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50 AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mel-
litus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities
and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male
albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received
saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin
(STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng
orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a
significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase
(GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression
levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats.
In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabo-
lism in diabetic models.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many enzymes are concerned with energy homeostasis among
them 5 AMP activated protein kinase (EC 2.7.11.31) that regulates
the energy homeostasis inside the cell (Winder and Hardie, 1999).
The enzyme has been confirmed to be expressed in liver (Huang
et al., 2018), and muscles (Dial et al., 2018). Activation of the
enzyme leads to activation of fatty acids oxidations in muscles
and liver, ketogenesis, glucose uptake by the cells and inhibition
of cholesterol synthesis, lipogenesis, triglycerides synthesis and
modulation of insulin secretion by beta cells of pancreas (Winder
and Hardie, 1999). Several studies which have been used agents
for controlling of Diabetes Mellitus (DM) pointed AMPK as target
(Jung et al., 2017; Liu et al., 2018a; Xiong et al., 2018). DM as a
chronic metabolic disorder is attractive for many researchers.
There is a daily continuous seeking for a modulator or preventer
for DM, however the success of the modulator depends on its tar-
get inside the body and its relevance to the disorder (Sangeetha
et al., 2017). Natural agents’ especially medicinal plants now con-
stitute the major targets used for controlling of DM (Neamsuvan
et al., 2015). Panax ginseng is a medicinal plant contributed for
the controlling of many disorders (Ru et al., 2015), in the same line,
its pharmacological action have been demonstrated in disorders
such as cancer including; breast, lung, liver, colon and skin cancer
(Majeed et al., 2018), cardiovascular diseases (Zheng et al., 2017),
acute menopausal symptoms (Kargozar et al., 2017), acute pancre-
atitis (Liu et al., 2018b), it has been used for stimulating immune
activity (Kang and Min, 2012; Yu et al., 2018), as a neuro-
protective agent (Luo et al., 2018), and for its antioxidant activities
(Shergis et al., 2014), anti stress (Wang et al., 2018) and anti-aging
(Bjorklund et al., 2018) activities. Ginseng now is one of the most
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famous natural agents used in controlling the metabolic syn-
dromes such as DM and its complications (Deng et al., 2017; Kim
et al., 2017; Wang et al., 2017; Xu et al., 2017). Recently, it has been
demonstrated that ginseng can improves the glucose intake, atten-
uates insulin resistance and reduce fat mass in high fat diet-obesity
mice (Dai et al., 2018). The matter which gives us the impetus to
study the effectiveness of Panax ginseng on enzymes and proteins
related to DM. We considered AMPK as a target in the present
study. Its mRNA expression levels were measured in the all exper-
imental animals, beside the expression levels of glucose
transporter-2 (GLUT-2), Insulin receptor A (IRA) and activities of
Glucokinase (GK), Glycogen synthase (GS) in livers of experimental
groups. Blood glucose, insulin, total Cholesterol (TC), triacyl-
glycerol (TAG), HDL-cholesterol (HDL-c), LDL-cholesterol levels
were also determined.

2. Material and methods

2.1. Animals selection and grouping

Forty male albino rats 6 month of age and weighing 120 ± 20 g
were obtained from the animal house of Zagazig University, Egypt.
The animal were housed in individual suspended stainless steel
cages at 22 ± 2 �C with a 12 h light/dark cycle and allowed to accli-
matize for period of 7 days before beginning the experiment. Rats
were divided randomly into 4 groups (n = 10) and were allowed
free access to food and water. Rats were divided randomly into 4
groups. (n = 10) in each. Group I served as non-treated control
group, group II received daily dose of ginseng 200 mg/kg Bwt for
constitutive 30 days, group III STZ-induced diabetic rats did not
receive any type of treatment, group IV STZ-induced diabetic rats
received 200 mg/kg Bwt of ginseng for constitutive 30 days.

2.2. Chemicals

Streptozotocin (STZ) (Sigma-Aldrich Co. St. Louis, Missouri,
USA). Root powder of Korean ginseng (Panax ginseng C.A. Meyer).

2.3. Ethical statement

All procedures of the current experiment have been approved
by the Ethical Committee of the Faculty of Vet. Med. Zagazig
University Egypt.

2.4. Induction of experimental diabetes mellitus

Diabetes mellitus was induced by a single intra-peritoneal
injection of 100 mg/kg B.wt. of a freshly prepared Streptozotocin
powder ‘‘STZ” (Sigma-Aldrich Co. St. Louis, Missouri, USA) dis-
solved in 0.01 M cold sodium citrate buffer (pH 4.5) immediately
before use. The rats with STZ were given 5% W/V glucose solution
next 24 h to prevent the hypoglycemia. After 72 h rats with fasting
blood glucose more than 250 mg/dL had been selected as diabetic
rats (Alkaladi et al., 2014).

2.5. Sampling protocol

After 12 h fasting, the blood samples were collected from med-
ian canthus of eye and the sera were separated by centrifugation
and stored at �20 �C for biochemical determinations. Liver tissues
were collected and divided in to two parts. The first part was used
to prepare a tissue homogenate for biochemical measurements of
enzymes activities and the other part collected on liquid nitrogen,
preserved at �80 �C until the extraction of RNA and was used for
gene expression investigation.
2.6. Biochemical determinations

The blood glucose concentrations were determined using glu-
cose oxidase method and the kits provided by SPINREACT (Sant
Esteva de Bas, Girona, Spain). The insulin levels in serum were esti-
mated using IMMULITE Insulin kits (Catalog Number: LKIN1, Ave-
nue, Silver Spring, MD 20993) following manufacture instructions
(Chevenne et al., 1998). Serum total cholesterol (Richmond,
1973), triacyl-glycerols (Fossati and Prencipe, 1982), HDL - choles-
terol (Lopes-Virella et al., 1977), and LDL-cholesterol (Glatter,
1984) were determined in the sera of all experimental animals.
The activities of hepatic GK (Pakoskey et al., 1965) and GS
(Brady, 2003) were determined in the liver tissue homogenates
of all experimental rats.
2.7. Molecular biological determinations

2.7.1. RNA extraction and cDNA synthesis
Total RNA was extracted from liver tissue using RNeasy Mini Kit

(Qiagen, Cat. No. 74104) and following the manufacturer instruc-
tions. The amount of extracted RNA was quantified and qualified
by NanoDrop� ND-1000 Spectrophotometer, NanoDrop Technolo-
gies, Wilmington, Delaware USA. The first strand cDNA was syn-
thesized by using RevertAidTM H Minus (Fermentas, life science,
Pittsburgh, PA, USA).
2.7.2. Primers for experimental genes
The primers pairs were designed according to the previously

published data as following AMPKa1 (ID: 65248); forward, 50-AT
CCGCAGAGAGATCCAGAA-30 and reverse 50-CGTCGACTCTCCTTTTC
GTC-30 (McCrimmon et al., 2006), IRA (ID: 24954); forward, 50-TT
CATTCAGGAAGACCTTCGA-30 and reverse, 50-AGGCCAGAGATGACA
AGTGAC-30, GLUT-2 (ID: 25351); forward, 50-TTAGCAACTGGGTCTG
CAAT-30, and reverse 50-TCTCTGAAGACGCCAGGA AT-30 (Alkaladi
et al., 2014), and ß-actin (ID: 81822); forward, 50- AGCCATGTACG-
TAGCCAT -30 and reverse 5- CTCTCAGCTGTGGTGGTGAA -30

(Batalha et al., 2016).
2.7.3. Real time PCR
One lL of cDNA was mixed with 12.5 lL of 2x SYBR� Green PCR

mix from BioRad, 5.5 lL of autoclaved water, and 0.5 lL (10 pmol/
lL) of each forward and reverse primer for the measured genes.
The house keeping gene b-actin was used as a control for normal-
ization. Fold change was calculated using the (2�DDct) method to
quantitate mRNA levels, according to Litvak and Schmittgen
(2001).
2.8. Statistical analysis

The obtained data was analyzed by using the statistical package
for social science (SPSS, 18.0 software, 2011). Differences among
groups was evaluated using one way ANOVA. Results were
expressed as mean ± SE. P values less than 0.05 were considered
to be significant.
3. Results

3.1. Fasting blood glucose (mg/dL) and serum insulin (µIU/mL) levels.

There were a significant decrease in the blood glucose levels in
diabetic rats received ginseng as compared to diabetic non-treated
rats. The insulin levels were significantly increased in diabetic rats
received ginseng also if compared with diabetic non-treated
groups at P < 0.05 (Table 1).



Table 2
Liver glucokinase and glycogen synthase activities in experimental rats.

Groups Glucokinase
(U/g liver tissue)

Glycogen synthase
(mU/mg protein)

Control 1.21 ± 0.02a 3.7 ± 0.08a

Normal + ginseng 1.43 ± 24a 3.5 ± 0.38a

Diabetic 0.16 ± 0.008b 1.98 ± 0.1c

Diabetic + ginseng 1.03 ± 0.05a 2.7 ± 0.22b

Means carrying different superscripts are significant at P < 0.05.
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3.2. Glucokinase (U/gm tissue) and glycogen synthase (mU/mg
protein) activities in liver tissues.

The activities of glucokinase and glycogen synthase were signif-
icantly increased in diabetic rats received ginseng if compared with
diabetic non-treated rats at p < 0.05 (Table 2).

3.3. Serum lipid profiles (mg/dL).

There were a significant decrease in the concentrations of total
cholesterol, tri-acylglycerols and LDL-cholesterol (mg/dL) in dia-
betic rats received ginseng if compared with the diabetic non-
treated rats. The level of HDL-cholesterol was significantly
decreased in diabetic rats received ginseng when compared with
diabetic non-treated rats at P < 0.05 (Table 3).

3.4. mRNA expression levels of AMPK, IRA, and GLUT2.

The mRNA expression levels of AMPK, IRA and GLUT2 proteins
was increased in the diabetic rats received ginseng if compared
with diabetic non-treated rats at P < 0.05 (Table 4).

4. Discussion

The present work studied the molecular and biochemical effects
of Panax ginseng on some enzymes and proteins related to glucose
metabolism in diabetic rats. The effect on AMPK mRNA expression
levels was estimated. The mRNA of AMPK showed the lowest
expression level among diabetic rats (0.45 ± 0.26), while its expres-
sion level was modulated and increased in all rats received gin-
seng, normal (1.02 ± 0.28) and diabetic (0.96 ± 0.11) respectively.
The results explained the great association between AMPK action
and the incidence of diabetes mellitus the matter which making
AMPK a popular target when study DM. recently it has been
demonstrated that activation of AMPK could promote the glucose
uptake by the cells (Na et al., 2018) and the ability of ginseng to
induce an up-regulation of AMPK expression in diabetic rats lead
to decline the blood glucose in experimental rats received ginseng
1.02 and 1.78 times in normal and diabetic rats respectively. The
same observations have been obtained in human by Choi et al.
2018, ginseng has induced lowering in blood glucose of diabetic
patients specially those of fasting blood glucose (FBG) of 110 mg/
dL or more (Choi et al., 2018). We also reported the effect of gin-
seng on serum insulin levels. Insulin level was increased by 1.42
times in diabetic rats received ginseng when compared with non
treated rats. In the same line, other studies reported the hypo-
glycemic effect of ginseng in diabetic/obese models (Kim et al.,
2017; Lee et al., 2017b; Sun et al., 2018), it has been reported to
induce an increase in serum insulin levels (Wang et al., 2017),
and improved the insulin tolerance (Deng et al., 2017) in diabetic
mice. There is a great prove now that the activation of AMPK can
lead to increasing insulin secretion and improve its tolerance
(Jung et al., 2018; Wu et al., 2018; Zhao et al., 2018). We can indi-
cate the effect of ginseng to reduce serum blood glucose and
increase serum insulin levels to its ability to induce up-
regulation of AMPK expression in diabetic rats. Coming with this
Table 1
Fasting blood glucose and serum insulin levels in experimental rats.

Groups Glucose (mg/dL) Insulin (µIU/mL)

Control 80.5 ± 14.3c 13.8 ± 0.51c

Normal + ginseng 78.3 ± 24c 13.2 ± 0.38c

Diabetic 298 ± 28.17a 7.9 ± 0.11a

Diabetic + ginseng 167.9 ± 3.4b 11.2 ± 0.23b

Means carrying different superscripts are significant at P < 0.05.
up-regulation there was a significant up-regulation of IRA and
GLUT2 (Fig. 1). Ginseng significantly increased the expression of
IRA and GLUT2 0.87 and 0.91 fold respectively in diabetic rats
received ginseng when compared to diabetic non-treated rats
0.36 and 0.48 fold respectively. In a similar study the effect of gin-
seng on insulin receptor has been reported to induce high expres-
sion in insulin receptor B (IRB) and insulin receptor substrate-1
(IRS) (Dai et al., 2018). Another study reported the ability of gin-
seng to induce up-regulation of insulin receptors in muscles of
metabolic syndrome rats (Kho et al., 2016). Our data regarding
mRNA expression of IRs come in accordance with the study of
(Cheon et al., 2015) which reported the increase IR mRNA expres-
sion in old-aged ob/ob mice received Panax ginseng for 16 weeks. In
this direction, our data proved the ability of ginseng to improve
insulin sensitivity in diabetic rats. There were many studies that
have demonstrated the effect of ginseng on GLUTs, it have been
reported that ginseng induced translocation of GLUT4 (Tabandeh
et al., 2015; Ota and Ulrih, 2017), up-regulation of GLUT4 in mus-
cles of diabetic rats (Lai et al., 2006; Kang et al., 2017), high expres-
sion levels of GLUT1 and GLUT4 in myotubes of diabetic rats (Seo
et al., 2016), increase the expression of GLUT1 and GLUT4 in livers
of diabetic mice (Jung and Kang, 2013; Xie et al., 2015), , and up-
regulation of GLUT4 in adipose tissue of diabetic rats (Kim and
Kim, 2012). Regarding GLUT2 mRNA expression levels our data
come in the same line of (Kang et al., 2017) which demonstrated
the high expression levels of hepatic GLUT2 hand by hand with
high phosphorylation of AMPK in diabetic mice received ginseng
for 4 weeks. Similar data have been come with the same line of
our observations regarding high expression levels of GLUT2 in dif-
ferent cell lines/tissues of diabetic models received ginseng
(Ohnishi et al., 1996; Gu et al., 2013; Liu et al., 2013). In general,
the ability of ginseng to increase the expression levels of GLUTs
and especially GLUT2 explained its ability to increase the uptake
of glucose by insulin targeted-cells especially liver cells. The matter
which translated to lower blood glucose in diabetic models
received ginseng. Also we showed that Panax ginseng induced a sig-
nificant increase in activities of hepatic GK (6.4 times) and GS (1.36
times) of diabetic rats received ginseng for 30 days if compared
with non-treated rats. Their activities also non significantly
increased in non-diabetic rats received ginseng when compared
with control. It well-known that hepatic GK activity and expression
are decreased in DM (Song et al., 2017), in the same way, we
observed the lowest activity of GK in diabetic non-treated rats. It
was also known that glycogen storage is impaired in livers of dia-
betic models due to impairment of GS (Ros et al., 2011) the matter
which leads to hyperglycemia. Many targets which have been used
to lower blood glucose in diabetic models targeted the activation of
the two enzymes. The activation of AMPK has lead to an increase in
GK and GS activities (Chen et al., 2018)). In our study, ginseng acti-
vated both GK and GS in diabetic rats. Ginseng has to increase GK
expression in adipocytes (Lee et al., 2017a) and induced the
expression of GK in pancreatic cells (Park et al., 2008), in the same
line, ginseng have to increase hepatic or muscles glycogen
deposition (Xie et al., 2015; Xu and Dou, 2016) through inhibition
of Glycogen synthase kinase (GSK) in hepatocytes (Kho et al., 2016;



Table 3
Serum lipids profile levels in experimental rats.

Groups Total cholesterol (mg/dL) Triglycerides (mg/dL) HDL-cholesterol (mg/dL) LDL- cholesterol (mg/dL)

Control 87.2 ± 1.35c 83.4 ± 2.51b 46.18 ± 2.93b 23.34 ± 1.59c

Normal + ginseng 81.9 ± 1.51c 82.2 ± 3.25b 48.87 ± 1.52b 15.9 ± 1.44d

Diabetic 171.8 ± 2.1a 119 ± 0.11a 38.3 ± 2.02a 99.5 ± 2.92a

Diabetic + ginseng 111.3 ± 2.83b 85 ± 1.92b 48.1 ± 1.56b 45.2 ± 2.17b

Means carrying different superscripts are significant at P < 0.05.

Table 4
mRNA expression levels of examined proteins in experimental rats.

Groups AMPK IRA GLUT2

Control 1.05 ± 0.20a 1.07 ± 0.21a 1.11 ± 0.28a

Normal + ginseng 1.02 ± 0.28a 1.03 ± 14a 1.05 ± 0.18a

Diabetic 0.45 ± 0.26b 0.36 ± 0.08b 0.48 ± 0.1b

Diabetic + ginseng 0.96 ± 0.11a 0.87 ± 0.05a 0.91 ± 0.22a

Means carrying different superscripts are significant at P < 0.05.

Fig. 1. Relationship between AMPK expression and IRA and GLUT2 expression in
hepatocytes.

Fig. 2. Correlation between AMPK expression and GK and GS activities in diabetic
rats.
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Zhang et al., 2016; Shi et al., 2018). Others conclude that ginseng
have to suppress the expression of GS (Seo et al., 2016). Although,
there were a lot of data about the molecular effect of ginseng on GK
and GS expressions, to the best of our knowledge, we are the first
record for the assessment of direct effect of Panax ginseng on the
enzymatic activities of hepatic GK and GS. On the contrary of our
data, authors reported the inhibitory effect of Panax ginseng on
ovarian Hexokinase (Li et al., 2015), while the study of (Chung
et al., 2001) on hepatic Hexokinase agreed with us. The ability of
ginseng to activate both GK and GS activities indicates how it
reduces blood glucose in diabetic rats. It does so through activating
both glucose oxidation (glycolysis) and increase glycogen deposi-
tion (glycogenesis) through AMPK activation pathway (Fig. 2). Also
lipids profiles tended to be reduced in diabetic rats received gin-
seng. Usually DM is characterized by an impairment of lipids meta-
bolism (Cantuaria et al., 2018). The progress of DM without
glycemic control by the way will induce distorted blood lipids pro-
file (dyslipidemia) (Levitt Katz et al., 2018). We tested the ability of
Panax ginseng to correct this impairment. In the present study, gin-
seng increased the levels of HDL-c and decreased TC, TGs, and LDL-
c. Our results come in accordance with the results obtained from
studying the effect of different types of ginseng on dyslipidemic
models. It has been reported that ginseng can reduce blood TGs
(Lee et al., 2017b), plasma TGs and cholesterol, LDL-c (Cheon
et al., 2015; Gui et al., 2016; Kim et al., 2016; Lee et al., 2016;
Chen et al., 2017; Kang et al., 2017; Shin and Yoon, 2018).
Although, others found that there was no significant change in
HDL-c levels between treated and non-treated models (Gui et al.,
2016), we reported an increase in serum HDL-c in diabetic rats
received ginseng. It has been reported that activation of AMPK will
targeted for all lipid metabolism processes leading to oxidation
(Sharma et al., 2018) and so will reduce blood lipids. We relate
the activity of ginseng to lower high lipid levels in diabetic rats
to its ability to activate AMPK. The overall observation indicated
that Panax ginseng can modulates the dyslipidemias originated
from DM.

5. Conclusion

In conclusion, the study pointed to the ability of Panax ginseng
to reduce blood glucose in diabetic rats through activation of AMPK
pathways, increase insulin secretion and tolerance, increase glu-
cose uptake and oxidation, and increase glycogen deposition in
liver cells.
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