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Recently, several studies have reported promising results with BERT-like methods on
acronym tasks. In this study, we find an older rule-based program, Ab3P, not only
performs better, but error analysis suggests why. There is a well-known spelling
convention in acronyms where each letter in the short form (SF) refers to “salient”
letters in the long form (LF). The error analysis uses decision trees and logistic
regression to show that there is an opportunity for many pre-trained models (BERT,
T5, BioBert, BART, ERNIE) to take advantage of this spelling convention.
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1 INTRODUCTION

Deep net models such as BERT (Devlin et al. (2019)), GPT (Brown et al. (2020)), ELMo (Peters et al.
(2018)), ERNIE (Sun et al. (2020)), T5 (Raffel et al. (2020)), BioBert (Lee et al. (2020)), BART (Lewis
et al. (2020)) have achieved record-setting performance on a wide range of tasks. However, there are
always opportunities for improvement.

It is standard practice in end-to-end machine learning to emphasize certain types of evidence and
de-emphasize other types of evidence. So too, in formal linguistics, following the discussion of
performance and competence in Chomsky (1965), there has been a tradition to emphasize certain
types of evidence, e.g., linguistic competence, sound and meaning, and de-emphasize other types of
evidence: linguistic performance, corpus statistics, orthography. Acronyms pose a challenge for these
practices in machine learning and linguistics since orthography plays an important role in acronyms.
There is a well-known spelling convention in acronyms where each letter in the short form (SF) refers
to “salient” letters in the long form (LF). We will compare deep nets with a rule-based system in §7,
and find that the rule-based system produces better F-scores because it takes advantage of
orthography. Error analysis in §8.1 will show that many of the errors in BERT, BART, ERNIE,
T5 and BioBERT involve orthography.

Acronyms are a special case ofmultiword expressions (MWEs) (Krovetz et al. (2011)). It is common in
certain types of technical writing to abbreviate compounds (and MWEs) with acronyms. The first
mention of an acronym in a document is likely to be a definition, where both the SF and LF are introduced
in a way that makes it clear that the SF will be used in subsequent mentions to refer to the LF. As we will
see in §3.2, some acronym tasks in the literature take advantage of definitions, though some do not.

2 WHAT DO WE MEAN BY MULTIWORD EXPRESSIONS?

Multiword expressions include many topics. Some treatments of MWEs distinguish idioms from
collocations and technical terminology (Barkema (1996)), though many of the linguistic tests
mentioned below apply to idioms as well as collocations, terminology and many other linguistic
phenomena.
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Baldwin and Kim (2010) provide the following examples of
MWEs:1

San Francisco, ad hoc, by and large, Where Eagles Dare, kick
the bucket, part of speech, in step, the Oakland Raiders, trip the
light fantastic, telephone box, call (someone) up, take a walk, do a
number on (someone), take (unfair) advantage (of), pull strings,
kindle excitement, fresh air

Some treatments are closer to linguistics and some are closer
to engineering. It is interesting to compare the linguistic
treatment in Figure 1 with the engineering treatment in
Figure 2. The taxonomy in Figure 1 emphasizes
linguistically interesting constructions such as idioms and
verbs, unlike the examples in Figure 2, where there are more
nouns phrases (collocations and technical terminology). Idioms
and verbs are central to many fascinating linguistic puzzles.
Noun phrases are more common, especially in corpora based on
technical documents.

Linguistic resources contain many instances of MWEs. Sag
et al. (2002) estimate that 41% or more of the entries in
WordNet 1.7 (Feldbaum (1998)) involve MWEs. MWEs are
even more frequent in technical writing such as medical
documents; 46% of the entries in MeSH contain spaces.
MeSH2 (Medical Subject Headings) is a controlled vocabulary
thesaurus from NLM (National Library of Medicine). 32 million
abstracts can be downloaded from PubMed3 with MeSH
annotations.

Linguistic discussions of MWEs often make use of linguistic
tests such as productivity and compositionality. Idioms tend to
have relatively fixed word order, and resist substitution.
Semantics tend to be non-compositional; in general, the
meaning of an idiom cannot be derived from the meaning of
the parts.

Distributional statistics also tend to be non-compositional.
That is, the frequency of the whole is not what one would expect
from the frequency of the parts. In other words, idioms tend to
have large pointwise mutual information (PMI) (Church and
Hanks (1990)), where the probability of the whole is larger than
chance (based on the parts). Goldberg and Levy (2014)
established a connection between PMI and more modern
methods such as static embeddings (Mikolov et al. (2013)).
Static embeddings are similar to deep nets such as BERT,
though those methods are referred to as contextual
embeddings to emphasize the fact that they capture more
contextual constraints than static embeddings. Both static and
contextual embeddings are taking advantage of Firth (1957): “you
shall know a word by the company it keeps.”

§8.3 will introduce freq, a frequency-based feature that will be
used in error analysis to identify additional opportunities for
improvement. Acronyms for herpes simplex virus and artificial
intelligence, for example, are defined in thousands of
documents. Since so many acronyms are defined in so many
documents, there are opportunities to take advantage of

constraints across documents in addition to constraints
within documents.

3 ACRONYM TASKS

3.1 Tasks
At least four acronym tasks have been proposed in the research
literature: ADI, SQuAD, AI and AD.

1) The ADI (Abbreviation Definition Identification) (Sohn et al.
(2008)) task takes one or more texts as input, and finds pairs of
short forms (SFs) and long forms (LFs) that are defined in the
input texts. There are no restrictions on the length of the
input texts.

2) SQuAD (Stanford Question Answering Dataset) (Rajpurkar
et al. (2016)) takes a question and a short document (containing
no more than 512 subword tokens) as input, and returns an
answer, where the answer is a span (substring) from the input
document. Many ( ∼ 1%) of the 100,000 SQuAD questions
involve acronyms, as shown in Figure 3.

3) AI (acronym identification)4 (Pouran Ben Veyseh et al., 2020)
takes a sentence as input. The input sentencemay contain SFs and/
or LFs. The task is similar to NER (named entity recognition).
Following Ramshaw andMarcus (1995), the NER task takes a text
as input and tags each input word with B, I or O, where B tags
begin a span (named entity), I tags are inside a span andO tags are
outside a span. The AI task replaces the 3 BIO tags with 5 tags:
B-short,B-long, I-short, I-long andO, whereB-short and I-short
are for SFs, and B-long and I-long are for LFs.

4) AD (acronym disambiguation)5 takes a sentence as input. The
input sentence contains an ambiguous SF. The task is to choose
the appropriate LF from a set of candidates, as illustrated in
Figure 4. The AD task is intended to be similar toWSD (word-
sense disambiguation) (Navigli (2009)).

The ADI task was proposed well before the other tasks, and
remains, in our opinion, a more realistic task for practical
applications. There are no constraints on the length of the
input documents for ADI, unlike the other tasks where the
input cannot exceed 512 subwords.

3.2 D Tasks vs. D-Less Tasks
D-tasks (ADI and SQuAD) take advantage of definitions (D), and
D-less tasks (AI and AD) do not. This paper will focus on D-tasks,
which are easier (and more useful) than D-less tasks because
definitions establish clear connections between SFs and LFs.

Definitions would be less common if they were unhelpful.
When authors make the effort to write definitions, we should pay
attention to what they have written. This paper will focus on
definitions, and will not attempt to make sense of acronyms taken
out of context, in contrast to D-less tasks, where definitions are
not included in the inputs to the system.

1https://people.eng.unimelb.edu.au/tbaldwin/pubs/altss2004.pdf
2https://www.ncbi.nlm.nih.gov/mesh/
3https://pubmed.ncbi.nlm.nih.gov/

4https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI
5https://github.com/amirveyseh/AAAI-21-SDU-shared-task-2-AD
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Consider the example in Figure 4. Definitions provide a clear
connection between SFs and LFs. Without definitions, SFs
would be much more ambiguous. The SF, MRC, for example,
can refer to a number of different LFs: machine reading
comprehension, maximal ratio combining, magnetic resonance
coupling. Many LF expansions are possible in other documents,
but definitions make it clear which LF is intended in this
document. In this case, the missing definition appears
immediately before the input sentence; see https://arxiv.org/
pdf/1805.07795.pdf for the larger context. The missing
definition is also presented in Figure 4, but labeled as not
included in the task.

If we take advantage of the definition, then all we need is
simple string matching because the SF and the LF appear next to
one another in the definition. Without the definition, the
disambiguation task becomes much more challenging. It may

well require so-called “AI complete” knowledge to connect the
dots between copper loops and magnetic resonance coupling.

4 LONG-DISTANCE DEPENDENCIES

Since the distance between the definition and subsequent mentions
is typically more than 512 subwords, we either need a D-less
mechanism for processing subsequent mentions, or a mechanism
for capturing long-distance dependencies (Chomsky (1956; 1957))
between definitions and subsequent mentions. There are many well-
known mechanisms for capturing these dependencies such as finite-
state automata (FSA) and recurrent neural networks (RNNs).

On the other hand, there are also good reasons to limit information
flows. Transformers such as BERT limit information flows for reasons
that are somewhat analogous to REST APIs. Representational state

FIGURE 2 | Examples of Multiword Expressions (MWEs) from WordNet, MeSH and arXiv.

FIGURE 3 | An example of the SQuAD (Stanford Question Answering Dataset) Task. The gold answer is a span, a substring from the input document.

FIGURE 1 | A taxonomy of Multiword Expressions (MWEs) from Sag et al. (2002).
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transfer (REST) is a widely accepted set of guidelines for creating
stateless, reliable program interfaces on theweb;much of the popularity
and success ofRESTAPIs can be attributed to the absence of state. State
(memory) is very powerful, which is both a blessing as well as a curse.
APIs with state can do more than APIs without state, but the industry
prefers simpler and more reliable APIs over more powerful APIs in
many use cases. So too, nets that can capture long-distance
dependencies can do more than nets that cannot capture long-
distance dependencies, but there are trade-offs between power and
other considerations such as simplicity and reliability.

If onewants to limit information flows, there are a couple of ways to
capture long-distance dependencies. One approach involves multiple
passes. For example, in footnote 12, we refer to a dictionary of tuples
< docId, SF,LF> that we extracted from a large collection of arXiv
documents. This can be thought of as a global memory that can pass
information over long distances between definitions and subsequent
mentions. These tuples can pass information both within and across
documents. §8.3 will introduce freq, a feature which takes advantage of
frequencies of SFs and LFs aggregated over many documents. §8.4 will
show that freq can be used to improve BERT’s performance.

Alternatively, we could increase the size of the context, though
there are a number of practical concerns. GPUmemory is expensive
and memory requirements grow quadratically with the length of the
input sequence because of attention mechanisms in most BERT-like
methods. That said, there are reasons to hope it might become more
feasible to relax the 512 limitation, given recent progress such as: Dai
et al. (2019); Zaheer et al. (2020); Kitaev et al. (2020); Wang et al.
(2020); Katharopoulos et al. (2020); Beltagy et al. (2020).

5 AB3P

Long inputs (more than 512 subword units) are not a problem for
older ADI systems developed more than a decade ago. Some of
these older systems use rules (Schwartz and Hearst (2002)) and
others (Kuo et al. (2009)) use machine learning methods that
predate transformers. One of the more effective solutions is Ab3P
(Abbreviation Plus Pseudo-Precision)6 (Sohn et al. (2008)).

Note that Ab3P is both the name of a program as well as the name
of a benchmark (a dataset plus gold labels for SF-LF pairs). This
confusion is admittedly unfortunate, but it reflects the fact that Sohn
et al. (2008) contributed in two importantways that have stood upwell
to the test of time. To avoid confusion, we will use “Ab3P system” and
“Ab3P benchmark” to distinguish the system from the benchmark.

The Ab3P system takes one or more texts as input and uses a
set of 17 manually-created rules to capture patterns such as:
Alpha Beta (AB), Alpha-Beta (AB), Alpha Betas (ABs), Alpha of
the Beta (AB). Rules like these can be implemented with FSAs,
making it possible to extract definitions and SF-LF pairs from
arbitrarily long inputs. These rules focus on definitions, as
opposed to D-less tasks (AI and AD) that attempt to connect
the dots between SFs and LFs without the benefit of definitions.

It is hard to compare D-tasks with D-less tasks, but two of the
four tasks in §3.1 are D-tasks, so they can be compared with one
another. In §7, we will compare Ab3P system with BERT-SQuAD.
Given all the excitement over recent advances in deep nets (Bengio
et al. (2021)), we were surprised to discover that deep nets for
SQuAD do not work as well as old-fashioned rules. In addition to
performance on standard benchmarks, the Ab3P systems has a
number of additional advantages that are important in practical
applications: speed, memory, cost, ease of use.

Practical applications such as Pubtator Central7 (Wei et al.
(2012, 2013, 2019); Leaman and Lu (2016)) are currently using
the Ab3P system. Pubtator is a web service for viewing and
retrieving annotations of PubMed documents. The Pubtator
service also provides links for downloading tens of millions of
abstracts with annotations for bioconcepts8 Full articles with
annotations are available for about 10% of the collection.

5.1 Standard Benchmarks for ADI Systems
Most evaluations of ADI systems use four standard benchmarks
based on PubMed, as shown in Table 1: Ab3P (Sohn et al. (2008)),
BIOADI (Kuo et al. (2009)), MEDSTRACT (Wren et al. (2005))
and SH (Schwartz and Hearst (2002)). These benchmarks include
input texts, typically PubMed abstracts, as well as gold labels for SFs

FIGURE 4 | An example of the AD (Acronym Disambiguation) Task. The system is asked to return one of the candidates. This task would be easier (and more
realistic) with more context (including definitions). Input sentences were selected from arXiv. This example comes from https://arxiv.org/pdf/1805.07795.pdf, where the
definition appears immediately before the input sentence.

6https://github.com/ncbi-nlp/Ab3P

7https://www.ncbi.nlm.nih.gov/research/pubtator/
8https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7323814

Church and Liu Acronyms and Opportunities

https://arxiv.org/pdf/1805.07795.pdf
https://github.com/ncbi-nlp/Ab3P
https://www.ncbi.nlm.nih.gov/research/pubtator/
https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


and LFs. The benchmarks do not specify how they were selected
from PubMed, though they appear to cover a broad set of topics in
biology, chemistry and medicine. The SF-LF pairs in the test sets
are defined in one of the sentences in the input text.Table 1 reports
the length of these definitions in characters. These benchmarks are
available for download in XML format, without markup9.

5.2 Acronyms From arXiv
There have been concerns that methods developed for these
benchmarks may not transfer well to other domains such as
arXiv papers. To address these concerns, we ran the Ab3P system
on 1.65M arXiv articles (with LATEXmarkup)10.

The Ab3P system was probably not designed for LATEX
input. We could have stripped the markup, though given the
lack of a clear consensus on how to strip markup,11 we decided
that it was simpler to see how well Ab3P would work without
stripping markup. We were pleasantly surprised to discover that
markup can be helpful, at least in certain cases, such as the use of
italics in definitions. Of course, there are other cases where
markup confuses Ab3P, such as equations.

Since we believe the arXiv acronyms will be useful to readers
interested in this topic, results are posted on GitHub12 (with some
filtering). After filtering, Ab3P found 8.3M SF-LF pairs (an
average of 5.0 pairs per article).

How well does Ab3P work on arXiv articles? Since we do not
have a test set for arXiv articles, we extracted a sample of 210 SF-LF
pairs from the Ab3P output described above (before filtering). Two
judges labeled each pair as either good 1) or bad (0). Judgments are
posted on GitHub (see footnote 12) under the eval subdirectory.
Results in Table 2 suggest that Ab3P agrees with the judges almost
as much as the judges agree with one another, at least after filtering.

The filter was simply a regular expression that required SFs to
contain at least two upper case letters. This filter was designed to
remove difficult cases that the judges were likely to disagree on, as
well as noise in Ab3P output such as fragments of mathematical
expressions in LATEX. This filter removed 49 of 210 SFs. Of the
49, both judges agreed that 36 were bad (0), and 10 were good
(1).13 The judges disagreed on the remaining 3 SFs.

Precision is easier to evaluate than recall. Table 2 shows
promising precision, but says little about recall. In other words,

it is easier to estimate errors of commission than errors of omission
on a collection that is too large to annotate exhaustively.

It is standard practice to report recall based on standard
benchmarks that are small enough to annotate exhaustively.
Although we will follow that standard practice in Table 3, we
are concerned that estimates of recall based on standard
benchmarks may be inflated since the community has been
working with these benchmarks for years/decades. There is too
much opportunity to tune for these benchmarks.

6 RELATED WORK

As mentioned above, the ADI task is similar to other tasks such
as: SQuAD, AI and AD. There is a considerable body of work on
all these tasks, though the literature on SQuAD14 is more
extensive than the literature on AI and AD because the AI
and AD tasks are newer. AI and AD were introduced at a
recent AAAI-2021 workshop, SDU@AAAI-202115 (Jaber and
Martínez (2021)). Deep nets such as BERT-SQuAD16 are the
method of choice in the question-answering (Q&A) literature
these days. Most of the papers at SDU@AAAI-2021 also used
deep nets.

As mentioned above, the AD task is similar to word-sense
disambiguation (WSD) and the AI task is similar to named entity
recognition (NER). Surveys on WSD (Navigli (2009)) and NER
(Nadeau and Sekine (2007)) cover much of the literature before
deep nets.

NER is used for a number of tasks that extract spans,
substrings of input texts, and label spans with tags. ACE17

used tags such as person, organization, location, etc.,
(Doddington et al. (2004)). Many benchmarks use BIO tags to

TABLE 1 | Four standard benchmarks for ADI evaluations.

Benchmark Corpus size SF-LF pairs Abstract (characters)

Ab3P benchmark 1250 PubMed Abstracts 1223 1378 ± 494
BIOADI 1200 PubMed Abstracts 1720 1456 ± 398
MEDSTRACT 199 PubMed Citations 159 1126 ± 411
SH 1000 PubMed Abstracts 979 1407 ± 464

TABLE 2 | Agreement on a sample of 210 SF-LF pairs from arXiv extracted with
the Ab3P system. After filtering, there are 161 pairs. See footnote 12 for these
judgments, as well as 8.3M SF-LF pairs.

Comparison Filtered (%) Unfiltered (%)

Judge 1 vs. Judge 2 96 95
Judge 1 vs. Ab3P system 94 77
Judge 2 vs. Ab3P system 96 80

9http://bioc.sourceforge.net/BioCresources.html
10https://arxiv.org/help/bulk_data
11https://tex.stackexchange.com/questions/252203/tex-to-plain-text-or-doc
12https://github.com/kwchurch/AB3P_arXiv
13The filter fails for a few exceptions where the SF contains no upper case letters:
“quaternionic contact (qc),” “proton-deuteron (pd)” and “metric measure spaces
(mm-spaces).”

14https://paperswithcode.com/sota/question-answering-on-squad20
15https://sites.google.com/view/sdu-aaai21/home
16https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-
squad
17https://www.ldc.upenn.edu/collaborations/past-projects/ace
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label spans. Each word in the input text is tagged as B (begins a
span), I (inside a span) or O (otherwise). Some benchmarks
introduce tags such as B-disease and B-chemical to distinguish
disease entities from chemical entities. Lee et al. (2020) show
BioBERT, a version of BERT trained on PubMed abstracts, is
effective on a number of such NER benchmarks:18.

1) NCBI disease (Doğan et al. (2014)).
2) i2b2/VA (Uzuner et al. (2011)).
3) BC5CDR (Li et al. (2016)).
4) BC4CHEMD (Krallinger et al. (2015)).
5) BC2GM (Smith et al. (2008)).
6) JNLPBA (Kim et al. (2004)).
7) LINNAEUS (Gerner et al. (2010)).
8) Species-800 (Pafilis et al. (2013)).

Much of the work on these benchmarks has been incorporated
into PubTator (see footnote 8). PubTator identifies NER spans
and tags them with six bioconcepts: genes, diseases, chemicals,
mutations, species and cell lines. PubTator also links entities to
ontologies such as MeSH. PubTator links the gene p53, for
example, to different points in the ontology for different
species: humans, mice, fruit flies, etc. Pubtator makes it easy to
download millions of abstracts and papers with these annotations.

There have been concerns that work based on PubMed may
not generalize well to other domains. For this reason, the AI and
AD benchmarks at SDU@AAAI were based on arXiv documents,
as opposed to PubMed documents.

As mentioned above, this paper will focus on D tasks (ADI,
SQuAD) as opposed to D-less tasks (AI and AD). D-less tasks
attempt to address difficult problems that are similar toWSD and
NER, but there is no need to address these difficult problems
because definitions and larger contexts make the task much
easier, as discussed in Figure 4. In that example, there is a
very useful definition, but it was not included in the inputs to
the system, even though the definition appears immediately
before the sentence that was provided as input to the system.

7 BERT-SQUAD: AN ALTERNATIVE TO
AB3P FOR ADI

The task of finding LFs can be reduced to a Q&A task by
converting SFs to questions of the form: What does < SF>

stand for? If the document is a definition, then BERT-SQuAD
will often return the LF.

Five short ( ∼ 30 lines) SQuAD programs for BERT, BART,
BioBERT, ERNIE and T5 have been posted on GitHub.19 The
code has been simplified as much as possible, to make it easy to
see what it is doing, and what it is not doing. These programs read
SFs and definitions from standard input, and output LFs to
standard output.

Note that this task is somewhat easier than ADI where the
input is an arbitrarily long text, and the program is not only
expected to find LFs, but also definitions and SFs. For the
comparisons in Table 3, we give BERT-SQuAD a few unfair
hints from the Ab3P system. In particular, we use Ab3P to find
the SF and the sentence containing the relevant definition.20 Even
with these unfair hints, BERT-SQuAD is less effective than Ab3P,
as shown in Table 3.

8 ERROR ANALYSIS

Error analysis shows that many of the errors are “off-by-one.”
That is, LF candidates from BERT-SQuAD tend to contain one
word too many or one word too few, as shown in Tables 4, 5.21.

It is common for definitions to parenthesize either the LF or
the SF:

1) AB (Alpha Beta)
2) Alpha Beta (AB)

There are relatively few errors in the first case because the LF is
delimited on both sides by parentheses. In the second case, the
right edge of the LF is relatively easy because the LF is delimited
by a parenthesis between the LF and the SF. The crux is to
determine the left edge of the LF. Most of the “off-by-one” errors
involve the left edge of the second case.

8.1 Charmatch
What is BERT-SQuAD missing? As suggested above, it appears
that BERT is failing to take advantage of the crucial spelling
convention. Consider the example from Table 5: healthy controls
(HC). In this case, BERT-SQuAD drops the first word from the
LF, returning controls instead of healthy controls. BERT’s
candidate violates the spelling convention where the characters
in the SF should match the salient (red) characters in the LF. It is
relatively easy for the Ab3P system to capture this spelling
convention with rules such as regular expressions. A quick
inspection of the BERT-SQuAD program in footnote 19,
however, suggests that BERT-SQuAD does not attempt to
capture this spelling convention. It ought to be possible, of

TABLE 3 | Ab3P has better F-scores on four standard benchmarks based on
PubMed.

Benchmark Ab3P System BERT-SQuAD

Ab3P Benchmark 0.889 0.794
BIOADI 0.838 0.698
MEDSTRACT 0.943 0.844
SH 0.858 0.769

18https://github.com/dmis-lab/biobert-pytorch/tree/master/named-entity-
recognition

19https://github.com/kwchurch/bert_acronym.py/blob/main/bert_acronym.py
20Most of these sentences were short enough to meet the 512 subword limit, but a
few sentences were too long. For this reason, we found it necessary to wrap the code
to catch errors associated with long inputs. Some statistics on the lengths of
definitions are reported in Table 1.
21Note that F-scores in Table 3 should not be compared with %Correct in Table 4.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7323816

Church and Liu Acronyms and Opportunities

https://github.com/dmis-lab/biobert-pytorch/tree/master/named-entity-recognition
https://github.com/dmis-lab/biobert-pytorch/tree/master/named-entity-recognition
https://github.com/kwchurch/bert_acronym.py/blob/main/bert_acronym.py
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


course, for deep nets to capture the convention with a
combination of token-based and character-based nets.

The point of this paper is not so much to improve
performance; the Ab3P system is already doing very well, with
performance close to inter-annotator agreement, as suggested in
Table 2. This paper is more concerned with setting appropriate
expectations. Deep nets often outperform traditional methods,
but not always. Traditional methods are likely to do well when
there is an obvious rule like the spelling convention that does not
fit neatly into the deep net framework.

We hypothesize that BERT-SQuAD is missing the spelling
constraint. To test this hypothesis, we introduce a simple Boolean
feature, charmatch, that compares the first character of the SF to
the first character of the candidate LF. Table 6 shows that
candidates from BERT-SQuAD are more likely to be correct
when these characters match, confirming the hypothesis.

This charmatch feature is easier to implement than the more
general spelling constraint involving salient characters, since it can be
tricky to define what counts as “salient.” Given the crux mentioned
above, the first character is helpful for identifying the left edge of the
LF, and the left edge addresses the bulk of the opportunity.

There are, of course, a few examples where the charmatch
heuristic is unhelpful. The first character of the LF is not always
the same as the first character of the SF in a few exceptions such as
“chloride current (ICl)” and “transepithelial resistance (Rt).”

8.2 Using Decision Trees in Error Analysis
Figures 5, 6 use decision trees to establish the usefulness of
charmatch. Note that all but one of the trees split on charmatch,
suggesting that charmatch offers important information that is
not already captured by deep nets such as BioBERT, BERT,
BART, ERNIE and T5.

These trees were created with the rpart package22 in R. Rpart
takes a data table and an equation as input, and outputs a decision
tree. Figures 5, 6 are based on four data tables and three Eqs 1–3.

gold ∼ rank + charmatch (1)

gold ∼ rank + charmatch + biobert (2)

gold ∼ rank + charmatch + bert + bart + ernie + t5 + biobert

(3)

The data tables are constructed as follows. For each benchmark
(Ab3P, BIOADI, MESTRACT and SH), use the Ab3P system to
extract SFs and sentences containing definitions. Run BERT-
SQuAD to find 5 candidate LFs for each SF. The 5 candidates
are assigned a rank between 0 (top position) and 4.

Each candidate is also assigned seven binary features:

• gold: 1 iff the LF candidate is correct
• charmatch: 1 iff the first character of the SF is the same as the
first character of the candidate LF (ignoring upper and lower
case).

• bert, bart, ernie, t5, biobert: 1 iff the candidate LF was found
by bert, bart, ernie, t5, biobert, respectively (ignoring white
space).

The plots report three numbers for each node: 1) best label, 2)
accuracy of best label and 3) coverage. Coverage values sum to 100%
at each level in the tree. For example, at the root, there is a single
node with 100% coverage (by construction). At the next level, there
are two daughters. Again, by construction, since the training data has
5 candidates, and one of them is usually correct, then the gold set
consists of about 20% 1s and 80% 0s. As a result, the first split usually
covers 20% of the input with a label of 1, and 80% with a label of 0.

The accuracy of this first split, however, depends on the deep
net in question. Compare the left four trees with the right four
trees in Figure 5. Note that the accuracy of the first split is
considerably better in the right panel, because BioBert is better
than BERT. When the decision tree has access to the biobert
feature (right four trees), then it will split on that, and ignore rank
from BERT. Otherwise (left four trees), the first split is on the top
choice from BERT (rank 0).

In Figure 5, the split at the next level is on charmatch. As
mentioned above, the splits on charmatch suggest that charmatch
is bringing new information to the table that is not already
provided by the deep nets.

Figure 6 provides additional evidence in favor of biobert and
charmatch. The trees on the left are the same as the trees on the right,
but the trees on the left were given seven input features (Eq. 3),
whereas the trees on the right were given just three input features (Eq.
2). Under a decision tree framework, the 2 input features, biobert and
charmatch are more useful than the other 5: rank, bert, bart, t5, ernie.

To summarize this subsection, decision trees make a strong case for
the value of charmatch. Decision trees are easy to interpret, and work
well for binary features like charmatch. Other methods such as logistic
regressionmay bemore effective for error analysiswith gradient features
such as rank and freq. Decision trees could have introduced splits
between the second best candidate (rank 1) and third best candidate
(rank 2), but none of the trees did that.While the discussion of decision
trees in this subsection failed to showa significant difference between the
secondbest candidate and the thirdbest candidate, §8.4will use a logistic
regression framework to make that distinction. The logistic regressions
will also make use of an additional feature, freq.

8.3 Freq
In addition to charmatch, we identified another promising
feature, freq, that takes advantage of constraints across
documents. Consider the example from Table 5: Latent herpes
simplex virus (HSV) has been demonstrated in . . . As mentioned
in Table 4, BERT-SQuAD is often off by one. In this case, the
candidate LF is one word too long: Latent herpes simplex virus.
This example is relatively easy because both the charmatch and
freq features point in the correct direction.

TABLE 4 | Many LF candidates from BERT-SQuAD are off by one word.

Benchmark Correct (%) Off-by-one (%) Otherwise (%)

Ab3P Benchmark 87 10 3
BIOADI 83 11 6
MEDSTRACT 88 8 3
SH 80 14 6

22https://cran.r-project.org/web/packages/rpart/rpart.pdf
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The freq feature takes advantage of the fact that many of these
SFs are defined in thousands of PubMed abstracts. The freq feature
uses suffix arrays (Manber andMyers (1993)) to count the number
of matches of: LF + ‘(’ + SF in PubMed. In this example, we found

6075 instances of “herpes simplex virus (HSV”, but only 8 instances
of “Latent herpes simplex virus (HSV.” Of course, raw frequencies
need to be normalized appropriately because shorter strings tend to
be more frequent than longer strings.

TABLE 6 | BERT-SQuAD does not capture charmatch.

Benchmark Pr (correct charmatch = 0) Pr (correct charmatch = 1)

Ab3P Benchmark 0.15 0.96
BIOADI 0.07 0.94
MEDSTRACT 0.18 0.98
SH 0.10 0.94

FIGURE 5 | All but one of these decision trees split on charmatch, suggesting that charmatch is bringing new information not captured by the first split. There are 8
trees (4 benchmarks and 2 equations). The four trees on the left use Eq. 1 and the four on the right use Eq. 2.

TABLE 5 | Some examples of BERT-SQuAD errors.

SF LF Candidate Context

DL limen This study examined and compared bilabial compression force difference limen (DL) values . . .

HSV Latent herpes simplex virus Latent herpes simplex virus (HSV) has been demonstrated . . .

HC controls . . .in healthy controls (HC) T cells . . .

PDT bedside percutaneous dilational
tracheostomy

. . .who were treated with bedside percutaneous dilational tracheostomy (PDT) because of . . .

PD transepithelial potential difference . . .by means of transepithelial potential difference (PD),. . .
CK Total creatine kinase Total creatine kinase (CK) and CK-B activity in . . .

EC human embryonal carcinoma . . .pluripotent human embryonal carcinoma (EC) cells,. . .
PI Serine proteinase inhibitor Serine proteinase inhibitor (PI)-9 with a . . .

RPMS perceived muscle soreness . . .and rating of perceived muscle soreness (RPMS) on five consecutive mornings
AVMs cerebral arteriovenous malformations Fifty-one patients with 59 angiographically proven cerebral arteriovenous malformations (AVMs) were examined

by . . .

hAR androgen receptor The human androgen receptor (hAR) is a . . .
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8.4 12 Models: Rank + Charmatch + Freq
This section adds logistic regression to the error analysis to
avoid difficult normalization and feature combination
questions. Table 7 established plenty of opportunities for
reranking to improve performance. The decision trees in §8.2
make it clear that top position (rank 0) is more likely to be
correct than other positions, but Table 7 makes the stronger
statement: candidates with smaller ranks are more likely to be
correct than candidates with larger ranks. Decision trees showed
that the top candidate is better than the second candidate, but
they did not show that the second best candidate is better than
the third best candidate. We will use logistic regressions to make
the stronger statement.

This section introduces a dozen logistic regression models to
rerank the top 5 candidates from BERT. As shown in Table 8,
models 1–4 use Eq. 4, models 5–8 use Eq. 5 and models 9–12 use
Eq. 6. y comes from the four gold sets: models 1,5 and 9 use the
Ab3P benchmark for y, models 2, 6 and 10 use BIOADI, models 3,
7 and 11 use MEDSTRACT, and models 4, 8 and 12 use SH.

y ∼ rank (4)

y ∼ rank + charmatch (5)

y ∼ rank + charmatch + log(1 + freq) (6)

Coefficients are shown in Table 9. All coefficients are
significant. Reranking sorts candidates by z, as defined in
Table 9. Pr (correct) ≈ σ(z) where σ(z) � 1/(1 + e−z).

One of the advantages of simple models like regression is
interpretability. The fact that all the coefficients are significant
means that all three features are useful. If BERT-SQuAD was
already taking advantage of these opportunities, then β2 and β3
should not be significant, and performance for models 5–12
should be no better than models 1–4.

The boxplots in Figure 7 show that models with more features
are better than models with fewer features. That is, both
charmatch and freq are contributing additional information
that is not being captured already by BERT-SQuAD. The
boxplots in the left panel summarize 48 bars in the right
panel. The 48 bars cover all combinations of the 12 models

FIGURE 6 | The decision trees on the left are based onEq. 3whereas the trees on the right are based onEq. 2. The fact that the trees on the left are the same as the
trees on the right suggests that 2 features (charmatch and biobert) are as useful as all 7 (rank, charmatch, bert, bart, ernie, t5 and biobert).
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and the four benchmarks. The boxplots make it easier to see
contributions from charmatch and freq, whereas the 48 bars are
complicated by other factors that might be distracting such as the
fact that some benchmarks are easier than others.

The fact that β1 < 0 in all 12 models suggests that less is more, at
least for rank. That is, candidates are more likely to be correct if they
have smaller ranks (near the top of n-best list from BERT-SQuAD).
Recall that decision trees in §8.2 were able to show the top candidate
was better than other candidates, but they were not able to make the
strong statement about candidates in other positions.

The fact that β2 > 0 and β3 > 0 suggests that more is more for
charmatch and freq. That is, candidates are more likely to be
correct if they have more of these features. The best candidates
will pass the charmatch test, and they will be defined together in
many other documents.

Table 10 shows thatmodels withmore features aremore confident.
Models with more features are not only more likely to be correct, but
the log likelihood scores are larger when they are correct. This is
additional evidence that BERT-SQuAD is not capturing charmatch
(spelling conventions) and freq (constraints across documents).

9 DISCUSSION AND FUTURE WORK

9.1 Document-Level Context: First Mention
vs. Subsequent Mentions
It is common in linguistics to distinguish first mentions from
subsequent mentions. For acronyms, the first mention is often a
definition that connects the dots between a SF and a LF. These
definitions enable subsequent mentions to be shortened to the SF,
avoiding unnecessary repetitions of the LF.

Acronyms can be viewed as a special case of references that
span well beyond the level of a sentence. There has been
considerable discussion of given/new information (Chafe
(1974); Clark and Clark (1977); Prince (1981); Terken and
Hirschberg (1994)) where the first mention (new information)
tends to be accented (emphasized when spoken), unlike
subsequent mentions (given information).

The distinction between first mentions and subsequent
mentions is also important for coreference (Hobbs (1979);
Elsner and Charniak (2008); Baumann and Riester (2013)),
where subsequent mentions tend to be shorter (and less
emphasized) than first mentions. Subsequent mentions are often
just a pronoun. It is common to refer to the first mention asmarked
and subsequent mentions as unmarked. In news articles, for

example, the first mention of a person is likely to include a full
name along with a role such as “spokesman” unlike subsequent
mentions which are reduced to a surname or a pronoun.

From a statistical point of view, the first mention of a concept
tends to be more surprising (less likely), but once an unusual term
has been put on the table, it is much more likely to be mentioned
again. Church (2000) reported that Noriega was not likely to be
mentioned in the AP news. Only 0.78% of AP articles mentioned
Noriega, even in 1990 when the US invaded his country
(Panama). But if one of those articles mentioned him once, it
is very likely that he will be mentioned again.

In general, for almost all words, and especially for content
words and good keywords for information retrieval (such as
acronyms), first mentions are more surprising (less likely) than
subsequent mentions (Church and Gale (1995); Katz (1996)):

Prw(k≥ 1)≪Prw(k≥ 2|k≥ 1) (7)

where Prw(k) be the probability of seeing exactly k instances of a
word w in a document. Thus, Prw(k ≥ 1) is the probability that w
will be mentioned in a document, and Prw(k ≥ 2|k ≥ 1) is the
probability that w will be mentioned again, given that it was
mentioned at least once.

Under standard independence assumptions (such as a
Poisson process), one would expect the first mention to be
about equally likely as the second mention, but these
assumptions ignore document-level contexts, which are
important for tasks such as information retrieval (and
perhaps acronyms). The difference between the first
mention and subsequent mentions can be large, often a
couple of orders of magnitude, especially for good search
terms like Noriega. In the case of Noriega in 1990 AP news,
the first mention, Prw(k ≥ 1) ≈ 0.79%, is almost 100x smaller
than subsequent mentions, Prw(k ≥ 2|k ≥ 1) ≈ 71%.

These observations have consequences for acronyms. Good
keywords tend to be repeated within documents. SFs are also
likely to be repeated. If a definition introduces a SF, there is a
strong presupposition that the SF will be used again later in the
document. Otherwise, if the SF is not used again, the definition
serves little purpose.

This repetition property could be used to avoid the filter in
§5.2 for fragments of mathematical expressions in LATEX. Such
fragments have distributions that are closer to Poisson, unlike
SFs, which are more likely to be repeated.

9.2 Constraints Within and Across
Documents
The experiments in this paper focus on definitions, though in future
work, we would like to consider unusual documents that refer to

TABLE 7 | # correct by rank (position in n-best list). The top choice (rank 0) is often
correct, but there is plenty of room for improvement since there are correct
candidates in ranks 1–4.

Rank Benchmark

Ab3P Benchmark BIOADI MESTRACT SH

0 920 1129 128 698
1 85 103 11 58
2 19 124 3 25
3 8 68 4
4 6 33

TABLE 8 | Twelve regression models: 1–12. The gold labels, y, depend on the
columns, and the number of input features, x, depends on the rows.

Equation Ab3P benchmark BIOADI MEDSTRACT SH

Eq. 4 1 2 3 4
Eq. 5 5 6 7 8
Eq. 6 9 10 11 12
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acronyms without definitions. There may be some opportunities to
take advantage of resources such as a dictionary of acronyms derived
from arXiv documents (as described in footnote 12).

As mentioned above, acronyms tend to be defined before they
are used, though there are a few exceptions for acronyms that are
extremely well known such as RADAR, SONAR, PCR, PCA, AI.
In some cases, acronyms may not be defined because the SF is
more memorable and more meaningful than the LF. Some
examples of memorable SFs involve the recent interest in
Sesame Street: BERT (Devlin et al. (2019)), ERNIE (Sun et al.
(2019)) and Elmo (Peters et al. (2018)).

Although acronyms are sometimes used in a paper without
definition, it is often possible to find a definition in other
papers. Thus, one can construct a dictionary of SFs and LFs,
even for well-known acronyms, by running Ab3P on a large

corpus of documents, and aggregating SF-LF pairs over many
documents.

Consider the acronym, AI, which is often used without
definition. However, there are many definitions of this
acronym in the 1.65M arXiv articles mentioned in §5.2.
Among the 8.3M SF-LF pairs extracted by Ab3P, there are
5243 pairs with LF expansions for AI. The most common LF
expansion is artificial intelligence, not surprisingly, though there
are a number of other possibilities including: Anderson insulator,
absorption index, asynchronous irregular, atom interferometer,
autoionization and many more. There are more than 4k
expansions of AI as artificial intelligence, with some variation
in the use of upper and lower case, as well as italics. In a few
articles, the LF is in a language other than English.

Although a SF such as AI can refer to different LFs in
different documents, it is unusual for a SF to be used in two
different ways within the same document. This article is an
exception, since we use AI to refer to both Acronym
Identification as well as Artificial Intelligence. Most
documents are not exceptional in this way, and obey a “one
sense per discourse” constraint like word senses (Gale et al.
(1992)), creating opportunities for systems that take advantage
of larger document-level contexts that span well beyond
sentences (and batches of 512 subword tokens).

TABLE 9 | Twelve logistic regression models: z � β0 + β1 rank + β2 charmatch + β3 log (1 + freq).

Coef Model

1 2 3 4 5 6 7 8 9 10 11 12

β0 1.6 0.7 1.9 1.4 −1.2 −2.5 −1.0 −1.9 −2.7 −5.2 −3.2 −3.1
β1 −3.3 −1.6 −3.9 −3.3 −3.2 −1.5 −4.0 −3.2 −2.9 −1.5 −3.8 −2.9
β2 0 0 0 0 3.5 3.8 3.9 4.1 3.7 5.2 4.7 4.3
β3 0 0 0 0 0 0 0 0 0.3 0.5 0.4 0.3

FIGURE 7 | More features → better F-scores; boxplots (left panel) summarize 48 bars (right panel).

TABLE 10 |Models with more features are more confident when they are correct.
Models 1–4 use a single feature (rank). Models 5-8 add charmatch. Models
9–12 add freq. Confidence is estimated as median σ(z) for correct candidates.

Features Ab3P benchmark BIOADI MEDSTRACT SH

1 (Models 1–4) 0.829 0.660 0.865 0.796
2 (Models 5–8) 0.908 0.787 0.945 0.901
3 (Models 9–12) 0.936 0.948 0.975 0.949
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10 CONCLUSION

This paper discussed methods for extracting short forms (SFs) and
long forms (LFs) of acronyms, an interesting special case of
Multiword Expressions (MWEs). Given all the recent excitement
over deep nets, we were surprised to discover that older rule-based
methods are still being used in practical applications such as Pubtator.
In our experience, the Ab3P system is better than deep nets on the
ADI task, not only in terms of precision and recall, but also in terms
of speed,memory and ease of use.We ran theAb3P system on 1.65M
arXiv articles and posted 8.3M SF-LF pairs on GitHub.

We also posted 5 short ( ∼ 30 line) programs on GitHub for
extracting LFs using pretrained models fine-tuned for SQuAD.
The 5 programs are based on BERT, BART, ERNIE, T5 and
BioBERT. These programsmake it clear what deep nets are doing,
and what they are not doing.

We are not advocating decision trees and reranking as a practical
solution, but merely as a method for error analysis. The proposed
reranking method addresses the question: what is BERT missing?
Reranking identified at least two answers: spelling conventions
(charmatch) and constraints across documents (freq).

For practical applications, there may not be much room for
improvement over the Ab3P system. Ab3P is already doing very

well on the four standard benchmarks in Table 1. We also
reported promising results in Table 2, with precision close to
inter-annotator agreement.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in this
repository: https://github.com/kwchurch/AB3P_arXiv. Example
code for the AD task can be found in this repository: https://
github.com/kwchurch/bert_acronym.py.

AUTHOR CONTRIBUTIONS

KC and BL conceived the project. KC and BL performed
experiments and analyses. KC wrote the paper.

ACKNOWLEDGMENTS

We thank Zeyu Chen for insights with ERNIE and BERT.We also
thank the reviewers.

REFERENCES

Baldwin, T., and Kim, S. N. (2010). Multiword Expressions. Handbook Nat. Lang.
Process. 2, 267–292.

Barkema, H. (1996). Idiomaticity and Terminology: A Multi-Dimensional
Descriptive Model. Studia linguistica 50, 125–160.

Baumann, S., and Riester, A. (2013). Coreference, Lexical Givenness and Prosody
in German. Lingua 136, 16–37. doi:10.1016/j.lingua.2013.07.012

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The Long-Document
Transformer. arXiv preprint arXiv:2004.05150.

Bengio, Y., Lecun, Y., andHinton, G. (2021). Deep Learning for Ai.Commun. ACM
64, 58–65. doi:10.1145/3448250

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). Language Models Are Few-Shot Learners. NeurIPS.

Chafe, W. L. (1974). Language and Consciousness. Language 50, 111–133.
doi:10.2307/412014

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT press.
Chomsky, N. (1957). Syntactic Structures. Cambridge, MA: Moutno & Co.
Chomsky, N. (1956). Three Models for the Description of Language. IEEE Trans.

Inform. Theor. 2, 113–124. doi:10.1109/tit.1956.1056813
Church, K. W. (2000). Empirical Estimates of Adaptation: The Chance of Two

Noriegas Is Closer to P/2 Than P2. In COLING 2000 Volume 1: The 18th
International Conference on Computational Linguistics.

Church, K. W., and Gale, W. A. (1995). Poisson Mixtures. Nat. Lang. Eng. 1,
163–190. doi:10.1017/s1351324900000139

Church, K. W., and Hanks, P. (1990). Word Association Norms, Mutual
Information, and Lexicography. Comput. Linguistics 16, 22–29.

Clark, H. H., and Clark, E. V. (1977). Psychology and Language. New York:
Harcourt Brace Jovanovich.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and Salakhutdinov, R. (2019).
Transformer-xl: Attentive LanguageModels beyond a Fixed-Length Context. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 2978–2988. doi:10.18653/v1/p19-1285

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 1. Minneapolis,

Minnesota: Association for Computational Linguistics), 4171–4186. Long and
Short Papers. doi:10.18653/v1/N19-1423

Doddington, G. R., Mitchell, A., Przybocki, M. A., Ramshaw, L. A., Strassel, S. M.,
and Weischedel, R. M. (2004). The Automatic Content Extraction (Ace)
Program-Tasks, Data, and Evaluation. Lrec (Lisbon) 2, 837–840.

Doğan, R. I., Leaman, R., and Lu, Z. (2014). Ncbi Disease Corpus: a Resource for
Disease Name Recognition and Concept Normalization. J. Biomed. Inform. 47,
1–10. doi:10.1016/j.jbi.2013.12.006

Elsner, M., and Charniak, E. (2008). Coreference-inspired Coherence Modeling. In
Proceedings of ACL-08: HLT, Short Papers. Columbus, Ohio: Association for
Computational Linguistics, 41–44. doi:10.3115/1557690.1557702

Feldbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT press.
Firth, J. R. (1957). A Synopsis of Linguistic Theory. Stud. linguistic Anal.,

1930–1955.
Gale, W. A., Church, K. W., and Yarowsky, D. (1992). One Sense Per Discourse. In

Speech and Natural Language: Proceedings of a Workshop Held at Harriman,
February 1992. New York, 23–26. doi:10.3115/1075527.1075579

Gerner, M., Nenadic, G., and Bergman, C. M. (2010). Linnaeus: a Species Name
Identification System for Biomedical Literature. BMC bioinformatics 11, 85–17.
doi:10.1186/1471-2105-11-85

Goldberg, Y., and Levy, O. (2014). word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Hobbs, J. R. (1979). Coherence and Coreference*. Cogn. Sci. 3, 67–90. doi:10.1207/
s15516709cog0301_4

Jaber, A., and Martínez, P. (2021). “Participation of Uc3m in Sdu@ Aaai-21: A
Hybrid Approach to Disambiguate Scientific Acronyms,” in SDU@ AAAI.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). “Transformers Are
Rnns: Fast Autoregressive Transformers with Linear Attention,” in Proceedings
of the 37 th International Conference onMachine Learning, Online, PMLR 119,
5156–5165. Available at: http://proceedings.mlr.press/v119/katharopoulos20a/
katharopoulos20a.pdf

Katz, S. M. (1996). Distribution of ContentWords and Phrases in Text and Language
Modelling. Nat. Lang. Eng. 2, 15–59. doi:10.1017/s1351324996001246

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., and Collier, N. (2004). Introduction
to the Bio-Entity Recognition Task at Jnlpba. In Proceedings of the
international joint workshop on natural language processing in biomedicine
and its applications, JNLPBA '04 Geneva, Switzerland: Citeseer, 70–75.
doi:10.3115/1567594.1567610

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 73238112

Church and Liu Acronyms and Opportunities

https://github.com/kwchurch/AB3P_arXiv
https://github.com/kwchurch/bert_acronym.py
https://github.com/kwchurch/bert_acronym.py
https://doi.org/10.1016/j.lingua.2013.07.012
https://doi.org/10.1145/3448250
https://doi.org/10.2307/412014
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1017/s1351324900000139
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.jbi.2013.12.006
https://doi.org/10.3115/1557690.1557702
https://doi.org/10.3115/1075527.1075579
https://doi.org/10.1186/1471-2105-11-85
https://doi.org/10.1207/s15516709cog0301_4
https://doi.org/10.1207/s15516709cog0301_4
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
https://doi.org/10.1017/s1351324996001246
https://doi.org/10.3115/1567594.1567610
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Kitaev, N., Kaiser, L., and Levskaya, A. (2020). Reformer: The Efficient
Transformer. CoRR abs/2001.04451.

Krallinger, M., Rabal, O., Leitner, F., Vazquez, M., Salgado, D., Lu, Z., et al. (2015).
The Chemdner Corpus of Chemicals and Drugs and its Annotation Principles.
J. Cheminform 7, S2–S17. doi:10.1186/1758-2946-7-S1-S2

Krovetz, R., Deane, P., and Madnani, N. (2011). The Web Is Not a PERSON,
Berners-lee Is Not an ORGANIZATION, and African-Americans Are Not
LOCATIONS: An Analysis of the Performance of Named-Entity Recognition.
In Proceedings of the Workshop on Multiword Expressions: from Parsing and
Generation to the Real World. Portland, Oregon, USA: Association for
Computational Linguistics, 57–64.

Kuo, C. J., Ling, M. H., Lin, K. T., and Hsu, C. N. (2009). Bioadi: a Machine Learning
Approach to Identifying Abbreviations and Definitions in Biological Literature.
BMC bioinformatics 10 Suppl 15, S7–S10. doi:10.1186/1471-2105-10-S15-S7

Leaman, R., and Lu, Z. (2016). Taggerone: Joint Named Entity Recognition and
Normalization with Semi-markov Models. Bioinformatics 32, 2839–2846.
doi:10.1093/bioinformatics/btw343

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., et al. (2020). Biobert: a
Pre-trained Biomedical Language Representation Model for Biomedical
Text Mining. Bioinformatics 36, 1234–1240. doi:10.1093/bioinformatics/
btz682

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., et al.
(2020). BART: Denoising Sequence-To-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, 7871–7880. doi:10.18653/
v1/2020.acl-main.703

Li, J., Sun, Y., Johnson, R. J., Sciaky, D., Wei, C.-H., Leaman, R., et al. (2016).
Biocreative V Cdr Task Corpus: a Resource for Chemical Disease Relation
Extraction. Database. doi:10.1093/database/baw068

Manber, U., andMyers, G. (1993). Suffix Arrays: a NewMethod for On-Line String
Searches. SIAM J. Comput. 22, 935–948. doi:10.1137/0222058

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).
“Distributed Representations of Words and Phrases and Their
Compositionality,” in Advances in Neural Information Processing Systems
26. Editors C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger (Tahoe, NV: Curran Associates, Inc.), 3111–3119.

Nadeau, D., and Sekine, S. (2007). A Survey of Named Entity Recognition and
Classification. Li 30, 3–26. doi:10.1075/li.30.1.03nad

Navigli, R. (2009). Word Sense Disambiguation. ACM Comput. Surv. 41, 1–69.
doi:10.1145/1459352.1459355

Pafilis, E., Frankild, S. P., Fanini, L., Faulwetter, S., Pavloudi, C., Vasileiadou, A.,
et al. (2013). The Species and Organisms Resources for Fast and Accurate
Identification of Taxonomic Names in Text. PloS one 8, e65390. doi:10.1371/
journal.pone.0065390

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., et al. (2018).
Deep Contextualized Word Representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 1 (Long Papers)
(New Orleans, Louisiana: Association for Computational Linguistics),
2227–2237. doi:10.18653/v1/N18-1202

Pouran Ben Veyseh, A., Dernoncourt, F., Tran, Q. H., and Nguyen, T. H. (2020).
What Does This Acronym Mean? Introducing a New Dataset for Acronym
Identification and Disambiguation. In Proceedings of the 28th International
Conference on Computational Linguistics. Barcelona, Spain: International
Committee on Computational Linguistics, 3285–3301. doi:10.18653/v1/
2020.coling-main.292

Prince, E. F. (1981). Towards a Taxonomy of Given-New Information. Radic.
pragmatics.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the Limits of Transfer Learning with a Unified Text-To-Text
Transformer. J. Machine Learn. Res. 21, 1–67.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+Questions
for Machine Comprehension of Text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Austin, Texas: Association for
Computational Linguistics, 2383–2392. doi:10.18653/v1/D16-1264

Ramshaw, L., andMarcus, M. (1995). Text Chunking Using Transformation-Based
Learning. In Third Workshop on Very Large Corpora.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. (2002).Multiword
Expressions: A Pain in the Neck for Nlp. In International conference on
intelligent text processing and computational linguistics. Springer, 1–15.
doi:10.1007/3-540-45715-1_1

Schwartz, A. S., and Hearst, M. A. (2002). A Simple Algorithm for Identifying
Abbreviation Definitions in Biomedical Text. In Biocomputing 2003. World
Scientific, 451–462. doi:10.1142/9789812776303_0042

Smith, L., Tanabe, L. K., Ando, R. J., Kuo, C. J., Chung, I. F., Hsu, C. N., et al. (2008).
Overview of Biocreative Ii Gene Mention Recognition. Genome Biol. 9 Suppl 2,
S2–S19. doi:10.1186/gb-2008-9-s2-s2

Sohn, S., Comeau, D. C., Kim, W., and Wilbur, W. J. (2008). Abbreviation
Definition Identification Based on Automatic Precision Estimates. BMC
bioinformatics 9, 402. doi:10.1186/1471-2105-9-402

Sun, M., Jiang, B., Xiong, H., He, Z., Wu, H., and Wang, H. (2019). Baidu Neural
Machine Translation Systems for WMT19. In Proceedings of the Fourth
Conference on Machine Translation, 2. Florence, Italy: Association for
Computational Linguistics, 374–381. Shared Task Papers, Day 1.
doi:10.18653/v1/W19-5341

Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., et al. (2020). Ernie 2.0: A
Continual Pre-training Framework for Language Understanding. AAAI.
doi:10.1609/aaai.v34i05.6428

Terken, J., and Hirschberg, J. (1994). Deaccentuation of Words Representing
’Given’ Information: Effects of Persistence of Grammatical Function and
Surface Position. Lang. Speech 37, 125–145. doi:10.1177/
002383099403700202

Uzuner, Ö., South, B. R., Shen, S., and DuVall, S. L. (2011). 2010 I2b2/va challenge
on Concepts, Assertions, and Relations in Clinical Text. J. Am. Med. Inform.
Assoc. 18, 552–556. doi:10.1136/amiajnl-2011-000203

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-
Attention with Linear Complexity. arXiv preprint arXiv:2006.04768.

Wei, C.-H., Allot, A., Leaman, R., and Lu, Z. (2019). Pubtator central: Automated
Concept Annotation for Biomedical Full Text Articles. Nucleic Acids Res. 47,
W587–W593. doi:10.1093/nar/gkz389

Wei, C.-H., Harris, B. R., Li, D., Berardini, T. Z., Huala, E., Kao, H.-Y., et al. (2012).
Accelerating Literature Curation with Text-Mining Tools: a Case Study of
Using Pubtator to Curate Genes in Pubmed Abstracts. Database. doi:10.1093/
database/bas041

Wei, C.-H., Kao, H.-Y., and Lu, Z. (2013). Pubtator: a Web-Based Text Mining
Tool for Assisting Biocuration. Nucleic Acids Res. 41, W518–W522.
doi:10.1093/nar/gkt441

Wren, J. D., Chang, J. T., Pustejovsky, J., Adar, E., Garner, H. R., and Altman, R. B.
(2005). Biomedical Term Mapping Databases. Nucleic Acids Res. 33,
D289–D293. doi:10.1093/nar/gki137

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., et al.
(2020). “Big Bird: Transformers for Longer Sequences,” in Advances in Neural
Information Processing Systems. Editors H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (Curran Associates, Inc), 33, 17283–17297.

Conflict of Interest: Both authors are employees of Baidu Research USA. The
research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Church and Liu. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 73238113

Church and Liu Acronyms and Opportunities

https://doi.org/10.1186/1758-2946-7-S1-S2
https://doi.org/10.1186/1471-2105-10-S15-S7
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1093/database/baw068
https://doi.org/10.1137/0222058
https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1371/journal.pone.0065390
https://doi.org/10.1371/journal.pone.0065390
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1007/3-540-45715-1_1
https://doi.org/10.1142/9789812776303_0042
https://doi.org/10.1186/gb-2008-9-s2-s2
https://doi.org/10.1186/1471-2105-9-402
https://doi.org/10.18653/v1/W19-5341
https://doi.org/10.1609/aaai.v34i05.6428
https://doi.org/10.1177/002383099403700202
https://doi.org/10.1177/002383099403700202
https://doi.org/10.1136/amiajnl-2011-000203
https://doi.org/10.1093/nar/gkz389
https://doi.org/10.1093/database/bas041
https://doi.org/10.1093/database/bas041
https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1093/nar/gki137
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Acronyms and Opportunities for Improving Deep Nets
	1 Introduction
	2 What do we Mean by Multiword Expressions?
	3 Acronym Tasks
	3.1 Tasks
	3.2 D Tasks vs. D-Less Tasks

	4 Long-Distance Dependencies
	5 Ab3P
	5.1 Standard Benchmarks for ADI Systems
	5.2 Acronyms From arXiv

	6 Related Work
	7 BERT-SQuAD: An Alternative to Ab3P for ADI
	8 Error Analysis
	8.1 Charmatch
	8.2 Using Decision Trees in Error Analysis
	8.3 Freq
	8.4 12 Models: Rank + Charmatch + Freq

	9 Discussion and Future Work
	9.1 Document-Level Context: First Mention vs. Subsequent Mentions
	9.2 Constraints Within and Across Documents

	10 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


