRs of genes whose translational efficiency changes in response to some 

stimulus as measured by ribosome or polysome profiling, (2) searching for enrichment of 

RBP motifs in mRNAs that are localized to specific subcellular compartments, and (3) de 
novo motif analysis in the entire mRNA of gene expression changes upon knockdown of a 

nuclease of unknown function. The Transite website (https://transite.mit.edu) makes this tool 

accessible to a broad group of scientists, provides a means by which the large body of 

preexisting gene expression data from microarray and RNA-seq experiments, for example, 

can be further leveraged to identify changes in mRNA expression associated with specific 
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RBPs, and reveals potential insights into how RBPs may contribute to the concerted 

regulation and function of specific cellular processes.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Michael B. Yaffe (myaffe@mit.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The code generated during this study is hosted on GitHub 

(https://github.com/kkrismer/transite) and licensed under the MIT free software license. The 

Transite method can be accessed online at https://transite.mit.edu. For workflow integration 

and advanced analysis, the Transite functionality is also offered as an R/Bioconductor 

package at https://doi.org/10.18129/B9.bioc.transite.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and colony formation assays—LG1233/T6a cells (mouse lung 

adenocarcinoma, in the following referred to as T6a) (Dimitrova et al., 2016) were grown in 

RPMI-1640 medium supplemented with 10% fetal bovine serum at 37 °C in a humidified 

incubator supplied with 5% CO2. NCI-H2009 cells (human lung adenocarcinoma, ATCC 

CRL-5911, in the following referred to as H2009) were grown in DMEM medium 

supplemented with 10% fetal bovine serum at 37 °C in a humidified incubator supplied with 

5% CO2. Colony formation assays were performed as previously described (Cannell et al., 

2015). Briefly, 48 hours after transfection with siRNAs or pcDNA vectors, T6a and H2009 

cells were treated with 4 and 5 μM cisplatin or vehicle (DMF), respectively, for 4 hours. 

Cells were then washed in PBS and re-plated in 6-well plates using 1000 mock-treated or 

10,000 cisplatin-treated cells per well. In overexpression assays, 500 μg/ml G418 was added 

to the media to select for cells transfected with pcDNA vectors. After 10 to 14 days, cells 

were fixed with 4% formaldehyde and stained with SYTO 60 (Thermo Fisher Scientific). 

Colonies were scanned and quantified using Odyssey ® CLx Imaging System (LI-COR 

Biosciences).

siRNA transfection—Silencer Select siRNA (Ambion) transfection was performed using 

Lipofectamine RNAiMAX following manufacturer instructions (Thermo Fisher) with a final 

siRNA concentration of 5 nM for T6a cells (mouse siRNA s67639) and 20 nM for H2009 

cells (human siRNA s6720). 24 hours after transfection, cells were given fresh media. Cells 

were then treated as described in the previous section.

Overexpression of hnRNPC in T6a cells—pcDNA3.1 vectors expressing FLAG-

tagged mouse hnRNPC were generated as follows. First, total RNA was prepared from 

KP7B (mouse lung carcinoma) cells using RNeasy purification kit (QIAGEN) and was used 

to synthesize cDNAs using SuperScript cDNA Synthesis System (Thermo Fisher). cDNAs 
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were used as templates in PCR reactions using PfuUltra II HF DNA polymerase (Agilent) 

and the following primers: 5′-

GCCCATAAGCTTATGGACTACAAAGACGATGACGACAAGGCTAGCAATGTTACCA

ACAAGACA GATCCTCGG-3′ (forward) and 5′-

GCCCATTCTAGATTATTAAGAGTCATCCTCCCCATTGGCGCTGTCTCTG-3′ 
(reverse). Restriction sites for HindIII (in forward primer) and XbaI (in reverse primer) are 

in bold. Sequences encoding FLAG are underlined. The PCR products were cleaved with the 

indicated restriction enzymes (New England BioLabs Inc), purified (QIAquick PCR 

Purification Kit, QIAGEN) and cloned into pcDNA3.1 vectors. The integrity of the plasmids 

were confirmed by sequencing (Eton Bioscience, Inc.).

Attractene (QIAGEN) transfection was performed following manufacturer instructions using 

4 g of DNA (empty pcDNA3.1 vector or vector expressing FLAG-tagged mouse hnRNPC) 

and 15 μL of Attractene Reagent per 10cm plate. 24 hours after transfection, cells were 

given fresh media. Cells were then treated with cisplatin as described in a previous section.

Overexpression of hnRNPC in H2009 cells—pcDNA3.1 vectors expressing FLAG-

tagged human hnRNPC were generated as follows. First, total RNA was prepared from 

BT20 (human breast carcinoma) cells using RNeasy purification kit (QIAGEN) and was 

used to synthesize cDNAs using SuperScript cDNA Synthesis System (Thermo Fisher). 

cDNAs were used as templates in PCR reactions using PfuUltra II HF DNA polymerase 

(Agilent) and the following primers: 5′-

CCATAAGCTTATGGACTACAAAGACGATGACGACAAGTCAGGCGGATCCGCCAG

CAACGTTAC CAACAAGACAGATCC-3′ (forward) and 5′-

TCAGGAATTCTTAAGAGTCATCCTCGCCATTGGC-3′ (reverse). Restriction sites for 

HindIII (in forward primer) and EcoR1 (in reverse primer) are in bold. Sequences encoding 

FLAG are underlined. The PCR products were cleaved with the indicated restriction 

enzymes (New England BioLabs Inc), purified (QIAquick PCR Purification Kit, QIAGEN) 

and cloned into pcDNA3.1 vectors. The integrity of the plasmids were confirmed by 

sequencing (Eton Bioscience, Inc.).

X-tremeGENE 9 (Sigma Aldrich) transfection was performed following manufacturer 

instructions with a 3:1 ratio of transfection reagent to DNA. 5Âμg of DNA (empty 

pcDNA3.1 vector or vector expressing FLAG-tagged human hnRNPC) was transfected per 

10cm plate. 24 hours after transfection, cells were given fresh media. Cells were then treated 

with cisplatin as described in a previous section.

Immunoblotting—T6a cells were harvested 24 (siRNA-transfected) or 48 (pcDNA 

vectors-transfected) hours after cisplatin treatment and re-plating. H2009 cells were 

harvested 48 hours after siRNA of pcDNA transfection. Cells were then lysed in RIPA buffer 

and subjected to standard SDS/PAGE electrophoresis and transferred to nitrocellulose 

membranes. The membranes were immunoblotted with antibodies against hnRNPC (T6a - 

ab10294, Abcam Inc.; H2009 - sc-32308, Santa Cruz) and γ-tubulin (T5192, Sigma-

Aldrich) following manufacturer’s instructions.
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METHOD DETAILS

Differential gene expression analysis—Differential gene expression analysis for 

datasets used in this manuscript was performed with the R/Bioconductor package limma 
(Ritchie et al., 2015). A linear model was fit to each row of the log2-transformed expression 

value matrices, where rows correspond to transcripts and columns correspond to samples. 

An empirical Bayes method was used to obtain the magnitude and significance of the log 

fold change between sample groups for each transcript (Smyth, 2004). Raw p values were 

adjusted using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Motif databases—Transite incorporates sequence motifs of RBP binding sites from two 

databases: CISBP-RNA, a catalog of inferred sequence preferences of RNA binding proteins 

(Ray et al., 2013), and RBPDB, a database of RNA-binding specificities (Cook et al., 2011). 

Together these contribute 174 sequence motifs of varying lengths (between 6 and 18 

nucleotides). All motifs were obtained using in vitro techniques for determining RNA 

targets. The majority of motifs were determined by either systematic evolution of ligands by 

exponential enrichment (SELEX) (Tuerk and Gold 1990) or RNAcompete (Ray et al., 2009). 

The RNA binding specificities of two further RBPs were obtained by electrophoretic 

mobility shift assays (EMSA) (Garner and Revzin 1981).

Motif representations—Motif descriptions provided from the databases described above 

were converted from count matrices to position weight matrices (PWMs), obtained by 

normalizing each nucleotide’s probability at each position by the mean probability of each 

nucleotide, 25%.

For k-mer-based analyses, PWMs were converted to hexamers and heptamers by generating 

all k-mers for which each position has a probability higher than a certain threshold. In the 

work presented here, we used a threshold probability of 0.215, which is a stringency level 

that works well empirically with the motifs from the motif databases.

Laplace smoothing (also known as additive smoothing) is applied to avoid zeros in count 

matrices before conversion to PWMs. Zeros might occur if the number of sequences on 

which the position-specific scoring matrix (PSSM) is based, is too small to contain at least 

one occurrence of each nucleotide per position. In this case, pseudocounts are introduced 

(Nishida et al., 2009).

Combining enrichment of motif-associated k-mers—The overall enrichment of a 

motif for k-mer TSMA is calculated as the geometric mean of the enrichments of associated 

k-mers:

e = exp 1
n ∑

i = 1

n
log ei ,

where e is the vector of enrichment values of motif-associated k-mers. The sum of 

logarithms is used instead of the product to avoid arithmetic underflow.
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Local consistency score—The local consistency score quantifies the local noise of the 

gradient in the spectrum by calculating the deviance between the linear interpolation of the 

scores of two bins separated by one other, and the score of the middle bin, for each position 

in the spectrum. The lower the score, the more consistent the trend in the spectrum plot. 

Formally, the local consistency score xc of scores vector s is defined as

xc(s) = 1
n ∑

i = 1

n − 2 si + si + 2
2 − si + 1 .

In order to obtain an estimate of the significance of a particular score xc′, Monte Carlo 

sampling is performed by randomly permuting the coordinates of the scores vector s and 

recomputing xc. The probability estimate p is given by the lower tail version of the 

cumulative distribution function

PrL(T (x)) =
∑i = 1

n 1 T yi ≤ T (x) + 1
n + 1 ,

where T equals xc.

Polynomial regression—An alternative approach to assess the consistency of a spectrum 

plot is via polynomial regression. In a first step, polynomial regression models of various 

degrees are used to fit s, the vector of scores, as a function of b, the vector of bin numbers. 

Then the model that reflects best the true nature of the data is selected by means of the F-

test. Finally, the adjusted R2 are calculated to indicate how well the model fits the data. 

These statistics are used as scores to rank the spectrum plots.

In general, the polynomial regression equation is

yi = β0 + β1xi + β2xi2 + ⋯ + βmxim + ϵi,

where m is the degree of the polynomial (usually m ≤2), and ϵi is the error term. The 

dependent variable y is the vector of scores s and x to xm are the orthogonal polynomials of 

the vector of bin numbers b.

Orthogonal polynomials are used in order to reduce the correlation between the different 

powers of b and therefore avoid multicollinearity in the model. This is important, because 

correlated predictors lead to unstable coefficients, i.e., the coefficients of a polynomial 

regression model of degree m can be greatly different from a model of degree m + 1.

The orthogonal polynomials of vector b are obtained by centering (subtracting the mean), 

QR decomposition, and subsequent normalization (Chambers et al., 1990).

Given the dependent variable y and the orthogonal polynomials of b x to xm, the model 

coefficients β are chosen in a way to minimize the deviance between the actual and the 

predicted values. Ordinary least-squares is used as the estimation method for the model 
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coefficients. After polynomial models of various degrees have been fitted to the data, the F-

test is used to select the model that best fits the data. After a model has been selected, the 

adjusted R2 is calculated as an additional way to evaluate the goodness of fit.

CLIP-seq data analysis—The BED files (output from Piranha analysis) for all CLIP-Seq 

datasets were retrieved from CLIPdb (Yang et al., 2015). Read counts were mapped to 

RefSeq identifiers using a UCSC table with either just 3′-UTR sequences or the entire 

mature mRNA of all human mRNAs in Hg19 coordinates. RefSeq identifiers were then 

summarized to gene symbols. For gene symbols with multiple RefSeq identifiers, the one 

with the maximum counts was taken, as it was assumed this indicated the most highly 

expressed transcript. This analysis created two gene lists, one where there was binding in the 

3′ -UTR (3′-UTR targets) or where there was binding in any region of the mRNA (entire 

mature mRNA targets). These gene lists were then merged with fold change lists from GEO 

gene expression dataset GSE7880. To generate the non-targets list, the entire mature mRNA 

list was subtracted from the GSE7880 list.

Analysis of hnRNPC knockdown RNA-seq data—RNA-seq data for HepG2 cells 

expressing shRNA targeting hnRNPC were retrieved from GEO. Briefly, HepG2 cells were 

infected with either lenti shRNA for hnRNPC (GSE87993) or a non-target shRNA 

(GSE88174) for 24 hours in duplicate. RNA was collected 6 days later. 100 nucleotide 

paired-end reads were obtained from Illumina HiSeq2000 (ENCODE Project Consortium, 

2012).

The quality of the RNA-seq data was assessed using the FastQC tool v0.11.7 (Andrews, 

2010) before and after removing reads that mapped to ribosomal RNAs. Paired-end RNA-

seq data were mapped to the human genome (GRCh38 build from Gencode) using RSEM 

(Li and Dewey, 2011) with Bowtie 2 (Langmead and Salzberg, 2012) as the aligner. 

Expected counts, expected counts rounded, TPM, and FPKM files were generated.

EdgeR (Robinson et al., 2010) was used to perform differential gene expression analysis 

using the expected counts rounded values file from the previous section. Low count reads 

were filtered out and TMM normalization (Trimmed Mean of M-values) was used to 

account for differences in total reads between samples. Exact test was performed for shRNA 

hnRNPC versus non-targeting shRNA.

The log fold change-sorted list of genes was used for the Transite analysis. k-mer-based 

SPMA was performed using the default settings (Transite motif database, 40 bins, merge 

method of highest magnitude, 1 degree polynomial, 3′-UTR, Benjamini-Hochberg p value 

adjustment, and 5 maximum binding sites per mRNA).

The same list of genes was used for gene set enrichment analysis (GSEA) (Subramanian et 

al., 2005), which we queried against the C2_all gene sets from the molecular signatures 

database using the preranked feature of GSEA.
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Package and web development—R package development and documentation was 

streamlined with devtools and roxygen2, respectively. Core algorithms were implemented in 

C++. ggplot2 (Wickham, 2009) was used for data visualization.

The website was developed in R with the reactive web application framework shiny from 

RStudio. The components of the graphical user interface were provided by shiny and 

shinyBS, which serve as an R wrapper for the components of the Bootstrap front-end web 

development framework.

Human 3′-UTR sequence annotations were obtained from the Bioconductor UCSC hg38 

annotation packages.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were carried out in R. Detailed information about R packages and 

versions is part of the Transite analysis reports, which are available online at https://

transite.mit.edu/p/transite-reports.pdf.

All p values reported by Transite are multiple hypothesis corrected using the Benjamini-

Hochberg procedure. Significance levels are denoted by asterisks as follows: **** (p values 

≤ 0.0001), *** (p values ≤ 0.001), ** (p values ≤ 0.01), and * (p values ≤ 0.05). Shaded 

areas around log enrichment curves in spectrum plots are 95% confidence intervals.

Significance levels of difference between cumulative distribution functions were determined 

by one-sided Kolmogorov-Smirnov tests (Figures 6E, 6F, 7B, and 7D).

In Figures 7H and 7I, significance of difference in means was calculated with Welch’s two-

sample t tests (unpaired, two-sided) with n = 3. Error bars in Figures 7H and 7I are standard 

error of the mean.

In Figures 7J and S3, significance of difference between Kaplan-Meier survival curves was 

calculated with log-rank tests. The range values for the hazard ratios are 95% confidence 

intervals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transite nominates RBPs that influence gene expression from RNA 

expression datasets

• Transite identifies enriched and depleted k-mers in differentially expressed 

genes

• Transite identifies hnRNPC as a modulator of cisplatin resistance in human 

lung cancer

• Transite is available online at https://transite.mit.edu and as an R package
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Figure 1. Schematic Figure of the Transite Analysis Pipeline
The initial steps of the Transite data analysis workflow include preprocessing and 

differential expression analysis of gene expression profiles, which could be collected in-

house or obtained from NCBI and EMBL-EBI repositories such as GEO, SRA, and ENA. 

Differential expression analysis is used to either identify groups of upregulated and 

downregulated genes (for transcript set motif analysis [TSMA]) or to establish a ranked list 

of genes from most upregulated to most downregulated (for spectrum motif analysis 

[SPMA]). Transite then analyzes regions within these genes to identify k-mers and RBPs 

whose motifs are enriched or depleted in the differentially expressed genes.
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Figure 2. TSMA
(A) Foreground sets in TSMA are defined by differential gene expression analysis of RNA-

seq or microarray datasets, usually by selecting statistically significantly upregulated and 

downregulated genes. The background set is all of the genes in the microarray platform or 

all of the measured genes in RNA-seq. In the heatmap of the gene expression profile, the two 

rows (condition 1, condition 2) are the mean gene expression values of the replicates of the 

respective groups (e.g., condition 1 could be treated with drug A and condition 2 untreated). 
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The columns of the heatmap correspond to the genes, and the superimposed gray curve is the 

log fold change between condition 1 and condition 2.

(B) TSMA estimates the statistical significance of putative RBP-binding site enrichment 

between each foreground set and the background set. There are 2 ways to describe the 

putative binding sites of RNA-binding proteins (i.e., the motif). The column on the left 

depicts k-mer-based TSMA, which uses a list of k-mers to describe putative binding sites. 

The column on the right is matrix-based TSMA, which instead uses position weight matrices 

(PWMs). See text for details.
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Figure 3. SPMA
(A) Transcripts are sorted by some measure of differential expression (e.g., fold change or 

signal-to-noise ratio) and the entire spectrum of transcripts is then subdivided into a number 

of equally sized foreground bins.

(B) The motif enrichment step is identical to TSMA. SPMA results are visualized as 

spectrum plots, which are 1-dimensional heatmaps of motif enrichment values, in which the 

columns correspond to the bins and the color encodes the enrichment value (strong depletion 

in dark blue to strong enrichment in dark red) of a particular k-mer or PWM.
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(C) The distribution of putative binding sites (as visualized by spectrum plots) is deemed 

random or non-random (i.e., putative binding sites are distributed in a way that suggest 

biological relevance), based on multiple criteria described in the text. Shown beneath each 

strip in the heatmap are the log enrichment values for the RBP motif being analyzed (black 

dots) and the best first, second, or zero order polynomial fit (blue line), along with 95% 

confidence intervals (shaded gray).
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Figure 4. Transite Web Interface
Datasets are analyzed using TSMA or SPMA in 4 simple steps, some of which are 

illustrated in (A)–(D). These involve the selection of k-mer or matrix-based analysis (A), the 

specification of foreground and background sets for TSMA, the number of bins for SPMA 

(B), the region of the RNA to be analyzed and the threshold for statistical significance (C), 

and the source of RNA-binding motifs to be used for the analysis (D).
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Figure 5. Unbiased Identification of Drivers of Differential Expression after the Overexpression 
of ZFP36 or the Knockdown of ELAVL1
(A) TSMA volcano plot showing enriched and depleted k-mers in downregulated transcripts 

after ZFP36 overexpression (left panel). k-mers associated with ZFP36 (shown in yellow) 

are highly enriched. A TSMA volcano plot of k-mer enrichment values in upregulated 

transcripts after ZFP36 overexpression shows strong depletion of ZFP36 associated k-mers 

(right panel).

(B) SPMA spectrum plot depicts the relationship between ZFP36 overexpression and 

downregulation of ZFP36 targets.
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(C) SPMA spectrum plot of 1 ELAVL1 motif depicting the global downregulation of 

ELAVL1 target transcripts after ELAVL1 siRNA knockdown. When comparing spectrum 

plots, please note that the color scales are adjusted for each plot individually and as a result 

are different between plots with different enrichment score ranges. Volcano plots of 

ELAVL1 k-mers before and after knockdown are shown in Figure S1.

(D) Sequence logos of motifs highly enriched in transcripts upregulated (left column) and 

downregulated (right column) after ELAVL1 knockdown. U-rich ELAVL1 motifs are highly 

enriched in the 3′ UTRs of downregulated transcripts (GEO: GSE29778).

(E) The 4 most highly enriched hexamers in transcripts upregulated (left column) and 

downregulated (right column) after ELAVL1 knockdown, as identified by k-mer-based 

TSMA.
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Figure 6. SPMA Identifies ELAVL1 and TIA1 Motifs as Highly Enriched in Recurrent NSCLC 
Patients
(A) Differential gene expression analysis was performed on samples from patients with 

untreated NSCLC tumors and patients with recurrent tumors.

(B) Transite was used to identify RBPs whose targets were overrepresented among 

upregulated genes in the samples of recurrent tumors. Shown are 2 tables of k-mer-based 

TSMA and SPMA displaying RBPs with highly enriched motifs for TSMA and highly non-

random motif enrichment patterns for SPMA. Among the top hits are ELAVL1, TIA1, and 
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hnRNPC. P values were obtained by Monte Carlo sampling and corrected for multiple 

hypothesis testing using the Benjamini-Hochberg procedure.

(C) Spectrum plot from SPMA depicting the distribution of putative ELAVLI-binding sites 

across all of the transcripts. The transcripts are sorted by ascending signal-to-noise ratios. 

The transcripts downregulated in resistant samples relative to untreated samples are on the 

left, and those upregulated are on the right of the spectrum. The putative binding sites of 

ELAVL1 are highly enriched in transcripts upregulated in resistant cells (shown in red) and 

highly depleted in transcripts downregulated in resistant cells (shown in blue).

(D) Spectrum plot of putative TIA1 binding sites using the same transcript order as in (C).

(E) Enrichment of ELAVL1 targets in resistant NSCLC cells is recapitulated in an 

independent high-throughput sequencing of RNA isolated by CLIP (HITS-CLIP) experiment 

(publicly available data). The distribution of fold changes of transcripts that have ELAVL1-

binding sites is shifted in the positive direction, even more so when the binding sites are in 

the 3′ UTR. The p values were calculated with the 1-sided Kolmogorov-Smirnov test.

(F) As in (E), transcripts with TIA1-binding sites are upregulated in resistant cells according 

to an iCLIP experiment, confirming results from SPMA.
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Figure 7. hnRNPC Modulates Sensitivity to Cisplatin
(A) Spectrum plot from k-mer-based SPMA depicting the distribution of putative hnRNPC 

binding sites across all transcripts in samples from patients with untreated NSCLC tumors 

and patients with recurrent tumors, as in Figure 6. The transcripts are sorted by ascending 

signal-to-noise ratio from lowest to highest abundance in resistance relative to untreated 

samples. Putative hnRNPC binding sites are highly enriched in the upregulated fraction of 

transcripts (GEO: GSE7880).
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(B) Enrichment of hnRNPC binding sites in upregulated transcripts is independently 

confirmed by CLIP experiments. The p values were calculated with the 1-sided 

Kolmogorov-Smirnov test.

(C) Spectrum plot from k-mer-based SPMA depicting the distribution of putative hnRNPC 

binding sites across all transcripts, sorted by fold change after hnRNPC knockdown by 

shRNA in HepG2 cells (GEO: GSE87993).

(D) Same as (B), now with transcript fold change from RNA-seq experiments before and 

after knockdown of hnRNPC (GEO: GSE87993).

(E) GSEA plots of select gene sets from analysis of hnRNPC knockdown RNA-seq data.

(F) Western blots of hnRNPC levels in T6a cells transfected with hnRNPC-specific siRNA 

(top) or pcDNA3.1 vector expressing FLAG-hnRNPC (bottom) 24 or 48 h, respectively, 

after being treated with the indicated doses of cisplatin. The blot is representative of 3 

independent experiments.

(G) Western blots of hnRNPC levels in H2009 cells transfected with hnRNPC-specific 

siRNA (left, representative blot of 3 independent experiments) or pcDNA3.1 vector 

expressing FLAG-hnRNPC (right) 48 h after transfection.

In (F) and (G), the blotting antibodies are indicated next to the images. Tubulin was used as 

a loading control.

(H) siRNA-mediated reduction in hnRNPC levels significantly impairs long-term survival of 

T6a cells in response to cisplatin (blue bar). The overexpression of hnRNPC (red bar) 

protects against cisplatin-induced cell death in T6a cells in colony-formation assays. The bar 

graphs represent the percent number of colonies formed, normalized to untreated control 

cells. The white bars represent cells transfected with control vehicles (control siRNA or 

empty pcDNA3.1 vector). The error bars indicate the standard error of the mean of 3 

replicates.

(I) Same as (H), except performed in H2009 cells.

(J) High expression of hnRNPC is associated with decreased efficacy of Pt-based 

chemotherapy in patients with stage 2 disease from the JBR.10 lung cancer adjuvant 

chemotherapy trial (GEO: GSE14814). The p value was calculated with the log-rank test 

(HR is hazard ratio, with the confidence interval in brackets). The hnRNPC low group is 

patients with hnRNPC expression Z scores of ≤ −0.2, and the hnRNPC high group is 

patients with hnRNPC expression Z scores ≥ 0.2.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-hnRNPC11/C2 Santa Cruz 
Biotechnology

Cat#sc-32308; RRID:AB_627731

Mouse monoclonal anti-hnRNPC1/C2 Abcam Inc Cat#ab10294; RRID:AB_297034

Rabbit polyclonal anti-y-Tubulin Sigma Aldrich Cat#T5192; RRID:AB_261690

Chemicals, Peptides, and Recombinant Proteins

Attractene Transfection Reagent QIAGEN 301005

X-tremeGene 9 Sigma Aldrich XTG9-RO

Lipofectamine RNAiMAX Thermo Fisher 13778150

SYTO 60 Invitrogen S11342

cis-Diammineplatinum(II) dichloride (cisplatin) Sigma CAS# 15663-27-1

N,N-Dimethylformamide (DMF) Burdick and Jackson Cat# AS076

G418 Sulfate Corning 30-234

Deposited Data

Human reference genome NCBI build 38, GRCh38 Genome Reference 
Consortium

https://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/human/

Experimental Models: Cell Lines

NCI-H2009 (human lung adenocarcinoma) ATCC CRL-5911; RRID:CVCL_1514

LG1233/T6a line (mouse lung adenocarcinoma) Laboratory of Tyler 
Jacks

LG1233; Dimitrova et al., 2016

Oligonucleotides

Silencer Select siRNA targeting mouse hnRNPC Ambion Cat# s67639

Silencer Select siRNA targeting human hnRNPC Ambion Cat# s6720

Silencer Select Negative Control No. 1 siRNA Ambion Cat# 4390843

FLAG-tagged mouse hnRNPC Forward primer
(5′ → 3′)-GCCCATAAGCTTATGGACTACAAA
GACGATGACGACAAGGCTAGCAATGTTACC
AACAAGACAGATCCTCGG

This paper N/A

FLAG-tagged mouse hnRNPC Reverse primer
(5′ → 3′)-GCCCATTCTAGATTATTAAGAGTCAT
CCTCCCCATTGGCGCTGTCTCTG

This paper N/A

FLAG-tagged human hnRNPC Forward primer
(5′ → 3′)-CCATAAGCTTATGGACTACAAAGA
CGATGACGACAAGTCAGGCGGATCCGCCAG
CAACGTTACCAACAAGACAGATCC

This paper N/A

FLAG-tagged human hnRNPC Reverse primer
(5′ → 3′)-TCAGGAATTCTTAAGAGTCATCCTC
GCCATTGGC

This paper N/A

Recombinant DNA

pcDNA3.1 Mammalian Expression Vector Invitrogen Cat# V79020

pcDNA3.1 FLAG-tagged mouse hnRNPC This paper N/A

pcDNA3.1 FLAG-tagged human hnRNPC This paper N/A

Software and Algorithms

Bowtie2 Langmead and 
Salzberg, 2012

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml
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REAGENT or RESOURCE SOURCE IDENTIFIER

FastQC v0.11.7 Andrews, 2010 https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

RSEM v1.3.0 Li and Dewey, 2011 https://deweylab.github.io/RSEM/

R 3.4.4 / 3.6.0 / 4.0.0 R Core Team https://www.R-project.org/

R Bioconductor package - edgeR 3.30.0 Robinson, McCarthy, 
and Smyth, 2010

https://bioconductor.org/packages/edgeR

R Bioconductor package - BSgenome.Hsapiens.UCSC.hg38 1.4.3 Bioconductor Core 
Team

https://bioconductor.org/packages/
BSgenome.Hsapiens.UCSC.hg38

R Bioconductor package - 
TxDb.Hsapiens.UCSC.hg38.knownGene 3.10.0

Bioconductor Core 
Team

https://bioconductor.org/packages/
TxDb.Hsapiens.UCSC.hg38.knownGene

R Bioconductor package - org.Hs.eg.db 3.11.1 Bioconductor Core 
Team

https://bioconductor.org/packages/org.Hs.eg.db

R Bioconductor package - limma 3.44.1 Ritchie, Phipson, 
Wu, Hu, Law, Shi, 
Smyth, 2015

https://bioconductor.org/packages/limma

R Bioconductor package - transite 1.6.1 This paper https://bioconductor.org/packages/transite

R package - survminer 0.4.6 Alboukadel 
Kassambara, Marcin 
Kosinski, 
Przemyslaw Biecek, 
Scheipl Fabian

https://cran.r-project.org/web/packages/
survminer/index.html

R package - survival 3.1-12 Terry Therneau https://cran.r-project.org/web/packages/survival/
index.html
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