

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 29 March 2017 Accepted 6 April 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

**‡** These authors contributed equally.

**Keywords:** crystal structure; sulfonamides; N— H···O hydrogen bonds; C—H···O interactions; C—H··· $\pi$  interactions;  $\pi$ – $\pi$  interactions.

CCDC reference: 1542706

**Supporting information**: this article has supporting information at journals.iucr.org/e



### K. Shakuntala,<sup>a</sup><sup>‡</sup> S. Naveen,<sup>b</sup><sup>‡</sup> N. K. Lokanath<sup>c</sup> and P. A. Suchetan<sup>d</sup>\*

<sup>a</sup>Department of Chemistry, Sri Bhuvanendra College, Karkala 574 104, India, <sup>b</sup>Institution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, <sup>c</sup>Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and <sup>d</sup>Dept. of Chemistry, University College of Science, Tumkur University, Tumkur, 572103, India. \*Correspondence e-mail: pasuchetan@yahoo.co.in

The crystal structures of three isomeric compounds of formula C<sub>14</sub>H<sub>13</sub>Cl<sub>2</sub>NO<sub>2</sub>S, namely 3,5-dichloro-N-(2,3-dimethylphenyl)-benzenesulfonamide (I), 3,5-dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide (II) and 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide (III) are described. The molecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The molecular conformation of (II) is stabilized by intramolecular  $C-H \cdots O$  hydrogen bonds and  $C-H\cdots\pi$  interactions. The crystal structure of (I) features  $N-H\cdotsO$ hydrogen-bonded  $R_2^2(8)$  loops interconnected via C(7) chains of C-H···O interactions, forming a three-dimensional architecture. The structure also features  $\pi - \pi$  interactions  $[Cg \cdots Cg = 3.6970 (14) \text{ Å}]$ . In (II), N-H···O hydrogen-bonded  $R_2^2(8)$  loops are interconnected via  $\pi - \pi$  interactions [intercentroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the *a* axis. In (III), adjacent C(4) chains of N-H···O hydrogenbonded molecules running parallel to [010] are connected via  $C-H\cdots\pi$ interactions, forming sheets parallel to the *ab* plane. Neighbouring sheets are linked via offset  $\pi - \pi$  interactions [intercentroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

#### 1. Chemical context

Sulfonamide drugs were the first chemotherapeutic agents to be used for curing and preventing bacterial infection in human beings (Shiva Prasad *et al.*, 2011). They play a vital role as key constituents in a number of biologically active molecules and are known to exhibit a wide variety of biological activities, such as antibacterial (Subhakara Reddy *et al.*, 2012; Himel *et al.*, 1971), antifungal (Hanafy *et al.*, 2007), anti-inflammatory (Küçükgüzel *et al.*, 2013), antitumor (Ghorab *et al.*, 2011), anticancer (Al-Said *et al.*, 2011), anti-HIV (Sahu *et al.*, 2007) and antitubercular activities (Vora & Mehta, 2012). In recent years, extensive research studies have been carried out on the synthesis and evaluation of the pharmacological properties of molecules containing the sulfonamide moiety, which have been reported to be important pharmacophores (Mohan *et al.*, 2013).

With these considerations in mind and based on our structural study of 3,5-dichloro-*N*-(substitutedphenyl)-benzenesulfonamides (Shakuntala, Naveen *et al.*, 2017;



OPEN  $\widehat{\odot}$  Access

### research communications

Shakuntala, Lokanath *et al.*, 2017), we report herein the crystal structures of three isomers, *viz.* 3,5-dichloro-*N*-(2,3-di-methylphenyl)-benzenesulfonamide (I), 3,5-dichloro-*N*-(2,6-dimethylphenyl)benzenesulfonamide (II) and 3,5-dichloro-*N*-(3,5-dimethylphenyl)benzenesulfonamide (III).



#### 2. Structural commentary

The molecule of (I) (Fig. 1) is U-shaped, with the sulfonylbenzene ring and the aniline ring inclined by 41.3 (6)°. The N-C bond in the C-SO<sub>2</sub>-NH-C segment has a *gauche* torsion with respect to the S=O bonds, and the molecule is twisted at the S-N bond, with a C1-S1-N1-C7 torsion angle of 60.9 (2)°.

In the U-shaped molecules of (II) (Fig. 2), the dihedral angle between the sulfonylbenzene ring and the aniline ring is 42.1 (2)°. The molecule is twisted at the S-N bond, with a C1-S1-N1-C7 torsion angle of 69.8 (3)°. The molecular conformation of (II) is stabilized by an intramolecular C-H···O hydrogen bond and a C-H··· $\pi$  interaction (Table 2). The N-C bond in the C-SO<sub>2</sub>-NH-C segment has a *gauche* torsion with respect to the S=O bonds.



Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.



Figure 2

The molecular structure of (II) with displacement ellipsoids drawn at the 50% probability level. Intramolecular  $C-H\cdots O$  and  $C-H\cdots \pi$  hydrogen interactions are shown as dotted lines.

The molecule of (III) (Fig. 3) is also U-shaped, with the sulfonylbenzene ring tilted at an angle of 54.4 (3)° with respect to the aniline ring. The N–C bond in the C–SO<sub>2</sub>–NH–C segment has a *gauche* torsion with respect to the S=O bonds, and the molecule is twisted at the S–N bond, with a C1–S1–N1–C7 torsion angle of 71.3 (2)°.

#### 3. Supramolecular features

The crystal structure of (I) features inversion-related dimers linked by N1-H1···O2<sup>i</sup> hydrogen bonds forming  $R_2^2(8)$  loops (Fig. 4, Table 1). The  $R_2^2(8)$  loops are interconnected via C(7) chains of C4-H4···O1<sup>ii</sup> intermolecular interactions, forming a three-dimensional supramolecular architecture. The structure also features  $\pi$ - $\pi$  interactions involving the benzenesulfonyl ring and the aniline ring as illustrated in Fig. 4 [Cg1···Cg2<sup>iii</sup> = 3.6970 (14) Å; Cg1 and Cg2 are the centroids





| Table 1                                |  |
|----------------------------------------|--|
| Hydrogen-bond geometry (Å, °) for (I). |  |

| $D - H \cdot \cdot \cdot A$                                                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------|------|-------------------------|-------------------------|-----------------------------|
| $\begin{array}{c} N1{-}H1{\cdots}O2^i\\ C4{-}H4{\cdots}O1^{ii} \end{array}$ | 0.86 | 2.14                    | 2.9590                  | 159                         |
|                                                                             | 0.95 | 2.41                    | 3.332 (3)               | 164                         |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ .

## Table 2Hydrogen-bond geometry (Å, $^{\circ}$ ) for (II).

| Cg1 is the centroid of the C1–C6 ring. |          |                         |              |                  |  |
|----------------------------------------|----------|-------------------------|--------------|------------------|--|
| $D - H \cdot \cdot \cdot A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |  |
| C14−H14 <i>C</i> ···O1                 | 0.98     | 2.53                    | 3.139 (8)    | 120              |  |
| $N1 - H1 \cdot \cdot \cdot O2^{i}$     | 0.85 (4) | 2.12 (4)                | 2.937 (5)    | 160 (4)          |  |
| $C13-H13A\cdots Cg1$                   | 0.98     | 2.67                    | 3.493 (5)    | 142              |  |

Symmetry code: (i) -x + 1, -y + 1, -z.

of the C1–C6 and C7–C12 rings, respectively; symmetry code: (iii)  $\frac{3}{2} - x$ ,  $-\frac{1}{2} + y$ ,  $\frac{3}{2} - z$ ].

In (II), N1-H1...O2<sup>i</sup> hydrogen-bonded  $R_2^2(8)$  loops (Fig. 5, Table 2) are connected *via*  $\pi$ - $\pi$  interactions involving inversion-related benzenesulfonyl rings, forming a one-dimensional architecture running parallel to the *a* axis, as shown in Fig. 5  $[Cg1...Cg1^{ii} = 3.606 (3) \text{ Å}; Cg1 \text{ is the centroid of the C1-C6 ring; symmetry code: (ii) <math>2 - x, 1 - y, -z].$ 

In the crystal structure of (III), the molecules are interlinked *via* N1-H1···O1<sup>i</sup> hydrogen bonds (Fig. 6, Table 3) to form C(4) chains running parallel to [010]. Adjacent chains are



Cg2 is the centroid of the aniline ring C7-C12

| $D - H \cdots A$                              | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------------------------|------|-------------------------|--------------|-----------------------------|
| $N1-H1\cdotsO1^{i}$ $C14-H14B\cdots Cg2^{ii}$ | 0.87 | 2.13                    | 2.9848       | 167                         |
|                                               | 0.98 | 2.86                    | 3.5135       | 124                         |

Symmetry codes: (i) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (ii) -x,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

connected by C14-H14 $B \cdots \pi$  interactions involving the aniline ring, forming two-dimensional sheets parallel to the *ab* plane. Neighbouring sheets are further linked *via* offset  $\pi$ - $\pi$  interactions involving inversion-related benzenesulfonyl rings, forming a three dimensional architecture as as illustrated in Fig. 7 [ $Cg1 \cdots Cg1^{i} = 3.8303$  (16) Å, interplanar distance = 3.3874 (11) Å, slippage 1.788 (3) Å; Cg1 is the centroid of the C1-C6 ring; symmetry code: (iii) 1 - x, -y, -z].

#### 4. Database survey

Two 3,5-dichloro-*N*-(substitutedphenyl)-benzenesulfonamides, namely 3,5-dichloro-*N*-(4-methylphenyl)benzenesulfonamide [Shakuntala, Naveen *et al.*, 2017, (IV)] and 3,5dichloro-*N*-(2,4-dichlorophenyl)benzenesulfonamide [Shakuntala, Lokanath *et al.*, 2017, (V)], have been reported previously. The molecules of both (IV) and (V) are U-shaped



#### Figure 4

The three-dimensional supramolecular architecture of (I) viewed along the *c* axis. The N-H···O and C-H···O hydrogen bonds and  $\pi$ - $\pi$ interactions are shown as thin blue dotted lines. H atoms not involved in hydrogen bonding are omitted for clarity.



#### Figure 5

Partial crystal packing of (II) showing the formation of a one-dimensional architecture through N-H···O hydrogen bonds and  $\pi$ - $\pi$  interactions (thin blue dotted lines).

### research communications





Partial crystal packing of (III) viewed down the *c* axis displaying twodimensional sheets. Thin blue dotted lines denote  $N-H\cdots O$  hydrogen bonds and  $C-H\cdots \pi$  interactions. H atoms not involved in hydrogen bonding are omitted for clarity.

with the central C–S–N–C segment having a torsion angle of 67.2 (4)° in (IV) and 58.7 (3)° in (V). The dihedral angle between the benzene rings is 57.0 (2)° in (IV) and 40.23 (2)° in (V). The crystal structure of (IV) displays a three-dimensional supramolecular structure constructed *via* N–H···O and C–H···O hydrogen bonds and C–H··· $\pi$  interactions, whereas in (V) the three-dimensional supramolecular architecture is built through N–H···O and C–H···O hydrogen bonds, Cl···Cl contacts and  $\pi$ – $\pi$  interactions.

#### 5. Synthesis and crystallization

The title compounds were prepared according to a literature method (Rodrigues *et al.*, 2015). The purities of all the compounds were checked by determining their melting points. Colourless prismatic single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of ethanolic solutions of the compounds at room temperature.

#### 6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. The amino H atoms were located in difference-Fourier maps and refined isotropically with the N—H bond length restrained to be 0.88 (2) Å. All other H atoms were positioned geometrically and refined as riding with C-H = 0.95-0.98 Å and  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ . A rotating model was applied to the methyl groups. To improve considerably the values of *R*1, *wR*2, and *S* (goodness-of-fit), a low-angle reflection partially obscured by the beam-stop (100) was omitted from the final refinement of (III).

#### Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. KS is thankful to the University Grants Commission (UGC), New Delhi for financial assistance under its MRP scheme.

#### References

- Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem, 1, 8–14.
- Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol. 48, 47–50.





Crystal packing of (III) viewed approximately along the *a* axis, showing the  $\pi$ - $\pi$  interactions (black dotted lines) between adjacent sheets. For clarity, only H atoms involved in N-H···O hydrogen bonds and C-H··· $\pi$  interactions (thin blue dotted lines) are included.

Table 4Experimental details.

|                                                                            | (I)                                                                          | (II)                                                                         | (III)                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Crystal data                                                               |                                                                              |                                                                              |                                                                              |
| Chemical formula                                                           | C14H13Cl2NO2S                                                                | C14H13Cl2NO2S                                                                | $C_{14}H_{13}Cl_2NO_2S$                                                      |
| $M_{\rm r}$                                                                | 330.21                                                                       | 330.21                                                                       | 330.21                                                                       |
| Crystal system, space group                                                | Monoclinic, $P2_1/n$                                                         | Triclinic, $P\overline{1}$                                                   | Monoclinic, $P2_1/c$                                                         |
| Temperature (K)                                                            | 100                                                                          | 100                                                                          | 100                                                                          |
| a, b, c (Å)                                                                | 8.2223 (3), 14.1546 (5), 12.7933 (4)                                         | 8.4817 (15), 8.6149 (15), 12.167 (2)                                         | 12.2268 (6), 7.0399 (3), 17.3130 (8)                                         |
| $\alpha, \beta, \gamma$ (°)                                                | 90, 91.188 (1), 90                                                           | 109.875 (5), 91.900 (5), 114.190 (5)                                         | 90, 100.409 (1), 90                                                          |
| $V(Å^3)$                                                                   | 1488.61 (9)                                                                  | 747.1 (2)                                                                    | 1465.70 (12)                                                                 |
| Ζ                                                                          | 4                                                                            | 2                                                                            | 4                                                                            |
| Radiation type                                                             | Cu Ka                                                                        | Cu Kα                                                                        | Cu Ka                                                                        |
| $\mu (\text{mm}^{-1})$                                                     | 5.24                                                                         | 5.22                                                                         | 5.32                                                                         |
| Crystal size (mm)                                                          | $0.28 \times 0.25 \times 0.22$                                               | $0.29 \times 0.26 \times 0.22$                                               | $0.27 \times 0.24 \times 0.21$                                               |
| Data collection                                                            |                                                                              |                                                                              |                                                                              |
| Diffractometer                                                             | Bruker APEXII CCD area<br>detector                                           | Bruker APEXII CCD area<br>detector                                           | Bruker APEXII CCD area<br>detector                                           |
| Absorption correction                                                      | Multi-scan ( <i>SADABS</i> ; Bruker, 2009)                                   | Multi-scan (SADABS; Bruker, 2009)                                            | Multi-scan (SADABS;<br>Bruker,2009)                                          |
| $T_{\min}, T_{\max}$                                                       | 0.288, 0.316                                                                 | 0.275, 0.317                                                                 | 0.297, 0.327                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 10308, 2440, 2347                                                            | 6977, 2400, 1960                                                             | 11468, 2412, 2374                                                            |
| R <sub>int</sub>                                                           | 0.053                                                                        | 0.124                                                                        | 0.056                                                                        |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                         | 0.584                                                                        | 0.581                                                                        | 0.585                                                                        |
| Refinement                                                                 |                                                                              |                                                                              |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.057, 0.162, 1.07                                                           | 0.074, 0.233, 1.02                                                           | 0.058, 0.152, 0.99                                                           |
| No. of reflections                                                         | 2440                                                                         | 2400                                                                         | 2412                                                                         |
| No. of parameters                                                          | 187                                                                          | 187                                                                          | 187                                                                          |
| No. of restraints                                                          | 1                                                                            | 1                                                                            | 1                                                                            |
| H-atom treatment                                                           | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.64, -0.63                                                                  | 0.99, -0.60                                                                  | 0.82, -0.88                                                                  |

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXT 2016/4 (Sheldrick, 2015a), SHELXL2016/4 (Sheldrick, 2015b) and Mercury (Macrae et al., 2008).

Himel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.

- Küçükgüzel, Ş. G., Coşkun, İ., Aydın, S., Aktay, G., Gürsoy, Şule, Çevik, Ö., Özakpınar, Ö. B., Özsavcı, D., Şener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). *Molecules*, 18, 3595–3614.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, **2**, 722–729.
- Rodrigues, V. Z., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127–135.
- Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). *Med. Chem. Res.* **15**, 418–430.

- Shakuntala, K., Lokanath, N. K., Naveen, S. & Suchetan, P. A. (2017). *IUCrData*, **2**, x170372.
- Shakuntala, K., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2017). *IUCrData*, **2**, x170375.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). *Int. J. Chem. Res*, **2**, 1–6.
- Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.
- Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34-39.

Acta Cryst. (2017). E73, 673-677 [https://doi.org/10.1107/S2056989017005230]

Crystal structures of isomeric 3,5-dichloro-*N*-(2,3-dimethylphenyl)benzenesulfonamide, 3,5-dichloro-*N*-(2,6-dimethylphenyl)benzenesulfonamide and 3,5dichloro-*N*-(3,5-dimethylphenyl)benzenesulfonamide

### K. Shakuntala, S. Naveen, N. K. Lokanath and P. A. Suchetan

### **Computing details**

Data collection: *APEX2* (Bruker, 2009) for (I); APEXII (Bruker, 2009) for (II), (III). For all compounds, cell refinement: *APEX2* (Bruker, 2009) and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* (Bruker, 2009) and *XPREP* (Bruker, 2009); program(s) used to solve structure: SHELXT 2016/4 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/4* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2016/4* (Sheldrick, 2015b).

Prism

 $D_{\rm x} = 1.473 {\rm Mg m^{-3}}$ 

(I) 3,5-Dichloro-N-(2,3-dimethylphenyl)benzenesulfonamide

Crystal data

C<sub>14</sub>H<sub>13</sub>Cl<sub>2</sub>NO<sub>2</sub>S  $M_r = 330.21$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 8.2223 (3) Å b = 14.1546 (5) Å c = 12.7933 (4) Å  $\beta = 91.188$  (1)° V = 1488.61 (9) Å<sup>3</sup> Z = 4F(000) = 680

Data collection

Bruker APEXII CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\varphi$  scans Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.288, T_{\max} = 0.316$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.057$  $wR(F^2) = 0.162$ S = 1.07 Melting point: 431 K Cu *Ka* radiation,  $\lambda = 1.54178$  Å Cell parameters from 144 reflections  $\theta = 6.2-64.2^{\circ}$  $\mu = 5.24$  mm<sup>-1</sup> T = 100 K Prism, colourless  $0.28 \times 0.25 \times 0.22$  mm 10308 measured reflections

2440 independent reflections 2347 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.053$   $\theta_{max} = 64.2^{\circ}, \theta_{min} = 6.2^{\circ}$   $h = -9 \rightarrow 9$   $k = -16 \rightarrow 15$  $l = -14 \rightarrow 12$ 

2440 reflections 187 parameters 1 restraint Hydrogen site location: mixed

| H atoms treated by a mixture of independent       | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
|---------------------------------------------------|------------------------------------------------------------|
| and constrained refinement                        | $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$  |
| $w = 1/[\sigma^2(F_o^2) + (0.1235P)^2 + 0.7281P]$ | $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ |
| where $P = (F_o^2 + 2F_c^2)/3$                    |                                                            |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|--------------|--------------|-----------------------------|--|
| C1   | 0.6064 (3)  | 0.35091 (16) | 0.66816 (18) | 0.0170 (5)                  |  |
| C2   | 0.7069 (3)  | 0.32517 (16) | 0.75161 (18) | 0.0189 (5)                  |  |
| H2   | 0.821571    | 0.332433     | 0.748662     | 0.023*                      |  |
| C3   | 0.6346 (3)  | 0.28862 (18) | 0.83908 (19) | 0.0222 (6)                  |  |
| C4   | 0.4689 (3)  | 0.27523 (17) | 0.84477 (19) | 0.0230 (6)                  |  |
| H4   | 0.421903    | 0.248689     | 0.905281     | 0.028*                      |  |
| C5   | 0.3733 (3)  | 0.30179 (17) | 0.7592 (2)   | 0.0214 (6)                  |  |
| C6   | 0.4380 (3)  | 0.34137 (16) | 0.67041 (19) | 0.0191 (5)                  |  |
| H6   | 0.370447    | 0.361192     | 0.613395     | 0.023*                      |  |
| C7   | 0.8409 (3)  | 0.53406 (16) | 0.67541 (19) | 0.0200 (5)                  |  |
| C8   | 0.7774 (3)  | 0.56423 (17) | 0.7703 (2)   | 0.0214 (6)                  |  |
| C9   | 0.8878 (3)  | 0.58319 (17) | 0.8534 (2)   | 0.0255 (6)                  |  |
| C10  | 1.0528 (3)  | 0.57152 (19) | 0.8392 (2)   | 0.0299 (6)                  |  |
| H10  | 1.126374    | 0.583905     | 0.895815     | 0.036*                      |  |
| C11  | 1.1130 (3)  | 0.5422 (2)   | 0.7444 (2)   | 0.0294 (6)                  |  |
| H11  | 1.226895    | 0.535041     | 0.736077     | 0.035*                      |  |
| C12  | 1.0071 (3)  | 0.52333 (18) | 0.6620(2)    | 0.0249 (6)                  |  |
| H12  | 1.047530    | 0.503204     | 0.596579     | 0.030*                      |  |
| C13  | 0.5980 (3)  | 0.5761 (2)   | 0.7852 (2)   | 0.0291 (6)                  |  |
| H13A | 0.542286    | 0.578976     | 0.716866     | 0.044*                      |  |
| H13B | 0.578180    | 0.634742     | 0.823689     | 0.044*                      |  |
| H13C | 0.556474    | 0.522395     | 0.824971     | 0.044*                      |  |
| C14  | 0.8264 (4)  | 0.6143 (2)   | 0.9586 (2)   | 0.0349 (7)                  |  |
| H14A | 0.918902    | 0.623555     | 1.007098     | 0.052*                      |  |
| H14B | 0.754217    | 0.565655     | 0.986298     | 0.052*                      |  |
| H14C | 0.766435    | 0.673737     | 0.950595     | 0.052*                      |  |
| N1   | 0.7344 (3)  | 0.51231 (14) | 0.58726 (16) | 0.0194 (5)                  |  |
| 01   | 0.8517 (2)  | 0.35517 (12) | 0.54650 (13) | 0.0237 (4)                  |  |
| O2   | 0.5832 (2)  | 0.40294 (13) | 0.47232 (14) | 0.0241 (4)                  |  |
| S1   | 0.69924 (7) | 0.40208 (4)  | 0.55760 (4)  | 0.0177 (3)                  |  |
| CL1  | 0.75874 (9) | 0.25743 (5)  | 0.94545 (5)  | 0.0355 (3)                  |  |
| CL2  | 0.16538 (7) | 0.28217 (5)  | 0.76316 (6)  | 0.0356 (3)                  |  |
| H1   | 0.647 (3)   | 0.5457 (18)  | 0.585 (2)    | 0.017 (7)*                  |  |
|      |             |              |              |                             |  |

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0190 (12) | 0.0141 (11) | 0.0178 (11) | -0.0010 (8)  | 0.0013 (9)   | -0.0029 (9)  |
| C2  | 0.0169 (12) | 0.0171 (12) | 0.0225 (12) | -0.0005 (9)  | -0.0019 (9)  | -0.0001 (9)  |
| C3  | 0.0289 (14) | 0.0171 (12) | 0.0202 (13) | 0.0006 (10)  | -0.0053 (10) | 0.0011 (9)   |
| C4  | 0.0305 (15) | 0.0193 (12) | 0.0195 (13) | -0.0011 (10) | 0.0068 (11)  | 0.0018 (10)  |
| C5  | 0.0170 (12) | 0.0185 (12) | 0.0288 (13) | -0.0018 (9)  | 0.0041 (10)  | -0.0033 (10) |
| C6  | 0.0191 (12) | 0.0184 (12) | 0.0196 (12) | 0.0006 (9)   | -0.0019 (10) | -0.0019 (9)  |
| C7  | 0.0242 (13) | 0.0164 (12) | 0.0194 (12) | -0.0042 (9)  | -0.0008 (10) | 0.0030 (9)   |
| C8  | 0.0254 (13) | 0.0159 (12) | 0.0229 (13) | 0.0000 (10)  | 0.0012 (10)  | 0.0023 (9)   |
| C9  | 0.0360 (15) | 0.0178 (13) | 0.0224 (14) | -0.0012 (10) | -0.0033 (11) | 0.0012 (9)   |
| C10 | 0.0322 (15) | 0.0249 (14) | 0.0322 (15) | -0.0020 (11) | -0.0100 (12) | 0.0009 (11)  |
| C11 | 0.0212 (13) | 0.0273 (14) | 0.0395 (16) | -0.0026 (10) | -0.0032 (12) | -0.0011 (12) |
| C12 | 0.0243 (13) | 0.0208 (13) | 0.0296 (14) | -0.0044 (10) | 0.0044 (10)  | -0.0020 (10) |
| C13 | 0.0300 (15) | 0.0337 (15) | 0.0235 (14) | 0.0046 (11)  | 0.0012 (11)  | -0.0033 (11) |
| C14 | 0.0444 (18) | 0.0376 (17) | 0.0225 (14) | 0.0008 (13)  | -0.0048 (13) | -0.0040 (12) |
| N1  | 0.0201 (11) | 0.0197 (11) | 0.0183 (10) | -0.0014 (8)  | 0.0001 (8)   | 0.0010 (8)   |
| 01  | 0.0220 (9)  | 0.0251 (10) | 0.0243 (9)  | -0.0009 (7)  | 0.0067 (7)   | -0.0038 (7)  |
| O2  | 0.0294 (10) | 0.0275 (10) | 0.0153 (9)  | -0.0031 (7)  | -0.0014 (7)  | -0.0009(7)   |
| S1  | 0.0193 (4)  | 0.0196 (4)  | 0.0144 (4)  | -0.0022 (2)  | 0.0020 (3)   | -0.0011 (2)  |
| CL1 | 0.0443 (5)  | 0.0343 (5)  | 0.0270 (5)  | -0.0034 (3)  | -0.0159 (3)  | 0.0102 (3)   |
| CL2 | 0.0172 (4)  | 0.0395 (5)  | 0.0504 (5)  | -0.0054 (2)  | 0.0073 (3)   | 0.0049 (3)   |
|     |             |             |             |              |              |              |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| C1—C2    | 1.385 (3)   | C9—C10      | 1.382 (4)   |
|----------|-------------|-------------|-------------|
| C1—C6    | 1.392 (3)   | C9—C14      | 1.512 (4)   |
| C1—S1    | 1.776 (2)   | C10-C11     | 1.384 (4)   |
| С2—С3    | 1.379 (4)   | C10—H10     | 0.9500      |
| С2—Н2    | 0.9500      | C11—C12     | 1.380 (4)   |
| C3—C4    | 1.379 (4)   | C11—H11     | 0.9500      |
| C3—CL1   | 1.741 (3)   | C12—H12     | 0.9500      |
| C4—C5    | 1.387 (4)   | C13—H13A    | 0.9800      |
| C4—H4    | 0.9500      | C13—H13B    | 0.9800      |
| С5—С6    | 1.383 (3)   | C13—H13C    | 0.9800      |
| C5—CL2   | 1.734 (2)   | C14—H14A    | 0.9800      |
| С6—Н6    | 0.9500      | C14—H14B    | 0.9800      |
| C7—C12   | 1.390 (4)   | C14—H14C    | 0.9800      |
| С7—С8    | 1.398 (4)   | N1—S1       | 1.630 (2)   |
| C7—N1    | 1.446 (3)   | N1—H1       | 0.862 (17)  |
| С8—С9    | 1.410 (4)   | O1—S1       | 1.4285 (18) |
| C8—C13   | 1.501 (4)   | O2—S1       | 1.4346 (19) |
| C2—C1—C6 | 122.4 (2)   | C11—C10—H10 | 119.3       |
| C2-C1-S1 | 117.50 (17) | C12—C11—C10 | 119.8 (2)   |
| C6-C1-S1 | 120.02 (18) | C12—C11—H11 | 120.1       |
| C3—C2—C1 | 117.6 (2)   | C10—C11—H11 | 120.1       |
|          |             |             |             |

| G2 G2 H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.0                | C11 C12 C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110 4 (0)                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C3—C2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2                | C11-C12-C/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4 (2)                |
| C1—C2—H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2                | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3                    |
| C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.5 (2)            | C7—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                    |
| C2—C3—CL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.3 (2)            | C8—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| C4—C3—CL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.19 (19)          | C8—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.8 (2)            | H13A—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.1                | C8—C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| C5-C4-H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.1                | $H_{13}A - C_{13} - H_{13}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    |
| $C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.1<br>122.4(2)    | H13B $C13$ $H13C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                    |
| $C_{0} = C_{0} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122.4(2)             | $C_{0} = C_{14} = H_{144}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                    |
| $C_0 = C_1 $ | 119.05 (19)          | $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                    |
| C4—C5—CL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.49 (19)          | C9—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.1 (2)            | H14A—C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| С5—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.4                | C9—C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                    |
| С1—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.4                | H14A—C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| C12—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.8 (2)            | H14B—C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| C12—C7—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.5 (2)            | C7—N1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.12 (16)              |
| C8—C7—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.7 (2)            | C7—N1—H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.9 (19)               |
| C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.8 (2)            | S1—N1—H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111.8 (19)               |
| C7—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.1 (2)            | O1—S1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.99 (11)              |
| C9—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.1 (2)            | 01—81—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.44 (11)              |
| C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.8 (2)            | 02—S1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.30 (11)              |
| C10-C9-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.0(2)<br>119.9(3) | 01 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.41 (11)              |
| $C_{8}$ $C_{9}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3(2)             | $0^{2}-81-C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.61 (11)              |
| $C_0 C_1 C_1 C_1 C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.5(2)<br>121.4(3) | N1 S1 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.01(11)<br>106.38(10) |
| $C_{0}$ $C_{10}$ $U_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.4 (5)            | NI-51-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.38 (10)              |
| C9-C10-H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 (1)                  |
| C6-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2(3)               | C13 - C8 - C9 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9 (4)                  |
| S1—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.68 (17)          | C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 (4)                  |
| C1—C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5 (4)              | C14—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.3 (3)                |
| C1—C2—C3—CL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -179.10 (18)         | C9—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.5 (4)                 |
| C2—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.3 (4)             | C10—C11—C12—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 (4)                  |
| CL1—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179.28 (19)          | C8—C7—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 (4)                  |
| C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.6 (4)             | N1-C7-C12-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -179.2 (2)               |
| C3—C4—C5—CL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178.04 (19)          | C12—C7—N1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.0 (3)                 |
| C4—C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2 (4)              | C8—C7—N1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -103.7 (2)               |
| CL2-C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -176.42 (17)         | C7—N1—S1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -53.25 (19)              |
| C2—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.0(3)              | C7—N1—S1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.48 (17)              |
| S1-C1-C6-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -179.40(17)          | C7—N1—S1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.9 (2)                 |
| $C_{12} - C_{7} - C_{8} - C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.4(4)              | $C_{2} = C_{1} = S_{1} = O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 362(2)                   |
| N1-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179 3 (2)            | C6-C1-S1-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -146 31 (18)             |
| $C_{12} - C_{7} - C_{8} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179 9 (2)            | $C_{2} - C_{1} - S_{1} - O_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166 63 (17)              |
| N1 - C7 - C8 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.4(4)              | $C_{1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^{-1} = 0^$ | -159(2)                  |
| C7 C8 C0 C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.1(4)              | $C_{1} = C_{1} = S_{1} = O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-70^{2}(2)$             |
| $C_1 = C_2 = C_2 = C_1 = C_1 = C_2 = C_2 = C_1 = C_2 = C_2 = C_1 = C_2 = C_1 = C_2 = C_1 = C_2 $ | -0.1(4)              | $C_{1} = C_{1} = C_{1$ | = 19.3 (2)               |
| $C_{13} = C_{8} = C_{9} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/9.0 (2)            | CO - CI - SI - NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.2 (2)                 |
| C7/C8C9C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -178.8 (2)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |

#### *Hydrogen-bond geometry (Å, °)*

| D—H···A                 | D—H  | H···A | D···A     | D—H···A |
|-------------------------|------|-------|-----------|---------|
| N1—H1···O2 <sup>i</sup> | 0.86 | 2.14  | 2.9590    | 159     |
| C4—H4…O1 <sup>ii</sup>  | 0.95 | 2.41  | 3.332 (3) | 164     |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1/2, -y+1/2, z+1/2.

(II) 3,5-Dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide

#### Crystal data F(000) = 340C14H13Cl2NO2S $M_r = 330.21$ Prism Triclinic, P1 $D_{\rm x} = 1.468 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Melting point: 445 K a = 8.4817 (15) ÅCu *K* $\alpha$ radiation, $\lambda = 1.54178$ Å b = 8.6149(15) Å Cell parameters from 127 reflections c = 12.167(2) Å $\theta = 7.7 - 63.7^{\circ}$ $\mu = 5.22 \text{ mm}^{-1}$ $\alpha = 109.875 (5)^{\circ}$ T = 100 K $\beta = 91.900 (5)^{\circ}$ $\gamma = 114.190 (5)^{\circ}$ Prism, colourless V = 747.1 (2) Å<sup>3</sup> $0.29 \times 0.26 \times 0.22 \text{ mm}$ Z = 2Data collection Bruker APEXII CCD area detector 6977 measured reflections 2400 independent reflections diffractometer Radiation source: fine-focus sealed tube 1960 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.124$ phi and $\varphi$ scans $\theta_{\text{max}} = 63.7^{\circ}, \ \theta_{\text{min}} = 7.7^{\circ}$ $h = -9 \rightarrow 9$ Absorption correction: multi-scan (SADABS; Bruker, 2009) $k = -9 \rightarrow 9$ $l = -14 \rightarrow 14$ $T_{\rm min} = 0.275, \ T_{\rm max} = 0.317$ Refinement Refinement on $F^2$ Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.074$ and constrained refinement $wR(F^2) = 0.233$ $w = 1/[\sigma^2(F_0^2) + (0.1757P)^2 + 0.6254P]$ S = 1.02where $P = (F_0^2 + 2F_c^2)/3$ 2400 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 187 parameters $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$

### Special details

1 restraint

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|    | x          | у          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|------------|------------|------------|-----------------------------|
| C1 | 0.8417 (4) | 0.5358 (5) | 0.1002 (4) | 0.0203 (9)                  |

| C2   | 0.7459 (5)   | 0.3554 (5)    | 0.0217 (4)    | 0.0241 (10) |
|------|--------------|---------------|---------------|-------------|
| H2   | 0.644651     | 0.320522      | -0.034335     | 0.029*      |
| C3   | 0.8001 (5)   | 0.2253 (6)    | 0.0260 (4)    | 0.0249 (10) |
| C4   | 0.9467 (5)   | 0.2750 (6)    | 0.1103 (4)    | 0.0293 (11) |
| H4   | 0.981555     | 0.185462      | 0.115199      | 0.035*      |
| C5   | 1.0386 (5)   | 0.4578 (6)    | 0.1860 (4)    | 0.0244 (9)  |
| C6   | 0.9904 (5)   | 0.5912 (6)    | 0.1831 (4)    | 0.0238 (10) |
| H6   | 1.056523     | 0.716677      | 0.235918      | 0.029*      |
| C7   | 0.6763 (5)   | 0.7502 (5)    | 0.3150 (4)    | 0.0211 (9)  |
| C8   | 0.6651 (5)   | 0.6237 (6)    | 0.3668 (4)    | 0.0236 (9)  |
| C9   | 0.7175 (5)   | 0.6907 (7)    | 0.4904 (5)    | 0.0317 (10) |
| H9   | 0.712684     | 0.607766      | 0.526909      | 0.038*      |
| C10  | 0.7765 (7)   | 0.8761 (8)    | 0.5608 (5)    | 0.0444 (13) |
| H10  | 0.813297     | 0.919881      | 0.644715      | 0.053*      |
| C11  | 0.7815 (7)   | 0.9971 (7)    | 0.5082 (5)    | 0.0438 (13) |
| H11  | 0.821341     | 1.123758      | 0.557153      | 0.053*      |
| C12  | 0.7300 (6)   | 0.9386 (6)    | 0.3863 (4)    | 0.0316 (10) |
| C13  | 0.5959 (5)   | 0.4220 (6)    | 0.2945 (4)    | 0.0310 (11) |
| H13A | 0.693639     | 0.395208      | 0.269174      | 0.046*      |
| H13B | 0.509594     | 0.386272      | 0.223963      | 0.046*      |
| H13C | 0.539097     | 0.352168      | 0.342708      | 0.046*      |
| C14  | 0.7304 (8)   | 1.0734 (7)    | 0.3333 (6)    | 0.0472 (14) |
| H14A | 0.728356     | 1.180297      | 0.395426      | 0.071*      |
| H14B | 0.626024     | 1.013250      | 0.269485      | 0.071*      |
| H14C | 0.837145     | 1.114337      | 0.300552      | 0.071*      |
| N1   | 0.6231 (4)   | 0.6893 (4)    | 0.1889 (3)    | 0.0201 (8)  |
| O1   | 0.9163 (3)   | 0.8797 (4)    | 0.1562 (3)    | 0.0251 (7)  |
| O2   | 0.6731 (3)   | 0.6436 (4)    | -0.0152 (3)   | 0.0230 (7)  |
| S1   | 0.76785 (10) | 0.70217 (12)  | 0.10237 (9)   | 0.0183 (4)  |
| CL1  | 0.68515 (13) | -0.00070 (13) | -0.07437 (12) | 0.0365 (4)  |
| CL2  | 1.22462 (13) | 0.52449 (17)  | 0.28944 (10)  | 0.0372 (4)  |
| H1   | 0.529 (4)    | 0.590 (4)     | 0.154 (4)     | 0.029 (13)* |
|      |              |               |               |             |

Atomic displacement parameters  $(Å^2)$ 

|     | <i>L</i> /11 | L /22       | I /33     | 1/12        | 1/13        | 1/23        |
|-----|--------------|-------------|-----------|-------------|-------------|-------------|
|     |              |             |           |             |             |             |
| Cl  | 0.0210 (17)  | 0.0232 (19) | 0.021 (2) | 0.0095 (15) | 0.0048 (14) | 0.0138 (18) |
| C2  | 0.0242 (19)  | 0.028 (2)   | 0.026 (3) | 0.0125 (17) | 0.0086 (16) | 0.015 (2)   |
| C3  | 0.0255 (19)  | 0.025 (2)   | 0.030 (3) | 0.0108 (16) | 0.0127 (17) | 0.017 (2)   |
| C4  | 0.036 (2)    | 0.037 (2)   | 0.036 (3) | 0.0227 (19) | 0.018 (2)   | 0.028 (2)   |
| C5  | 0.0274 (19)  | 0.036 (2)   | 0.020 (3) | 0.0176 (17) | 0.0061 (16) | 0.017 (2)   |
| C6  | 0.0248 (19)  | 0.031 (2)   | 0.021 (3) | 0.0132 (17) | 0.0061 (16) | 0.0152 (19) |
| C7  | 0.0243 (18)  | 0.023 (2)   | 0.017 (2) | 0.0111 (15) | 0.0018 (14) | 0.0093 (18) |
| C8  | 0.0214 (18)  | 0.027 (2)   | 0.027 (3) | 0.0112 (16) | 0.0060 (15) | 0.0163 (19) |
| C9  | 0.036 (2)    | 0.039 (2)   | 0.028 (3) | 0.0152 (19) | 0.0064 (17) | 0.024 (2)   |
| C10 | 0.054 (3)    | 0.047 (3)   | 0.016 (3) | 0.009 (2)   | 0.002 (2)   | 0.011 (2)   |
| C11 | 0.071 (3)    | 0.025 (2)   | 0.019 (3) | 0.012 (2)   | 0.004 (2)   | 0.003 (2)   |
| C12 | 0.046 (2)    | 0.026 (2)   | 0.018 (3) | 0.0152 (18) | 0.0054 (17) | 0.0052 (19) |

| C13 | 0.037 (2)   | 0.037 (2)   | 0.035 (3)   | 0.0208 (19) | 0.0160 (18) | 0.025 (2)   |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C14 | 0.084 (4)   | 0.028 (2)   | 0.038 (4)   | 0.032 (2)   | 0.014 (3)   | 0.014 (2)   |
| N1  | 0.0240 (16) | 0.0213 (17) | 0.014 (2)   | 0.0091 (14) | 0.0001 (13) | 0.0080 (15) |
| 01  | 0.0289 (14) | 0.0217 (14) | 0.0246 (19) | 0.0094 (12) | 0.0039 (11) | 0.0114 (13) |
| O2  | 0.0277 (13) | 0.0266 (15) | 0.0197 (19) | 0.0136 (11) | 0.0048 (11) | 0.0128 (13) |
| S1  | 0.0223 (6)  | 0.0178 (6)  | 0.0160 (7)  | 0.0090 (4)  | 0.0011 (4)  | 0.0080 (5)  |
| CL1 | 0.0340 (6)  | 0.0203 (6)  | 0.0533 (10) | 0.0120 (5)  | 0.0106 (5)  | 0.0121 (6)  |
| CL2 | 0.0392 (7)  | 0.0598 (8)  | 0.0266 (8)  | 0.0335 (6)  | 0.0034 (5)  | 0.0189 (6)  |
|     |             |             |             |             |             |             |

Geometric parameters (Å, °)

| C1—C2     | 1.375 (6) | C9—C10        | 1.386 (8) |
|-----------|-----------|---------------|-----------|
| C1—C6     | 1.389 (6) | С9—Н9         | 0.9500    |
| C1—S1     | 1.777 (4) | C10—C11       | 1.385 (8) |
| C2—C3     | 1.390 (6) | C10—H10       | 0.9500    |
| C2—H2     | 0.9500    | C11—C12       | 1.383 (7) |
| C3—C4     | 1.401 (6) | C11—H11       | 0.9500    |
| C3—CL1    | 1.726 (4) | C12—C14       | 1.506 (7) |
| C4—C5     | 1.377 (6) | C13—H13A      | 0.9800    |
| C4—H4     | 0.9500    | C13—H13B      | 0.9800    |
| C5—C6     | 1.379 (6) | C13—H13C      | 0.9800    |
| C5—CL2    | 1.743 (4) | C14—H14A      | 0.9800    |
| С6—Н6     | 0.9500    | C14—H14B      | 0.9800    |
| C7—C8     | 1.407 (6) | C14—H14C      | 0.9800    |
| C7—C12    | 1.417 (6) | N1—S1         | 1.638 (3) |
| C7—N1     | 1.430 (5) | N1—H1         | 0.85 (2)  |
| C8—C9     | 1.395 (6) | O1—S1         | 1.428 (3) |
| C8—C13    | 1.493 (6) | O2—S1         | 1.431 (3) |
|           |           |               |           |
| C2-C1-C6  | 122.0 (4) | C11—C10—H10   | 120.2     |
| C2-C1-S1  | 119.5 (3) | C12—C11—C10   | 121.8 (5) |
| C6—C1—S1  | 118.3 (3) | C12—C11—H11   | 119.1     |
| C1—C2—C3  | 118.7 (4) | C10-C11-H11   | 119.1     |
| C1—C2—H2  | 120.7     | C11—C12—C7    | 117.9 (5) |
| С3—С2—Н2  | 120.7     | C11—C12—C14   | 120.1 (4) |
| C2—C3—C4  | 120.9 (4) | C7—C12—C14    | 122.0 (4) |
| C2—C3—CL1 | 119.4 (3) | C8—C13—H13A   | 109.5     |
| C4—C3—CL1 | 119.6 (3) | C8—C13—H13B   | 109.5     |
| C5—C4—C3  | 117.8 (4) | H13A—C13—H13B | 109.5     |
| C5—C4—H4  | 121.1     | C8—C13—H13C   | 109.5     |
| C3—C4—H4  | 121.1     | H13A—C13—H13C | 109.5     |
| C6—C5—C4  | 122.8 (4) | H13B—C13—H13C | 109.5     |
| C6—C5—CL2 | 118.4 (3) | C12—C14—H14A  | 109.5     |
| C4—C5—CL2 | 118.8 (3) | C12—C14—H14B  | 109.5     |
| C5—C6—C1  | 117.6 (4) | H14A—C14—H14B | 109.5     |
| С5—С6—Н6  | 121.2     | C12—C14—H14C  | 109.5     |
| С1—С6—Н6  | 121.2     | H14A—C14—H14C | 109.5     |
| C8—C7—C12 | 121.2 (4) | H14B—C14—H14C | 109.5     |

| C8—C7—N1      | 120.7 (4)  | C7—N1—S1        | 120.9 (2)   |
|---------------|------------|-----------------|-------------|
| C12—C7—N1     | 118.0 (4)  | C7—N1—H1        | 118 (4)     |
| C9—C8—C7      | 118.2 (4)  | S1—N1—H1        | 109 (3)     |
| C9—C8—C13     | 119.6 (4)  | O1—S1—O2        | 120.06 (18) |
| C7—C8—C13     | 122.2 (4)  | O1—S1—N1        | 108.41 (17) |
| С10—С9—С8     | 121.2 (5)  | O2—S1—N1        | 106.27 (16) |
| С10—С9—Н9     | 119.4      | O1—S1—C1        | 107.28 (17) |
| С8—С9—Н9      | 119.4      | O2—S1—C1        | 107.33 (18) |
| C9—C10—C11    | 119.6 (5)  | N1—S1—C1        | 106.81 (17) |
| С9—С10—Н10    | 120.2      |                 |             |
|               |            |                 |             |
| C6—C1—C2—C3   | 0.1 (6)    | C9—C10—C11—C12  | -0.4 (8)    |
| S1—C1—C2—C3   | -176.4 (3) | C10-C11-C12-C7  | -1.9 (8)    |
| C1—C2—C3—C4   | 1.6 (6)    | C10-C11-C12-C14 | 177.5 (5)   |
| C1-C2-C3-CL1  | -178.3 (3) | C8—C7—C12—C11   | 3.8 (6)     |
| C2—C3—C4—C5   | -2.2 (6)   | N1-C7-C12-C11   | 180.0 (4)   |
| CL1—C3—C4—C5  | 177.7 (3)  | C8—C7—C12—C14   | -175.5 (4)  |
| C3—C4—C5—C6   | 1.1 (6)    | N1—C7—C12—C14   | 0.7 (6)     |
| C3—C4—C5—CL2  | -178.5 (3) | C8—C7—N1—S1     | -96.3 (4)   |
| C4—C5—C6—C1   | 0.5 (6)    | C12—C7—N1—S1    | 87.5 (4)    |
| CL2C5C6C1     | -179.9 (3) | C7—N1—S1—O1     | -45.5 (3)   |
| C2-C1-C6-C5   | -1.1 (6)   | C7—N1—S1—O2     | -175.8 (3)  |
| S1—C1—C6—C5   | 175.4 (3)  | C7—N1—S1—C1     | 69.8 (3)    |
| C12—C7—C8—C9  | -3.4 (5)   | C2-C1-S1-O1     | -159.3 (3)  |
| N1—C7—C8—C9   | -179.5 (3) | C6-C1-S1-O1     | 24.1 (4)    |
| C12—C7—C8—C13 | 175.3 (4)  | C2-C1-S1-O2     | -29.0 (4)   |
| N1-C7-C8-C13  | -0.8 (5)   | C6-C1-S1-O2     | 154.4 (3)   |
| C7—C8—C9—C10  | 1.0 (6)    | C2-C1-S1-N1     | 84.6 (4)    |
| C13—C8—C9—C10 | -177.7 (4) | C6-C1-S1-N1     | -92.0 (3)   |
| C8—C9—C10—C11 | 0.9 (7)    |                 |             |

### Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

| D—H···A                        | D—H      | H···A    | D···A     | D—H···A |
|--------------------------------|----------|----------|-----------|---------|
| C14—H14 <i>C</i> …O1           | 0.98     | 2.53     | 3.139 (8) | 120     |
| N1—H1···O2 <sup>i</sup>        | 0.85 (4) | 2.12 (4) | 2.937 (5) | 160 (4) |
| C13—H13 <i>A</i> … <i>Cg</i> 1 | 0.98     | 2.67     | 3.493 (5) | 142     |

Symmetry code: (i) -x+1, -y+1, -z.

(III) 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide

| Crystal data            |                                |
|-------------------------|--------------------------------|
| $C_{14}H_{13}Cl_2NO_2S$ | c = 17.3130 (8) Å              |
| $M_r = 330.21$          | $\beta = 100.409 (1)^{\circ}$  |
| Monoclinic, $P2_1/c$    | $V = 1465.70 (12) \text{ Å}^3$ |
| Hall symbol: -P 2ybc    | Z = 4                          |
| a = 12.2268 (6) Å       | F(000) = 680                   |
| b = 7.0399 (3) Å        | Prism                          |
|                         |                                |

 $D_{\rm x} = 1.496 {\rm Mg} {\rm m}^{-3}$ Melting point: 462 K Cu Ka radiation,  $\lambda = 1.54178$  Å Cell parameters from 128 reflections  $\theta = 6.8 - 64.4^{\circ}$ 

#### Data collection

Bruker APEXII CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\varphi$  scans Absorption correction: multi-scan (SADABS; Bruker,2009)  $T_{\rm min} = 0.297, T_{\rm max} = 0.327$ 

#### Refinement

| Refinement on $F^2$             |
|---------------------------------|
| Least-squares matrix: full      |
| $R[F^2 > 2\sigma(F^2)] = 0.058$ |
| $wR(F^2) = 0.152$               |
| S = 0.99                        |
| 2412 reflections                |
| 187 parameters                  |
| 1 restraint                     |

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\mu = 5.32 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.056$ 

 $h = -14 \rightarrow 14$ 

 $l = -19 \rightarrow 20$ 

 $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.88 \text{ e} \text{ Å}^{-3}$ 

 $k = -8 \rightarrow 7$ 

Prism, colourless

 $0.27 \times 0.24 \times 0.21 \text{ mm}$ 

11468 measured reflections

 $\theta_{\text{max}} = 64.4^{\circ}, \ \theta_{\text{min}} = 6.8^{\circ}$ 

2412 independent reflections

2374 reflections with  $I > 2\sigma(I)$ 

Hydrogen site location: mixed

and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.1156P)^2 + 2.094P]$ 

where  $P = (F_o^2 + 2F_c^2)/3$ 

H atoms treated by a mixture of independent

| Fractional atomic coordinates | and isotropic or equi | valent isotropic displaceme | ent parameters ( $Å^2$ ) |
|-------------------------------|-----------------------|-----------------------------|--------------------------|
|                               |                       | _                           | II */II                  |

|     | x          | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|------------|--------------|-----------------------------|--|
| C1  | 0.4234 (2) | 0.1933 (4) | 0.62264 (15) | 0.0107 (6)                  |  |
| C2  | 0.5280 (2) | 0.2511 (4) | 0.61112 (15) | 0.0120 (6)                  |  |
| H2  | 0.586016   | 0.277777   | 0.654187     | 0.014*                      |  |
| C3  | 0.5443 (2) | 0.2682 (4) | 0.53442 (15) | 0.0120 (6)                  |  |
| C4  | 0.4606 (2) | 0.2341 (4) | 0.47057 (15) | 0.0138 (6)                  |  |
| H4  | 0.473647   | 0.246812   | 0.418356     | 0.017*                      |  |
| C5  | 0.3574 (2) | 0.1810 (4) | 0.48539 (16) | 0.0133 (6)                  |  |
| C6  | 0.3366 (2) | 0.1572 (4) | 0.56068 (16) | 0.0128 (6)                  |  |
| H6  | 0.265674   | 0.117738   | 0.569706     | 0.015*                      |  |
| C7  | 0.2216 (2) | 0.4234 (4) | 0.69407 (14) | 0.0108 (6)                  |  |
| C8  | 0.2040 (2) | 0.5888 (4) | 0.64942 (15) | 0.0126 (6)                  |  |
| H8  | 0.264930   | 0.668527   | 0.644084     | 0.015*                      |  |
| C9  | 0.0966 (2) | 0.6368 (4) | 0.61262 (16) | 0.0146 (6)                  |  |
| C10 | 0.0089 (2) | 0.5168 (4) | 0.62049 (15) | 0.0161 (6)                  |  |
| H10 | -0.063981  | 0.547186   | 0.593959     | 0.019*                      |  |
| C11 | 0.0254 (2) | 0.3533 (4) | 0.66637 (16) | 0.0144 (6)                  |  |
| C12 | 0.1329 (2) | 0.3073 (4) | 0.70360 (15) | 0.0124 (6)                  |  |
|     |            |            |              |                             |  |

| H12  | 0.145662     | 0.196778     | 0.735448     | 0.015*     |  |
|------|--------------|--------------|--------------|------------|--|
| C13  | 0.0756 (3)   | 0.8176 (4)   | 0.5651 (2)   | 0.0242 (7) |  |
| H13A | -0.000712    | 0.816863     | 0.535489     | 0.036*     |  |
| H13B | 0.127963     | 0.825736     | 0.528605     | 0.036*     |  |
| H13C | 0.085778     | 0.927260     | 0.600562     | 0.036*     |  |
| C14  | -0.0718 (2)  | 0.2318 (5)   | 0.67730 (18) | 0.0244 (7) |  |
| H14A | -0.117650    | 0.300752     | 0.708934     | 0.037*     |  |
| H14B | -0.044640    | 0.113872     | 0.704178     | 0.037*     |  |
| H14C | -0.116566    | 0.201609     | 0.625895     | 0.037*     |  |
| N1   | 0.33273 (18) | 0.3807 (3)   | 0.73296 (12) | 0.0111 (5) |  |
| O1   | 0.49846 (16) | 0.1842 (3)   | 0.77286 (11) | 0.0169 (5) |  |
| 02   | 0.31742 (16) | 0.0286 (3)   | 0.72152 (11) | 0.0159 (5) |  |
| S1   | 0.39385 (5)  | 0.18095 (9)  | 0.71907 (3)  | 0.0102 (3) |  |
| CL1  | 0.67420 (5)  | 0.33657 (9)  | 0.51672 (4)  | 0.0189 (3) |  |
| CL2  | 0.24931 (6)  | 0.14477 (11) | 0.40666 (4)  | 0.0212 (3) |  |
| H1   | 0.379 (3)    | 0.475 (4)    | 0.739 (2)    | 0.027 (9)* |  |
|      |              |              |              |            |  |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| C1         | 0.0138 (14) | 0.0084 (12) | 0.0104 (13) | 0.0043 (10)  | 0.0040 (10)  | 0.0001 (9)   |
| C2         | 0.0122 (13) | 0.0108 (14) | 0.0122 (13) | 0.0013 (10)  | 0.0003 (10)  | 0.0004 (10)  |
| C3         | 0.0135 (13) | 0.0064 (13) | 0.0175 (14) | 0.0022 (10)  | 0.0066 (11)  | 0.0016 (10)  |
| C4         | 0.0214 (14) | 0.0108 (13) | 0.0105 (13) | 0.0039 (11)  | 0.0067 (11)  | 0.0022 (10)  |
| C5         | 0.0161 (14) | 0.0116 (14) | 0.0111 (14) | 0.0037 (10)  | -0.0010 (11) | -0.0026 (10) |
| C6         | 0.0122 (13) | 0.0117 (13) | 0.0153 (14) | -0.0003 (9)  | 0.0043 (11)  | 0.0001 (10)  |
| C7         | 0.0122 (13) | 0.0148 (14) | 0.0060 (11) | 0.0012 (10)  | 0.0036 (10)  | -0.0044 (10) |
| C8         | 0.0132 (13) | 0.0133 (13) | 0.0131 (13) | -0.0017 (10) | 0.0071 (10)  | -0.0018 (10) |
| C9         | 0.0170 (14) | 0.0159 (14) | 0.0116 (13) | 0.0027 (11)  | 0.0044 (11)  | 0.0020 (10)  |
| C10        | 0.0122 (13) | 0.0231 (15) | 0.0124 (13) | 0.0024 (11)  | 0.0004 (10)  | 0.0007 (11)  |
| C11        | 0.0137 (14) | 0.0188 (14) | 0.0109 (13) | -0.0026 (11) | 0.0027 (11)  | -0.0014 (10) |
| C12        | 0.0142 (13) | 0.0157 (14) | 0.0072 (12) | 0.0007 (10)  | 0.0019 (10)  | 0.0006 (10)  |
| C13        | 0.0195 (15) | 0.0220 (16) | 0.0321 (18) | 0.0041 (12)  | 0.0072 (13)  | 0.0111 (13)  |
| C14        | 0.0128 (13) | 0.0310 (17) | 0.0271 (16) | -0.0065 (13) | -0.0021 (12) | 0.0065 (13)  |
| N1         | 0.0103 (11) | 0.0123 (12) | 0.0108 (11) | -0.0017 (9)  | 0.0021 (9)   | -0.0031 (9)  |
| 01         | 0.0134 (10) | 0.0264 (11) | 0.0097 (10) | 0.0052 (8)   | -0.0014 (8)  | 0.0020 (8)   |
| O2         | 0.0191 (10) | 0.0123 (10) | 0.0179 (10) | -0.0004 (8)  | 0.0072 (8)   | 0.0037 (7)   |
| <b>S</b> 1 | 0.0103 (4)  | 0.0134 (4)  | 0.0068 (4)  | 0.0015 (2)   | 0.0015 (3)   | 0.0016 (2)   |
| CL1        | 0.0142 (4)  | 0.0199 (4)  | 0.0255 (5)  | -0.0004 (2)  | 0.0112 (3)   | 0.0027 (2)   |
| CL2        | 0.0202 (4)  | 0.0311 (5)  | 0.0103 (4)  | -0.0013 (3)  | -0.0029 (3)  | -0.0028 (3)  |
|            |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—C6 | 1.389 (4) | C9—C10  | 1.391 (4) |  |
|-------|-----------|---------|-----------|--|
| C1—C2 | 1.391 (4) | C9—C13  | 1.512 (4) |  |
| C1—S1 | 1.773 (3) | C10—C11 | 1.393 (4) |  |
| C2—C3 | 1.383 (4) | C10—H10 | 0.9500    |  |
| C2—H2 | 0.9500    | C11—C12 | 1.394 (4) |  |
|       |           |         |           |  |

| C3—C4                                          | 1.385 (4)            | C11—C14                                    | 1.504 (4)                |
|------------------------------------------------|----------------------|--------------------------------------------|--------------------------|
| C3—CL1                                         | 1.739 (3)            | C12—H12                                    | 0.9500                   |
| C4—C5                                          | 1.385 (4)            | C13—H13A                                   | 0.9800                   |
| C4—H4                                          | 0.9500               | C13—H13B                                   | 0.9800                   |
| C5—C6                                          | 1.382 (4)            | C13—H13C                                   | 0.9800                   |
| C5—CL2                                         | 1.737 (3)            | C14—H14A                                   | 0.9800                   |
| С6—Н6                                          | 0.9500               | C14—H14B                                   | 0.9800                   |
| C7—C12                                         | 1.392 (4)            | C14—H14C                                   | 0.9800                   |
| C7—C8                                          | 1 393 (4)            | N1—S1                                      | 1.631(2)                 |
| C7—N1                                          | 1.335(1)<br>1 435(3) | N1—H1                                      | 0.869(19)                |
| $C_8 - C_9$                                    | 1.199(3)<br>1 394(4) | 01-S1                                      | 1440(2)                  |
| C8 H8                                          | 0.9500               | 02 S1                                      | 1.440(2)<br>1.428(2)     |
| 0-110                                          | 0.9500               | 02—31                                      | 1.428 (2)                |
| $C_{6}-C_{1}-C_{2}$                            | 122 5 (2)            | C11—C10—H10                                | 119.2                    |
| C6-C1-S1                                       | 122.3(2)<br>1174(2)  | C10-C11-C12                                | 119.2<br>118.9(3)        |
| $C_2 - C_1 - S_1$                              | 117.4(2)<br>119.9(2) | C10-C11-C14                                | 120.3(3)                 |
| $C_2 = C_1 = S_1$                              | 117.9(2)<br>117.3(2) | $C_{12}$ $C_{11}$ $C_{14}$                 | 120.5(3)                 |
| $C_3 = C_2 = C_1$                              | 117.3 (2)            | C12 - C11 - C14                            | 120.7(3)                 |
| $C_3 = C_2 = H_2$                              | 121.4                | $C_{1} = C_{12} = C_{11}$                  | 119.9 (2)                |
| C1 - C2 - H2                                   | 121.4                | C/-C12-H12                                 | 120.0                    |
| C4 - C3 - C2                                   | 122.0(2)             | CII = CI2 = HI2                            | 120.0                    |
| C4 - C3 - CL1                                  | 118.27 (19)          | C9—C13—H13A                                | 109.5                    |
| C2—C3—CL1                                      | 119.2 (2)            | C9—C13—H13B                                | 109.5                    |
| C3—C4—C5                                       | 117.7 (2)            | H13A—C13—H13B                              | 109.5                    |
| C3—C4—H4                                       | 121.1                | C9—C13—H13C                                | 109.5                    |
| C5—C4—H4                                       | 121.1                | H13A—C13—H13C                              | 109.5                    |
| C6—C5—C4                                       | 122.4 (3)            | H13B—C13—H13C                              | 109.5                    |
| C6—C5—CL2                                      | 118.6 (2)            | C11—C14—H14A                               | 109.5                    |
| C4—C5—CL2                                      | 118.9 (2)            | C11—C14—H14B                               | 109.5                    |
| C5—C6—C1                                       | 117.5 (3)            | H14A—C14—H14B                              | 109.5                    |
| С5—С6—Н6                                       | 121.3                | C11—C14—H14C                               | 109.5                    |
| С1—С6—Н6                                       | 121.3                | H14A—C14—H14C                              | 109.5                    |
| C12—C7—C8                                      | 120.8 (2)            | H14B—C14—H14C                              | 109.5                    |
| C12—C7—N1                                      | 120.9 (2)            | C7—N1—S1                                   | 122.12 (18)              |
| C8—C7—N1                                       | 118.3 (2)            | C7—N1—H1                                   | 116 (2)                  |
| C7—C8—C9                                       | 119.7 (2)            | S1—N1—H1                                   | 112 (2)                  |
| С7—С8—Н8                                       | 120.2                | 02-81-01                                   | 120.14(12)               |
| C9-C8-H8                                       | 120.2                | 02 - S1 - N1                               | 108 89 (11)              |
| C10-C9-C8                                      | 1192(2)              | 01 - S1 - N1                               | 105.55(11)               |
| C10-C9-C13                                     | 119.2(2)<br>1204(3)  | $0^{2}-1^{1}-1^{1}$                        | 103.50(11)<br>108.09(12) |
| $C_{8}$ $C_{9}$ $C_{13}$                       | 120.1(3)<br>120.4(3) | 01 - S1 - C1                               | 107.45(12)               |
| $C_{0}$ $C_{10}$ $C_{11}$                      | 120.4(3)<br>121.5(2) | NI SI CI                                   | 107.45(12)<br>105.85(11) |
| $C_{2}$                                        | 121.3(2)             | NI-3I-CI                                   | 105.85 (11)              |
| 0,                                             | 117.4                |                                            |                          |
| C6-C1-C2-C3                                    | -1.3(4)              | C9-C10-C11-C12                             | -1.5(4)                  |
| <u>\$1</u> _ <u>C1</u> _ <u>C2</u> _ <u>C3</u> | -17648(19)           | C9-C10-C11-C14                             | 1767(3)                  |
| $C_1 - C_2 - C_3 - C_4$                        | 1 4 (4)              | C8 - C7 - C12 - C11                        | 19(4)                    |
| $C_1 = C_2 = C_3 = C_1^{-1}$                   | -179.05(10)          | N1 - C7 - C12 - C11                        | 178 9 (7)                |
| $C_1 = C_2 = C_3 = C_{L_1}$                    | 179.03(17)           | $C_{10} C_{11} C_{12} C_{11} C_{12} C_{7}$ | -0.5(4)                  |
| U2-UJ-U4-UJ                                    | 0.0(4)               | $U_{10} - U_{11} - U_{12} - U_{12}$        | 0.3(4)                   |

| CL1—C3—C4—C5<br>C3—C4—C5—C6   | -179.60(19)<br>-1.5(4)  | C14—C11—C12—C7<br>C12—C7—N1—S1 | -178.7(2)                             |
|-------------------------------|-------------------------|--------------------------------|---------------------------------------|
| C3—C4—C5—CL2                  | 177.90 (19)             | C8—C7—N1—S1                    | -123.9 (2)                            |
| C4—C5—C6—C1<br>CL2—C5—C6—C1   | 1.5 (4)<br>-177.86 (19) | C7—N1—S1—O2<br>C7—N1—S1—O1     | -44.7 (2)<br>-174.93 (19)             |
| C2—C1—C6—C5                   | -0.1 (4)                | C7—N1—S1—C1                    | 71.3 (2)                              |
| S1—C1—C6—C5<br>C12—C7—C8—C9   | 175.20(19)<br>-1 2 (4)  | C6-C1-S1-O2<br>C2-C1-S1-O2     | 37.4 (2)                              |
| N1-C7-C8-C9                   | -178.3 (2)              | C6-C1-S1-O1                    | 168.42 (19)                           |
| C7—C8—C9—C10                  | -0.7 (4)                | C2-C1-S1-O1                    | -16.2 (2)                             |
| C7—C8—C9—C13<br>C8—C9—C10—C11 | 178.9 (2)<br>2.1 (4)    | C6-C1-S1-N1<br>C2-C1-S1-N1     | -79.1(2)<br>96.2(2)                   |
| C13—C9—C10—C11                | -177.5 (3)              |                                | , , , , , , , , , , , , , , , , , , , |

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the aniline ring C7–C12

| D—H···A                          | <i>D</i> —Н | H···A | D····A | D—H···A |
|----------------------------------|-------------|-------|--------|---------|
| N1—H1…O1 <sup>i</sup>            | 0.87        | 2.13  | 2.9848 | 167     |
| C14—H14 $B$ ···Cg2 <sup>ii</sup> | 0.98        | 2.86  | 3.5135 | 124     |

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x, y+1/2, -z+1/2.