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Abstract

N-of-1 trials allow inference between two treatments given to a single individual. Most often,

clinical investigators analyze an individual’s N-of-1 trial data with usual t-tests or simple non-

parametric methods. These simple methods do not account for serial correlation in repeated

observations coming from the individual. Existing methods accounting for serial correlation

require simulation, multiple N-of-1 trials, or both. Here, we develop t-tests that account for

serial correlation in a single individual. The development includes effect size and precision

calculations, both of which are useful for study planning. We then use Monte Carlo simula-

tion to evaluate statistical properties of these serial t-tests, namely, Type I and II errors, and

confidence interval widths, and compare these statistical properties to those of analogous

usual t-test. The serial t-tests clearly outperform the usual t-tests commonly used in report-

ing N-of-1 results. Examples from N-of-1 clinical trials in fibromyalgia patients and from a

behavioral health setting exhibit how accounting for serial correlation can change infer-

ences. These t-tests are easily implemented and more appropriate than simple methods

commonly used; however, caution is needed when analyzing only a few observations.

1. Introduction

Behavioral scientists have usedN-of-1 trials for more than a century [1]. Guyatt et al. (1986)

brought these trials, with randomized crossover designs, to the attention of mainstream medical

research in the 1980s (see also Gabler et al., 2011) [2, 3]. In this era of personalized medicine, N-

of-1 trials are appearing in medical research with increasing frequency [4]. Consequently, guide-

lines for these studies were added to the Consolidated Standards of Reporting Trials (CON-

SORT) in 2015; see CONSORT Extension forN-of-1 Trials (CENT) [5]. CENT guidelines call

for statistical methods that account for within-subject correlation. This call echoes what reviews

ofN-of-1 studies often note:N-of-1 data exhibit serial correlation (e.g. first-order autocorrela-

tion), and most studies fail to account for serial correlation. [1, 3, 6, 7].

This work develops a formula-based statistical method for N-of-1 studies that accounts for

serial correlation while using only the data from a single individual to draw inferences. Most

existing methods emerged with increases in computing power. These methods typically
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provide inference on two types of differences between two treatments: level- and rate-change.

Level-change is when the difference in means is not dependent on the time series of the treat-

ments, whereas rate-change is when the difference in means is dependent on the time series of

the treatments. Rochon (1990) describes a large-sample, maximum likelihood method that

evaluates both level- and rate-change, but no closed-form estimator exists [8]. Hence, an itera-

tive procedure produces the estimates. McKnight et al. (2000) developed a double-bootstrap

method for making inference on level- and rate-change [9]. Their first bootstrap estimates

serial correlation; the second uses the estimated correlation to compare two treatments. They

provide statistical properties for their method, and they focus on trials having as few as 20 or

30 observations. Borckardt and company describe statistical properties of the Simulation

Modelling Analysis for N-of-1 trials, and consider trials having between 16 and 28 observa-

tions from an individual [10, 11]. Simulation Modelling Analysis is similar to a parametric

bootstrap method, with the bootstrap method generating replicates under the null hypothesis.

Empirical p-values for level- and rate-change result. Lin et al. (2016) propose semiparametric

and parametric bootstrap methods (only one bootstrap needed) for evaluating level- and rate-

change [12]. They explore the statistical properties of their method for trials having 28 observa-

tions. Other N-of-1 methods exist, but the methods described here are the only ones we could

find that use only the observations from a single individual and account for serial correlation.

All of the methods above are computationally intensive and require either special software

or substantial statistical expertise. However, researchers conducting N-of-1 trials seem to pre-

fer simpler analysis methods. Gabler et al. (2011) reviewed analyses conducted in 108 N-of-1

trials and found 52% used visual analysis, 44% used t-tests, and 24% used nonparametric

methods (some studies used more than one analysis method) [3]. Punja et al. (2016) reviewed

100 reports of conducted (60%) and planned (40%) N-of-1 trials [13]. Seventy-five of these

performed or planned statistical analyses: 53% of these 75 used paired t-tests and 32% used a

nonparametric method. Though several of these simple analysis methods use only the observa-

tions from one individual, they fail to account for serial correlation. A substantial proportion

of researchers using N-of-1 trials sacrifice their need for appropriate analyses to their desire for

simplicity. Our goal in this work is to tend to their analytical needs and desires by developing a

simple method that uses only the data from a single individual.

Furthermore, researchers and clinicians typically collect a small number of observations

from an individual in an N-of-1 trial. In the Gabler et al. (2011) review, the median number of

outcomes measured on an individual was 20 with a range of 3–512. They also found the

median number of crossovers was 3, with a range of 1 to 11 [3]. Similarly, Punja et al. (2016)

reported a median of 3 repeated cycles / treatment blocks, with the range of repeated cycles

from 2–15 and treatment blocks from 2–5 [13]. For this reason, we focus primarily on realisti-

cally sized N-of-1 trials; that is, N-of-1 trials with 12 or less crossovers, or 24 observations or

fewer observations in total.

We develop four t-tests for individual differences between two treatments. While using

only the observations from a single individual, these tests accommodate serial correlation (Sec-

tion 2); we refer to these as “serial t-tests.” Two of these serial t-tests evaluate level-change, and

the other two evaluate rate-change. Within the two level- and the two rate-change tests, one

test assumes observations from two treatments are paired in a series over time; we call these

“paired serial t-tests.” The other test assumes one treatment’s observations are independent of

the other’s; we call these “2-sample serial t-tests.” In Section 3, we use simulation to compare

Type I error rates and estimated power between the four serial t-tests and their “usual t-test”

analogues that ignore serial correlation. Then, we compare the serial t-tests’ estimated power

to their theoretical power. In Section 4, we illustrate how these tests may be used in clinical-

trial and behavioral-health settings. We discuss the results in the final section.

Serial t-tests for N-of-1 trials
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2. Serial t-tests

We first describe N-of-1 trial or study designs to which our proposed serial t-tests apply. Next,

we give the general development of the serial t-test, followed by paired and 2-sample serial t-
tests for level-change, then paired and 2-sample serial t-tests for rate-change. Sample size con-

siderations for study planning follow. Finally, since the serial t-tests require an estimated cor-

relation, we recommend a serial correlation estimator.

2.1. Applicable N-of-1 designs

The CONSORT extension for reporting N-of-1 trials (CENT) lists several single-case designs

that have been referred to as N-of-1 trials, but CENT currently only considers multiple with-

drawals/reversals, “ABAB,” or multiple-crossovers designs as “N-of-1” in its scope (see Fig 1 in

[14]) [5, 14]. For the purpose of analysis using the serial t-tests developed below, our definition

of N-of-1 trial designs is broader than that of CENT. These serial t-tests may be used in the fol-

lowing N-of-1 study designs to compare two treatments, say A and B, using data from only

one individual. Given that minimum size requirements are met (defined below for each test),

the 2-sample serial t-tests may be applied to N-of-1 trials when there is one withdrawal/reversal

(“AB” or bi-phase), multiple baseline, or changing criterion designs (see Fig 1 in [15]). The

2-sample serial t-tests may also be applicable to N-of-1 studies with pre-post designs. The

paired serial t-tests may be used to analyze N-of-1 randomized trials with multiple withdraw-

als/reversals or crossovers, sometimes called alternating treatment designs [15]; i.e., those

deemed true N-of-1 trials by CENT guidelines.

2.2. The serial t-statistic

The general model for a single series ofm observations coming from an individual is Y~N(Xβ,

Rσ2), where R is a first-order autoregressive correlation matrix, with element (j,k) defined as ρ|j−k|

for j,k = 1,2,. . .,m. We refer to ρ as the serial correlation. For the two-sample models described

below, we assume additional series of observations coming from the individual have the same σ2

and ρ.

Constructing the t-statistic requires estimators of β and σ2, but not ρ (see Section 2.5). We

use ordinary least squares (OLS) estimators because, in the end, they provide formula-based

test statistics that may be computed by those having little statistical expertise. (Generalized

least squares estimation gives the best linear unbiased estimator of β and an unbiased estima-

tor of σ2, but requires an iterative process.) The OLS estimator of β is β̂ ¼ ðX0XÞ� 1X0Y for X of

full column rank, and is unbiased. Under the assumed model, Y~N(Xβ,Rσ2), β̂ has variance

(X0X)−1X0RX(X0X)−1σ2 for a single series of m observations. For the design matrices, X, which

we define in Sections 2.3 and 2.4, Varðβ̂Þ is a function of m and ρ; we write

Varðβ̂Þ ¼ cðrÞ � s2

suppressing dependence on m since it is known.

Turning attention to the variance, σ2, the OLS estimator is s2 = {Y0(I−PX)Y}/{m−rank(PX)}.

However, s2 is biased when ρ6¼0; E(s2) = [{m−tr(PXR)}/{m−rank(PX)}]σ2 with tr(PXR) not

equal to the rank of the projection matrix, PX = X(X0X)−1X0. For the design matrices defined

below, the bias is a function of m and ρ; we thus re-write

Eðs2Þ ¼ bðrÞ � s2 ð1Þ

suppressing dependence on known m. Additionally, we may express b(ρ) in terms of the

Serial t-tests for N-of-1 trials
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effective sample size of the series, m0, and the number of estimated location parameters, p:

b rð Þ ¼
mðm0 � pÞ
m0ðm � pÞ

ð2Þ

[16]. Note, m0 depends on ρ; we omit that dependence though to reduce notation burden. Fol-

lowing from Eqs 1 and 2, an unbiased estimator of σ2 may be written as

~s2 ¼ s2=
bðrÞ ð3AÞ

¼
m0ðm � pÞ

m
s2=
ðm0 � pÞ ð3BÞ

For the serial t-statistic testing whether scalar β = β0, the standard normal random variable

is ðb̂ � b0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðrÞ � s2

p
. (Without loss of generality, we henceforth let β0 = 0.) The χ2 divided

by its degrees of freedom is easily identified in Eq 3B and concisely written in Eq 3A. The serial

t-statistic is then

tDF ¼
b̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðrÞ � s2=bðrÞ

r ð4Þ

with DF = m0−p. Thus, b̂ � tDF;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðrÞ � s2=bðrÞ

p
provides a (1−α)100% confidence interval

for β.

2.3. Paired and 2-sample serial t-tests for level-change

For the paired serial t-test for level-change, observations from treatments A and B come from

a series of pairs (Fig 1A). We take the difference in observations from A and B in the same pair

as our Y (Fig 1B); since this test is for level-change, we assume the mean of differences, μA−B,

does not depend on the series. The mean model is Xβ = 1m[μA−B], with μA−B estimated by the

sample mean, YA� B.

The c(ρ), b(ρ), and m’ for this and the following 2-sample level-change test are

cL rð Þ ¼
mþ 2rmþ1 � mr2 � 2r

m2ðr � 1Þ
2

ð5Þ

bL rð Þ ¼
mð1 � cLðrÞÞ

m � 1
ð6Þ

mL0 ¼
m

m � ðm � 1ÞbLðrÞ
ð7Þ

where the L subscript denotes level-change. The paired serial t-statistic for level-change is then

tDF ¼
YA� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cLðrÞ � s2=bL ðrÞ
r ð8Þ

with DF = mL
0−1. Replacing ρ with its estimate, r (see Section 2.5), the statistic becomes

Serial t-tests for N-of-1 trials
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approximately tDF. We note that the minimum m for this test is 4; this is because three parame-

ters are estimated: μA−B, σ2, and ρ.

For the 2-sample serial t-test for level-change, observations come from a series particular to

the treatment, and the two series may be treated as independent (Fig 2A). As the test is for

level-change, we assume the difference between means, μA−μB, does not depend on the series.

We treat the original two series of observations, YA and YB, as independent, so

Xβ ¼
1mA

0mA

0mB
1mB

" #
mA

mB

" #

As with the paired test, μA and μB are estimated by the sample means, YA and YB. The t-statis-

tic is

tDF ¼
YA � YBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cLA ðrÞ

bLA ðrÞ
þ

cLB ðrÞ
bLB ðrÞ

� �
� s2

r ð9Þ

Fig 1. These simulated data representN-of-1 trials withm crossovers of treatments A and B, randomized within block

(left panels). The differences between A and B within a block (right panels) may be suitably analyzed with paired serial

t-tests for level-change (top panels) and for rate-change (bottom panels). The true means are represented with lines,

and serially correlated observations with points.

https://doi.org/10.1371/journal.pone.0228077.g001

Fig 2. These simulated data representN-of-1 trials where a series of observations from treatment A are observed first,

followed by a series of observations from treatment B. These data may be suitably analyzed with 2-sample serial t-tests

for level-change (a) and for rate-change (b). The true means are represented with lines, and serially correlated

observations with points.

https://doi.org/10.1371/journal.pone.0228077.g002

Serial t-tests for N-of-1 trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0228077 February 4, 2020 5 / 19

https://doi.org/10.1371/journal.pone.0228077.g001
https://doi.org/10.1371/journal.pone.0228077.g002
https://doi.org/10.1371/journal.pone.0228077


withDF ¼ m0LA þm
0
LB
� 2. Replacing ρwith a pooled estimate, r ¼ ðmArA þmBrBÞ=ðmA þmBÞ,

the statistic becomes approximately tDF. For this test, the minimumm requirements are bothmA

andmB are 3 or more, andmA+mB�7, since we estimate the overall σ2 as well as ρ and μ for each

treatment.

2.4. Paired and 2-sample serial t-tests for rate-change

For the paired serial t-test for rate-change, observations from two treatments again come from

a series of pairs (Fig 1C). We take the difference in observations from A and B in the same pair

as our Y (Fig 1D); however, since this test is for rate-change, we assume the mean of YA−B

depends linearly on the series. Then

Xβ ¼ 1m x½ �
mA� B

bA� B

" #

where we use x centered about 0; i.e., x0 = (1,2,. . .,m)−(m+1)/2. The parameter of interest is βA
−B; it is estimated by the slope on x from a simple linear regression.

For the serial paired t-test for rate-change test and the following 2-sample serial t-test for

rate-change, c(ρ), b(ρ), and m0 are defined as follows:

cR rð Þ ¼
12

ðm2 � 1Þ
2

�
6rðrþ 1Þ

2
ðrm � 1Þ

m2ðr � 1Þ
4

þ
2rð6rmþ1 þ 6rm þ r2 � 2rþ 1Þ

mðr � 1Þ
3

�
6rðrm þ 1Þ

ðr � 1Þ
2
�

2mr
r � 1

þ
m2 � 1

m

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð10Þ

bR rð Þ ¼
1

m � 2
m � 1 �

2rðrm � mrþm � 1Þ

mðr � 1Þ
2

�
mðm2 � 1ÞcRðrÞ

12

 !

ð11Þ

m0R ¼
2m

m � ðm � 2ÞbRðrÞ
; ð12Þ

with the R subscript denoting rate-change. The t-statistic for the paired serial t-test for rate-

change is then

tDF ¼
b̂A� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cRðrÞ � s2=bRðrÞ
r ð13Þ

where DF = mR
0−2 and ρ is replaced with its estimate, r, to get an approximate tDF. This test

requires m�5 as four parameters are estimated.

For the 2-sample serial t-test for rate-change, observations come from a series particular to the

treatment, and the two series may be treated as independent (Fig 2B). Since the test is for rate-

change, we assume the means of YA and YB depend linearly on the series. We treat the original

Serial t-tests for N-of-1 trials
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two series of observations, YA and YB, as independent series, so the mean model of Y = [YA,YB]0 is

Xβ ¼
XmA

0mA

0mB
XmB

" #

mA

bA

mB

bB

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð14Þ

where Xm�
¼ ½ 1m�

xm� �: βA and βB are estimated with the slopes from an ordinary linear regres-

sion having the Xβ in Eq 14. The t-statistic is

tDF ¼
b̂A � b̂Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 cRA ðrÞ
bRA ðrÞ

þ
cRB ðrÞ
bRB ðrÞ

� �r ð15Þ

withDF ¼ m0RA þm
0
RB
� 4 and replacing ρwith its pooled estimate, r ¼ ðmArA þmBrBÞ=ðmA þ

mBÞ as before, for the approximate tDF. Here, bothmA andmB must be 4 or more andmA+mB�9

in order to estimate the seven parameters.

2.5. Sample size considerations when planning N-of-1 trials

Desired precision of estimated effects and/or power dictate the number of observations (m)

needed from an individual undergoing an N-of-1 trial. Other than Rochon (1990), all of the

authors reviewed in Section 1 considered power for their proposed methods, but only for spec-

ified sample sizes and/or effect sizes [8–12]. Wang & Schork (2019) followed up on Rochon’s

work, investigating power, but only considered trials withm = 400 [17]. None of the aforemen-

tioned authors gave guidance on how to compute sample sizes. Senn (2017) presented meth-

ods for computing sample sizes in studies involving N-of-1 trials, given desired power or

precision [18]. Unfortunately, Senn’s methods are for computing how many trials are needed,

which assumes multiple N-of-1 trials are analyzed together; additionally, his methods did not

account for serial correlation. Percha et al. (2019) developed tools to inform experiment design

and estimate power by simulating N-of-1 trials under various controlled conditions and ran-

dom effect assumptions; however, their tools do not account for serial correlation [19].

Our serial t-tests allow precision, sample size, effect size, and power calculations with exist-

ing routines or functions in standard statistical software (e.g., R, SAS). The assumptions for

these calculations are the same as for usual t-tests, but also require an assumed serial correla-

tion, ρ.

Both precision and effects size calculations require values for the significance level, sample

size (m), and serial correlation (ρ). Substituting the values of m and ρ into the formulae for c
(ρ), b(ρ), and m0 from the desired serial t-test, precision, expressed as an expected margin of

error for a (1−α)100% confidence interval for β, is tDF;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðrÞ � s2=bðrÞ

p
, where σ2 is often

replaced by 1, but may also be replaced by an assumed value. For computing an effect size, δ
(in σ units), given a specified power, the following steps outline how to use an existing effect

size calculator for a one-sample t-test.

• First note the calculator’s noncentrality parameter, dðCÞ
ffiffiffiffiffiffiffiffiffimðCÞ
p

, and degrees of freedom,

DF(C) = m(C)−1, where subscript (C) denotes the calculator’s parameters.

• Using the assumed value of ρ, compute DF (a function of m0), and c(ρ) for the desired serial

t-test.

Serial t-tests for N-of-1 trials
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• Set m(C) equal to DF+1. Usually, m(C) will not be a whole number; the calculator must be

able to accept positive real numbers for the degrees of freedom parameter (or sample size,

m(C)).

• Using m(C), compute δ(C) with the calculator.

• Setting the noncentrality parameter for the desired serial t-test equal to the calculator’s non-

centrality parameter, the effect size is d ¼ dðCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðCÞcðrÞ

q
.

To assist in planning an N-of-1 trial for which the paired serial t-test for level change (Eq 8)

is the intended analysis. Table 1 gives expected margins of error for 90% confidence intervals,

and Table 2 gives μA−B values (in σ units) detectable with 0.80 power on a one-sided 0.05 sig-

nificance level test. In the supplementary material, we provide R code for generating these

tables for all 4 serial t-tests allowing users to specify different confidence coefficients and

power/Type I error values.

2.6. Estimating a serial correlation

The serial t-tests require an estimate of serial correlation, ρ. For a ρ estimator, we work with

the residuals, e, of the data from their estimated means:

ej ¼ yA� B;j � yA� B for the paired serial t for level-change;

eij ¼ yij � yi for the 2-sample serial t for level-change;

ej ¼ yA� B;j � m̂A� B � b̂A� Bxj for the paired serial t for rate-change;

eij ¼ yij � m̂i� b̂ixij for the 2-sample serial t for rate-change,where i = A,B and j = 1,2,. . .,mi.

Note e ¼ 0; this fact simplifies the maximum likelihood estimator of ρ to r̂ ¼
Pm

j¼2
ej � ej� 1=

Pm
j¼1
e2
j . However, r̂ has bias of −2ρ/(m−1)+O(ρm−2) [20]. For small sample sizes, the bias is

substantial. We sought another estimator of ρ.

Solanas et al. (2010) evaluated performance of ten serial correlation estimators [21]. Impor-

tantly, they considered sample sizes between 5 and 20. Among the ten estimators, they found

Table 1. Expected margins of error for 90% confidence intervals (95% one-sided confidence limit) for μA−B from the paired serial t-test for level change in Eq 8;

assumes σ2 = 1.

ρ m = 4 5 6 7 8 9 10 11 12

0 1.18 0.95 0.82 0.73 0.67 0.62 0.58 0.55 0.52

0.2 1.81 1.37 1.14 0.99 0.89 0.82 0.76 0.71 0.67

0.4 3.61 2.38 1.83 1.52 1.31 1.17 1.07 0.99 0.92

0.6 14.78 7.00 4.43 3.24 2.58 2.16 1.88 1.67 1.52

0.8 1272.65 214.23 70.60 33.06 19.06 12.55 9.05 6.96 5.61

https://doi.org/10.1371/journal.pone.0228077.t001

Table 2. Effect sizes of μA−B (in σ units) detectable with 0.80 power on a 0.10 (one-sided 0.) level test, using the paired serial t-test for level change in Eq 8.

ρ m = 4 5 6 7 8 9 10 11 12

0 1.65 1.36 1.19 1.07 0.98 0.91 0.85 0.81 0.77

0.2 2.32 1.82 1.54 1.37 1.24 1.15 1.07 1.01 0.96

0.4 4.08 2.81 2.24 1.91 1.69 1.54 1.42 1.33 1.25

0.6 13.73 6.97 4.63 3.52 2.90 2.50 2.22 2.02 1.86

0.8 869.00 164.50 58.54 26.30 16.04 11.05 8.27 6.56 5.43

https://doi.org/10.1371/journal.pone.0228077.t002
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Fuller’s (1996) estimator,

r ¼ r̂ þ
ð1 � r̂2Þ

m � 1
ð16Þ

which corrects for bias in r̂, had comparatively low mean squared error and bias over positive

ρ, but also performed well for negative ρ [22]. The authors particularly recommended Fuller’s

estimator when sample size is small (�10) and positive serial correlation is expected [21]. For

these reasons, we use r as our serial correlation estimator. We note that for the 2-sample tests,

two ρ estimates are computed, one for series A and one for series B, and their average taken

after weighting by each series length, mA and mB.

3. Monte Carlo study evaluating statistical properties

3.1. Description of Monte Carlo study

We conducted a Monte Carlo study to evaluate Type I error rates, power, and confidence interval

width estimation for the serial t-tests. For comparison, we also evaluated the same for the usual t-
tests. Because researchers tend to collect a small number of observations from one individual in

anN-of-1 trial, we primarily consideredm from the minimum required up to 12; however, we

also includedm values of 30, 50, and 100 to evaluate large sample properties. We chose serial cor-

relation values of ρ2{−0.33,0,0.33,0.67}. The variance remained constant across treatments and

series at σ2 = 1. For paired t-tests, we chose the correlation in pairs to be ρpair2{0.33,0.67}; 2-sam-

ple t-tests had ρpair = 0. For level-change tests, the mean structure was E(Y) = 1; for rate-change

tests, the mean structure was E(Y) = μ+βx, where μ = 0 and β = 1. For each combination of the

four test types,m, ρ, and ρpair, we simulated data for 10,000 individuals to maintain Monte Carlo

error within 0.01 when estimating proportions with 95% confidence.

3.2. Results

For level-change, the paired serial t-test has its usual analogue in the 1-sample or Student’s t-
test, and the commonly known 2-sample t-test is analogous to the 2-sample serial t-test. For

rate-change, the paired serial t-test has its usual analogue in the t-test of a slope in simple linear

regression (equivalently, a test of the Pearson correlation coefficient); and the usual t-test for a

difference in slopes between two treatments is analogous to the 2-sample serial t-test.

Type I error. We estimated Type I error rates for one-sided 5% significance level tests. The

results were similar within the level-change tests and within the rate-change tests. First, the

level-change tests: When there is no serial correlation (ρ = 0), Type I errors for both the paired

and 2-sample tests are at or within a percentage point of nominal levels. The analogous usual

tests are at nominal levels as expected. Across all non-zero correlation values, Type I errors are

consistently closer to nominal than those for the usual tests. Further, as m increases, Type I

errors for the serial tests approach nominal, while those for the usual tests show no improve-

ment or get worse. Type I errors for negative ρ are reasonably close (within a couple of per-

centage points) to a nominal 5% for the paired and 2-sample tests, respectively (top panels of

Fig 3 and S1 Fig). For moderately positive ρ, Type I errors become reasonable before m = 30

for both paired and 2-sample; for high ρ, at some point between m = 30 and m = 50 for both.

Patterns of results for rate-change serial tests differ from those for level-change, but within

the rate-change tests, results for the paired and 2-sample are similar. At the smallest values of

m, Type I errors from the serial tests are higher than their usual t analogues. But by m = 7 for

high positive ρ and m = 9 for moderate positive ρ, the serial tests perform better than the usual

tests (top panels of Fig 4 and S2 Fig). For negative ρ, the serial tests are near nominal level.

When there is no serial correlation (ρ = 0), the two serial tests reject too often for small m
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(m�12), but approach nominal bym = 30. Type I errors for usual t-tests (except when ρ = 0)

are only better than the serial tests for small m (m�8), thereafter, usual’s Type I errors tend to

diverge from nominal level.

Fig 3. Paired t-test for level-change. Type I error (top) and theoretical effect size, δ, computed using Eq 8 for 80% power with a one-sided 5% significance level

test for a givenm (middle). Ratios (bottom) of serial and usual δ (estimated from simulation) to the theoretical δ under same conditions as the theoretical δ.

https://doi.org/10.1371/journal.pone.0228077.g003
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Regarding moderate vs high ρpair values in the paired t-tests for level- and rate-change, dif-

ferences in Type I errors are minimal, with the largest difference across 92 relevant Monte

Carlo configurations being <1.2 percentage points for serial tests and <1.5 for usual tests.

Fig 4. Paired t-test for rate-change. Type I error (top) and theoretical effect size, δ, computed using Eq 13 for 80% power with a one-sided 5% significance level

test for a givenm (middle). Ratios (bottom) of serial and usual δ (estimated from simulation) to the theoretical δ under same conditions as the theoretical δ.

https://doi.org/10.1371/journal.pone.0228077.g004
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Power

For all four test types, due to the inflated Type I errors for positive ρ, power estimates–and

therefore effect size estimates–are likely optimistic for both serial and usual tests. The inverse

is true for negative correlations. Using the serial t-test formulas (Eqs 8, 9, 13 and 15), we can

calculate theoretical effect sizes (δ, expressed in terms of σ) required to achieve a desired

amount of power. The middle panels of Figs 3 and 4, and S1 and S2 Figs display the δ detect-

able with 80% power with a one-sided 5% significance level test for the given m and ρ value.

With the simulated data, we estimated the actual δ detectable under the same assumptions

using the serial t-tests; we likewise estimated the actual δ detectable under the same assump-

tions using the usual t-tests. Then we calculated the ratio of actual to theoretical δ for the serial

and usual tests (bottom panels of Figs 3 and 4, and S1 and S2 Figs). This ratio indicates how

realistic the serial and usual tests are, with a ratio of 1 being most realistic; i.e., at theoretical δ.

For all four test types, across all values of non-zero correlation, the ratios of serial to theoretical

δ are closer to 1 than the ratios of usual to theoretical by m = 6, and approach unity as m
increases, while those for the usual test do not. When there is no correlation (ρ = 0), the usual:

theoretical ratio is at 1, as it should be. The discrepancy in the serial:theoretical ratio stems

from estimating the “0” correlation, but these ratios also approach 1 with increasing m.

Confidence intervals

We estimated the expected margins of error for 90% confidence intervals for the serial t and

their usual t analogues, and compared these to the mean of s�tDF;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðrÞ=bðrÞ

p
; see Table 3.

For all but the smallest m, when ρ6¼0, the margins of error from the serial t were closer to theo-

retical than those based on the usual t. Further, as m increased, the serial t’s margins of error

converged to the theoretical; whereas the usual t’s margins of error will not converge.

Table 3. Factors by which the expected margin of error for a 90% confidence interval (95% one-sided confidence limit) is overestimated or underestimated for select

sample sizes (m).

Test Paired test for level change 2-sample test for level change

ρ type m = 4 8 12 100 2m = 8 16 24 200

-0.33 serial 2.33 1.25 1.14 1.01 1.46 1.18 1.11 1.01

usual 1.66 1.49 1.46 1.41 1.50 1.44 1.43 1.41

0.00 serial 2.00 1.21 1.09 1.00 1.19 1.05 1.03 1.00

usual 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.33 serial 1.22 1.11 1.04 1.00 0.80 0.89 0.92 0.99

usual 0.43 0.59 0.64 0.70 0.57 0.65 0.67 0.71

0.67 serial 0.11 0.55 0.78 0.98 0.24 0.52 0.66 0.96

usual 0.03 0.17 0.26 0.42 0.15 0.29 0.34 0.43

Test Paired test for rate change 2-sample test for rate change

ρ type m = 5 8 12 100 2m = 10 16 24 200

-0.33 serial 1.14 1.09 1.05 1.00 1.06 1.06 1.04 1.00

usual 1.55 1.44 1.41 1.41 1.40 1.38 1.38 1.40

0.00 serial 0.85 0.96 0.97 0.99 0.83 0.91 0.94 0.99

usual 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.33 serial 0.45 0.71 0.83 0.98 0.55 0.71 0.80 0.97

usual 0.47 0.60 0.65 0.70 0.62 0.67 0.69 0.71

0.67 serial 0.04 0.23 0.45 0.94 0.17 0.37 0.51 0.93

usual 0.04 0.16 0.26 0.43 0.18 0.31 0.36 0.43

https://doi.org/10.1371/journal.pone.0228077.t003
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4. Examples

4.1. Determining benefit of amitriptyline in fibromyalgia

Jaeschke et al. (1991) reported results from 23 N-of-1 randomized control trials of amitripty-

line vs placebo in fibromyalgia patients [23]. Each patient entered an open trial of amitriptyline

lasting between 3 and 12 weeks. If there was perceived benefit from amitriptyline, the patient

began a double-blind multiple crossover trial. The order of treatment with amitriptyline or pla-

cebo was randomized within each of three to six pairs. A pair of treatments lasted four weeks,

with two weeks for each treatment. At the end of each week, the patient completed a 7-item

questionnaire evaluating severity of symptoms, with each item on a 7-point scale. The two

resulting scores within the two-week period were averaged, and the difference between the two

treatments’ scores within the pair served as the primary outcome. Table 4 contains a portion of

the original data from Jaeschke et al. The authors individually applied a one-sided (usual)

paired t-test to determine benefit of amitriptyline for each patient. We re-analyzed each

patient’s data with the paired serial t-test for level change and report one-sided p-values in

Table 4. However, since this serial t-test requires at least 4 pairs of treatments, we could use

only 6 of the original 23 patients.

Among the 23 patients (17 not reported here because they had only 3 observations), the pat-

tern of final decisions on amitriptyline continuance was “continue” if the one-sided p-value in

favor of amitriptyline was� 0.15, and discontinue otherwise [23]. Patients 9, 23, and 17 all

exhibited positive serial correlation, which means their SDs were likely underestimated and

effective sample sizes overestimated. Had the paired serial t-test (for level-change) been used

instead of the usual paired t-test, decisions for Patients 9 and 23 would have been reversed,

and Patient 17 would have been on the cusp. The remaining three patients (18, 15, and 12)

exhibited negative serial correlation, and the serial t-test corroborated the decisions made

using the usual t-test.

Zucker et al. (1997) re-analyzed these same data to illustrate a hierarchical Bayesian model

for N-of-1 trials that combined results from all 23 patients to make both population and indi-

vidual inferences [24]. Their aggregate N-of-1 method produced individual posterior probabil-

ities of amitriptyline benefit, say p(A|y), with values closer to 1 indicating benefit. Among the

23 patients, the physician recommended 13 to continue. The minimum p(A|y) in these 13 was

0.85. All 6 patients in our Table 4 had p(A|y)� 0.85; see Table 1 in [24]. The Bayesian model

returned high posterior probabilities of amitriptyline benefit for Patient 23 with p(A|y) = 0.93,

and Patient 17 with p(A|y) = 0.94. These two patients exhibited positive serial correlation; how-

ever, the Bayesian model did not account for serial correlation. Had the Bayesian model

Table 4. N-of-1 randomized control trial data from [23].

Patient Consecutive pairs of mean “active vs placebo” differences in 7-item questionnaire Mean† SD Serial r Usual P Serial P

9 0.05/-0.22/0.57/0.36 0.19 0.35 0.24 ‡0.10 0.25

18 0.64/1.08/-0.36/0.79/-0.64/1.50 0.50 0.83 -0.49 0.10 0.02

23 1.22/1.07/-0.08/0.50 0.68 0.59 0.38 ‡0.06 0.17

17 -0.08/0.86/1.07/1.15 0.75 0.57 0.41 0.04 0.15

15 0.86/1.43/0.65/1.86 1.20 0.55 -0.42 0.01 <0.01

12 4.29/3.15/0.78/4.49 3.18 1.70 -0.07 0.02 0.01

† Positive means indicate an improvement while taking amitriptyline. The table values in columns 1, 2, and 6 were reproduced from Table 1 on pg 449 of [23].

‡ Based on the data, the usual paired t-test returns one-sided p-values of 0.18 for Patient 9 and 0.05 for Patient 23.

https://doi.org/10.1371/journal.pone.0228077.t004
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accounted for serial correlation, we suspect the p(A|y) would not have been as high for these

two patients, and possibly with p(A|y)< 0.85. In summary, the serial t-test gave a more conser-

vative inference on amitriptyline benefit than the original (usual) paired t-test and subsequent

Bayesian model.

4.2. Change in delay discounting after treatment for opioid dependence

Landes et al. (2012) evaluated each of 159 patients for change in delay discounting–a measure

of impulsivity–between pre- and post-treatment for opioid dependence [25]. Just prior to

starting, and at the end of a 12-week treatment regimen, patients completed a delay discount-

ing task. The task presented eight series of choices: one series for each of eight hypothetical

delays. In each series, the patient was offered choices between a hypothetical $1,000 available

after the specified delay or an adjusting amount of hypothetical money available immediately.

Each series continued until an indifference point was determined for the specified delay. An

indifference point is the percent of the delayed amount the patient deems equivalent to an

immediately available amount. Table 5 contains one patient’s indifference points at the indi-

cated hypothetical delays in a discounting task completed before (pre) and after (post) a

12-week treatment for opioid dependence. The differences between pre- and post-treatment

also are provided. The ordinary least squares standard deviation, s, and Fuller’s serial correla-

tion estimate, r, are based on the indicated model in this paper: level- or rate-change.

To analyze each patient’s pre- and post-treatment series of indifference points, Landes et al.
(2012) used a regression model particular to delay discounting data, and described more fully

in Landes et al. (2010) [25, 26]. We note their regression model assumed all indifference points

were mutually independent. For each patient, they tested, at the 0.05 level, whether discount-

ing post-treatment differed from discounting pre-treatment. We re-analyze their data here.

Their N-of-1 design matches a bi-phasic design; hence, we apply the 2-sample serial t-tests.

Since it is unknown whether patients may have experienced level- or rate-change, we tested for

both at the α/2 = 0.025 level (i.e., a Bonferroni-corrected 0.05 level). If neither test was

Table 5. Example of indifference points from discounting tasks completed pre- and post-treatment for opioid dependence by Patient 1390.

Hypothetical delay 1 day 1 wk 2 wks 1 mth 6 mth 1

yr

5

yr

25 yr Level-change Rate-change

s r s r

Pre-treatment 92 76 68 58 50 38 18 2 34.9 0.69 12.4 0.46

Post-treatment 98 92 90 84 72 56 2 2

Difference -6 -16 -22 -26 -22 -18 16 0 14.2 0.50 13.7 0.32

https://doi.org/10.1371/journal.pone.0228077.t005

Table 6. Number (percent) of 119† patients discounting differently between pre- and post-treatment.

N-of-1 test Number significant (%) Median r (25%, 75%)

Original regression method 69 (58) ---

2-sample serial combined 22 (18) ---

2-sample serial t-tests for level-change 8 (7) 0.61 (0.44, 0.69)

2-sample serial t-tests for rate-change 16 (13) 0.22 (0.02, 0.34)

Paired serial t-tests combined 37 (31) ---

Paired serial t-tests for level-change 21 (18) 0.34 (0.01, 0.56)

Paired serial t-tests for rate-change 19 (16) 0.04 (-0.19, 0.32)

†Out of 159 participants, 3 had two or more sets of data for a single assessment, and 37 exhibited no variability in

their indifference points in at least one of the assessments; thus, we excluded these 40 patients.

https://doi.org/10.1371/journal.pone.0228077.t006
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significant, we interpreted the patient’s discounting as having no change; otherwise, the

patient’s discounting changed between conditions. Table 6 shows the number of patients dis-

counting differently between pre- and post-treatment as determined by the original regression

method and by the serial t-tests [25]. Table 6 also contains the three quartiles of r under each

of the serial t-test.

Using the 2-sample serial t-tests, we found post-treatment discounting to differ from pre-

treatment in 22 patients (Table 6). Unsurprisingly, this is less than the 69 patients who were

found to have changed discounting using the original regression method, where everything

was assumed to be independent [25, 26]. In a study yet to be published, we examined Type I

error rates of the regression method and found Type I error rates for nominal 5% tests to be

about 15% when true serial correlations were 0.30. In this yet published work, we also recom-

mended pairing responses from two discounting tasks by delay after finding empirical evi-

dence that correlations of paired delays among tasks were, on average, between 0.25 (N = 394)

and 0.52 (N = 483). Therefore, we re-analyzed the original data with the paired serial t-tests,

testing for both level- and rate-change at the α/2 level as before. This time, we found that 37

patients changed discounting (Table 6). Again, this is notably less than the 69 participants who

were found to have changed discounting using the original regression method. The decrease

was likely due to the Type I errors being closer to nominal with the paired serial t-tests. Also,

because we account for the correlation between pre- and post-treatment, we find more patients

changed using the paired serial t-tests than we found using the 2-sample serial t-tests, which

assume that pre- and post-treatment discounting are uncorrelated. This is because the paired

serial t-tests have greater power than the 2-sample serial t-tests when pairs formed from the

two samples are truly (positively) correlated.

Returning to Table 5, the original regression indicated Patient 1390’s post-treatment dis-

counting had significantly decreased from pre-treatment levels (t14 = −2.58, p = .022). Treating

the pre- and post-treatment discounting datasets as mutually independent, the 2-sample serial

t-tests for level- and rate-change did not find sufficient evidence this patient had changed (level-

change t2.29 = −0.27, p = .808; rate-change t3.98 = −0.61, p = .573). Pairing post-treatment with

pre-treatment indifference points, and using the paired serial t-tests on the differences also

failed to find a statistical change in this patient (level-change t2.22 = −1.32, p = .307; rate-change

t2.94 = 0.91, p = .432). For each serial t-test considered, the estimated serial correlations ranged

from moderate (0.32) to strong (0.69). The original assumption of independence in these data

likely led to underestimation of relevant variability and inflation of the effective sample size.

All software code and data used in this paper, are available at github.com in the rdlandes/

red-face repository; see files starting with “N-of-1”. Alternatively, RDL will provide these files

upon request.

5. Discussion

Current methods that account for serial correlation in N-of-1 data are computationally inten-

sive and often require significant statistical expertise to implement. The serial t-tests developed

in this paper can accommodate researchers’ preferences for simpler methods while still

accounting for serial correlation. Type I errors for the serial t-tests are closer to nominal level

than those for the usual t-tests and attain nominal at large m. Power for the serial t-tests is

more realistic (i.e., closer to power computed using the proposed t-statistics) than that for the

usual t-tests; the serial tests also attain theoretical power at large m. Margins of error based on

the serial t-statistics converge to expected width as m increases; usual t’s margins of error were

generally wider when ρ6¼0, and will not attain the expected width no matter the size of m.
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These serial t-tests can be easily implemented by those having only a first course in applied sta-

tistics, as they are formulas with no computationally intensive methods needed.

Limitations. While the serial t-tests demonstrate better Type I error rates, power, and confi-

dence interval width estimation than the usual t-tests often used in N-of-1 trials, Type I error

is still substantial, power optimistic, and interval widths biased for small m. This is mainly due

to the inaccuracy that remains in estimating ρ. Although r is bias-corrected, bias still exists; the

bias is towards 0 for level-change tests, and is negative for rate-change tests. Type I errors are

affected by the biased r through the standard errors and degrees of freedom, both functions of

ρ. The effect of this bias on Type I errors comes more through the estimated degrees of free-

dom than through the standard errors. However, increasing m improves inflated Type I error,

optimistic power, and biased margins of error for serial t-tests, particularly for the level-change

tests; these 3 properties do not improve in the usual t-tests.

In the rate-change tests, the estimation of ρ has a strong negative bias. Type I error inflation

for these tests is more than that in level-change tests, even with a large number of observations.

Further work is needed to correct for the bias in the ρ estimator before these rate-change tests

may be applied in clinical use.

Although the serial t-tests do not account for carryover effects, the absence of carryover

effects is often assumed in applications of N-of-1 trials [5]; nevertheless, users need to carefully

design experiments to limit any carryover effect that may arise when comparing treatments.

These serial t-statistics assume that observations are equally spaced in time, with no missing

observations. For unequally spaced observations, the estimator of ρ will be biased toward 0.

The variance is also assumed to be homogeneous, which is common for most t-test applica-

tions. For N-of-1 trials, this assumption is likely not unrealistic; see Table 1 of Rochon (1990)

for an example [8].

As noted above, the ρ estimator still has some bias for small m. For a study where multiple

N-of-1 trials are planned, this bias may be reduced as the N-of-1 trials are completed. The ρ
estimate for a newly completed N-of-1 trial would be a pooled estimate from the completed N-

of-1 trials, including the newly completed one. Using such a pooled estimator necessarily

assumes that ρ is the same for all N-of-1 trials (i.e., participants), and that all trials have the

exact same temporal spacing of observations (but not necessarily the same m). In the end, less

bias in the ρ estimates means less bias in the estimated degrees of freedom and estimated stan-

dard errors, and more accurate statistical inferences.

The 2-sample serial t-tests assume independence between conditions A and B; however,

since the data come from the same person, this assumption likely is not true, as illustrated

when pairing observations from separate discounting tasks by delay (Section 4.2). When possi-

ble, for N-of-1 trials with treatments occurring one after the other (as in bi-phasic, pre-post,

and ABAB designs), planning the same series for both treatments will allow the use of paired

serial t-tests, which can have greater power when data between the two treatments are truly

pair-wise correlated. The delay discounting example illustrated this characteristic

Implications. Accounting for serial correlation makes a difference in statistical inferences

and estimation precision for a single individual. Specifically, when serial correlation is positive,

finding a “statistical difference” is less likely than when using a method that accounts for serial

correlation (e.g., serial t-tests). Both examples illustrated this attribute. In the fibromyalgia

example, of the six patients showing improvements with methods not accounting for serial

correlation (usual paired t-tests and a Bayesian aggregate N-of-1 model), two patients no lon-

ger had a significant result when using a serial paired t-test. In the delay discounting example,

of the 69 patients originally found to significantly change the way they discounted using a

regression method that ignored serial correlation, only 37 patients continued to show evidence

of a change when using the paired serial t-tests for level- and rate-change. These tempered
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statistical results make sense because positive serial correlation reduces the effective sample

size, m’ (Eqs 7 and 12). And, though maybe not as obviously, positive serial correlation

increases the standard error of the mean by dividing the usual part of the standard error by a

bias that is less than 1; e.g., see the denominator of Eq 4.

As reported by recent reviews of N-of-1 trials, the median number of crossovers or repeated

cycles is 3; the number of observations, m, also tend to be small [3, 13]. From our experience

reading various reports of N-of-1 trials, m = 3 is a typical number in clinical N-of-1 trial having

multiple crossovers. However, at least 3 data points are needed for estimating parameters β, σ2,

and ρ, leaving none for error degrees of freedom. That is, m should be at least 4 in level-change

tests and at least 5 in rate-change tests. Users of these tests should be aware of these limitations

and carefully consider the size of m.

These serial t-tests provide an easy and familiar way to compute effect sizes for a given m
that will attain a desired amount of power; a priori precision calculations are also straight-for-

ward. Such computations give rigor to planning a single N-of-1 trial or study. We note, of the

very few N-of-1 studies we found that provided information on sample size calculations, the

“sample size” considered only the number of N-of-1 trials that were needed, rather than m, the

number of observations in a single N-of-1 trial. We found no studies using N-of-1 trials that

considered precision of estimates for an individual trial in their study planning.

For many types of treatments, individual responses are known to differ. Some patients

respond well to certain treatments while others show little benefit. This is known as heteroge-

neity of treatment effects. N-of-1 trials evaluate treatment effects on an individual basis; thus

eliminating the need to account for heterogeneous treatment effects in analyses. In addition,

some patients may be quite variable in their responses, whereas others respond more predict-

ably. The reasons for these heterogeneous treatment effects and variances are not well under-

stood. Therefore, it is important to have an easy-to-use statistical method to identify an

appropriate treatment for a particular patient and to also give a more accurate (less-biased)

estimate of variance (see Eq 3). Better evaluation of these patient-specific parameters may also

help in understanding the mechanism behind these varying effects.

These serial t-tests are an improvement over often-employed usual t-tests and other meth-

ods that fail to account for serial correlation. Additionally, the serial t-tests are easy for

researchers to implement. Further work is still needed to adjust for N-of-1 trials with few

observations, particularly for rate-change tests. Nevertheless, we believe these serial t-tests will

make appropriate analyses for N-of-1 trials more accessible to researchers, and allow them to

make better decisions for individuals undergoing N-of-1 trials.

Supporting information

S1 Fig. 2-sample t-test for level-change. Type I error (top) and theoretical effect size, δ, com-

puted using Eq 9 for 80% power with a one-sided 5% significance level test for a given m; note,

mA = mB (middle). Ratios (bottom) of serial and usual δ (estimated from simulation) to the

theoretical δ under same conditions as the theoretical δ.

(TIF)

S2 Fig. 2-sample t-test for rate-change. Type I error (top) and theoretical effect size, δ, com-

puted using Eq 15 for 80% power with a one-sided 5% significance level test for a given m;

note, mA = mB (middle). Ratios (bottom) of serial and usual δ (estimated from simulation) to

the theoretical δ under same conditions as the theoretical δ.

(TIF)

Serial t-tests for N-of-1 trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0228077 February 4, 2020 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228077.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228077.s002
https://doi.org/10.1371/journal.pone.0228077


Acknowledgments

We particularly thank Dr Anne M. Holbrook with McMaster University for her insight into

N-of-1 trials from a clinical researcher’s perspective.

Author Contributions

Conceptualization: Jillian Tang, Reid D. Landes.

Data curation: Jillian Tang.

Formal analysis: Jillian Tang, Reid D. Landes.

Investigation: Jillian Tang.

Methodology: Jillian Tang.

Software: Jillian Tang.

Supervision: Reid D. Landes.

Validation: Reid D. Landes.

Visualization: Jillian Tang.

Writing – original draft: Jillian Tang, Reid D. Landes.

Writing – review & editing: Reid D. Landes.

References
1. Smith JD. Single-case experimental designs: a systematic review of published research and current

standards. Psychol Methods 2012 Dec; 17(4):510–550. https://doi.org/10.1037/a0029312 PMID:

22845874

2. Guyatt G, Sackett D, Taylor DW, Chong J, Roberts R, Pugsley S. Determining optimal therapy—ran-

domized trials in individual patients. N Engl J Med 1986 Apr 3; 314(14):889–892. https://doi.org/10.

1056/NEJM198604033141406 PMID: 2936958

3. Gabler NB, Duan N, Vohra S, Kravitz RL. N-of-1 trials in the medical literature: a systematic review.

Med Care 2011 Aug; 49(8):761–768. https://doi.org/10.1097/MLR.0b013e318215d90d PMID:

21478771

4. Tate RL, Perdices M, Rosenkoetter U, McDonald S, Togher L, Shadish W, et al. The Single-Case

Reporting Guidelines in BEhavioural Interventions (SCRIBE) 2016: Explanation and Elaboration.

Archives of Scientific Psychology 2016; 4:10–31.

5. Shamseer L, Sampson M, Bukutu C, Schmid CH, Nikles J, Tate R, et al. CONSORT extension for

reporting N-of-1 trials (CENT) 2015: Explanation and elaboration. BMJ 2015 May 14; 350:h1793.

https://doi.org/10.1136/bmj.h1793 PMID: 25976162

6. Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, Schork NJ. The n-of-1 clinical trial: the ultimate strategy

for individualizing medicine? Per Med 2011 Mar; 8(2):161–173. https://doi.org/10.2217/pme.11.7 PMID:

21695041

7. McDonald S, Quinn F, Vieira R, O’Brien N, White M, Johnston DW, et al. The state of the art and future

opportunities for using longitudinal n-of-1 methods in health behaviour research: a systematic literature

overview. Health Psychol Rev 2017 Dec; 11(4):307–323. https://doi.org/10.1080/17437199.2017.

1316672 PMID: 28406349

8. Rochon J. A statistical model for the "N-of-1" study. J Clin Epidemiol 1990; 43(5):499–508. https://doi.

org/10.1016/0895-4356(90)90139-g PMID: 2139111

9. McKnight SD, McKean JW, Huitema BE. A double bootstrap method to analyze linear models with auto-

regressive error terms. Psychol Methods 2000 Mar; 5(1):87–101. https://doi.org/10.1037/1082-989x.5.

1.87 PMID: 10937324

10. Borckardt JJ, Nash MR, Murphy MD, Moore M, Shaw D, O’Neil P. Clinical practice as natural laboratory

for psychotherapy research: a guide to case-based time-series analysis. Am Psychol 2008 Feb-Mar; 63

(2):77–95. https://doi.org/10.1037/0003-066X.63.2.77 PMID: 18284277

Serial t-tests for N-of-1 trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0228077 February 4, 2020 18 / 19

https://doi.org/10.1037/a0029312
http://www.ncbi.nlm.nih.gov/pubmed/22845874
https://doi.org/10.1056/NEJM198604033141406
https://doi.org/10.1056/NEJM198604033141406
http://www.ncbi.nlm.nih.gov/pubmed/2936958
https://doi.org/10.1097/MLR.0b013e318215d90d
http://www.ncbi.nlm.nih.gov/pubmed/21478771
https://doi.org/10.1136/bmj.h1793
http://www.ncbi.nlm.nih.gov/pubmed/25976162
https://doi.org/10.2217/pme.11.7
http://www.ncbi.nlm.nih.gov/pubmed/21695041
https://doi.org/10.1080/17437199.2017.1316672
https://doi.org/10.1080/17437199.2017.1316672
http://www.ncbi.nlm.nih.gov/pubmed/28406349
https://doi.org/10.1016/0895-4356(90)90139-g
https://doi.org/10.1016/0895-4356(90)90139-g
http://www.ncbi.nlm.nih.gov/pubmed/2139111
https://doi.org/10.1037/1082-989x.5.1.87
https://doi.org/10.1037/1082-989x.5.1.87
http://www.ncbi.nlm.nih.gov/pubmed/10937324
https://doi.org/10.1037/0003-066X.63.2.77
http://www.ncbi.nlm.nih.gov/pubmed/18284277
https://doi.org/10.1371/journal.pone.0228077


11. Borckardt JJ, Nash MR. Simulation modelling analysis for small sets of single-subject data collected

over time. Neuropsychol Rehabil 2014; 24(3–4):492–506. https://doi.org/10.1080/09602011.2014.

895390 PMID: 24641472

12. Lin SX, Morrison L, Smith PW, Hargood C, Weal M, Yardley L. Properties of bootstrap tests for N-of-1

studies. Br J Math Stat Psychol 2016 Nov; 69(3):276–290. https://doi.org/10.1111/bmsp.12071 PMID:

27339626

13. Punja S, Bukutu C, Shamseer L, Sampson M, Hartling L, Urichuk L, et al. N-of-1 trials are a tapestry of

heterogeneity. J Clin Epidemiol 2016 Aug; 76:47–56. https://doi.org/10.1016/j.jclinepi.2016.03.023

PMID: 27079847

14. Vohra S, Shamseer L, Sampson M, Bukutu C, Schmid CH, Tate R, et al. CONSORT extension for

reporting N-of-1 trials (CENT) 2015 Statement. BMJ 2015 May 14; 350:h1738. https://doi.org/10.1136/

bmj.h1738 PMID: 25976398

15. Tate RL, Perdices M, Rosenkoetter U, Wakim D, Godbee K, Togher L, et al. Revision of a method qual-

ity rating scale for single-case experimental designs and n-of-1 trials: The 15-item Risk of Bias in N-of-1

Trials (RoBiNT) Scale. Neuropsychological rehabilitation 2013; 23(5):619–638. https://doi.org/10.1080/

09602011.2013.824383 PMID: 24050810

16. Dawdy DR, Matalas NC. Analysis of variance, covariance and time series. In: Chow VT, editor. Hand-

book of applied hydrology, a compendium of water-resources technology New York: McGraw-Hill;

1964. p. 869–890.

17. Wang Y, Schork NJ. Power and Design Issues in Crossover-Based N-Of-1 Clinical Trials with Fixed

Data Collection Periods. Healthcare (Basel) 2019 Jul 2; 7(3): https://doi.org/10.3390/

healthcare7030084 PMID: 31269712

18. Senn S. Sample size considerations for n-of-1 trials. Stat Methods Med Res 2019 Feb; 28(2):372–383.

https://doi.org/10.1177/0962280217726801 PMID: 28882093

19. Percha B, Baskerville EB, Johnson M, Dudley JT, Zimmerman N. Designing Robust N-of-1 Studies for

Precision Medicine: Simulation Study and Design Recommendations. J Med Internet Res 2019 Apr 1;

21(4):e12641. https://doi.org/10.2196/12641 PMID: 30932871

20. Thornber H. Finite Sample Monte Carlo Studies: An Autoregressive Illustration. Journal of the American

Statistical Association 1967; 62(319):801–818.

21. Solanas A, Rumen M, Vicenta S. Lag-one autocorrelation in short series: Estimation and hypotheses

testing. Psicologica 2010; 31:357–381.

22. Fuller WA. Introduction to statistical time series. 2nd ed. New York: John Wiley & Sons, Inc.; 1996.

23. Jaeschke R, Adachi J, Guyatt G, Keller J, Wong B. Clinical usefulness of amitriptyline in fibromyalgia:

the results of 23 N-of-1 randomized controlled trials. The Journal of Rheumatology 1991; 18(3):447–

451. PMID: 1856813

24. Zucker DR, Schmid CH, McIntosh MW, D’Agostino RB, Selker HP, Lau J. Combining single patient (N-

of-1) trials to estimate population treatment effects and to evaluate individual patient responses to treat-

ment. Journal of Clinical Epidemiology 1997; 50(4):401–410. https://doi.org/10.1016/s0895-4356(96)

00429-5 PMID: 9179098

25. Landes RD, Christensen DR, Bickel WK. Delay discounting decreases in those completing treatment

for opioid dependence. Exp Clin Psychopharmacol 2012 Aug; 20(4):302–309. https://doi.org/10.1037/

a0027391 PMID: 22369670

26. Landes RD, Pitcock JA, Yi R, Bickel WK. Analytical methods to detect within-individual changes in dis-

counting. Exp Clin Psychopharmacol 2010 Apr; 18(2):175–183. https://doi.org/10.1037/a0018901

PMID: 20384429

Serial t-tests for N-of-1 trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0228077 February 4, 2020 19 / 19

https://doi.org/10.1080/09602011.2014.895390
https://doi.org/10.1080/09602011.2014.895390
http://www.ncbi.nlm.nih.gov/pubmed/24641472
https://doi.org/10.1111/bmsp.12071
http://www.ncbi.nlm.nih.gov/pubmed/27339626
https://doi.org/10.1016/j.jclinepi.2016.03.023
http://www.ncbi.nlm.nih.gov/pubmed/27079847
https://doi.org/10.1136/bmj.h1738
https://doi.org/10.1136/bmj.h1738
http://www.ncbi.nlm.nih.gov/pubmed/25976398
https://doi.org/10.1080/09602011.2013.824383
https://doi.org/10.1080/09602011.2013.824383
http://www.ncbi.nlm.nih.gov/pubmed/24050810
https://doi.org/10.3390/healthcare7030084
https://doi.org/10.3390/healthcare7030084
http://www.ncbi.nlm.nih.gov/pubmed/31269712
https://doi.org/10.1177/0962280217726801
http://www.ncbi.nlm.nih.gov/pubmed/28882093
https://doi.org/10.2196/12641
http://www.ncbi.nlm.nih.gov/pubmed/30932871
http://www.ncbi.nlm.nih.gov/pubmed/1856813
https://doi.org/10.1016/s0895-4356(96)00429-5
https://doi.org/10.1016/s0895-4356(96)00429-5
http://www.ncbi.nlm.nih.gov/pubmed/9179098
https://doi.org/10.1037/a0027391
https://doi.org/10.1037/a0027391
http://www.ncbi.nlm.nih.gov/pubmed/22369670
https://doi.org/10.1037/a0018901
http://www.ncbi.nlm.nih.gov/pubmed/20384429
https://doi.org/10.1371/journal.pone.0228077

