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Abstract: The recent advances in immunotherapy and the availability of novel drugs to target the
tumor microenvironment have dramatically changed the paradigm of cancer treatment. Nevertheless,
a significant proportion of cancer patients are unresponsive or develop resistance to these treatments.
With the aim to increase the clinical efficacy of immunotherapy, combinations of agents and standard
therapies with complementary actions have been developed mostly on an empirical base, since their
mechanisms of actions are not yet fully dissected. The characterization of immune responsiveness and
its monitoring along with the treatment of cancer patients with immunotherapy can provide insights
into the mechanisms of action of these therapeutic regimens and contribute to the optimization
of patients’ stratification and of combination strategies and to the prediction of treatment-related
toxicities. Thus far, none of the immunomonitoring strategies has been validated for routine clinical
practice. Moreover, it is becoming clear that the genomic and molecular make-up of tumors and
of the infiltrating immune system represent important determinants of the clinical responses to
immunotherapy. This review provides an overview of different approaches for the immune profiling
of cancer patients and discusses their advantages and limitations. Recent advances in genomic-based
assays and in the identification of host genomic relationships with immune responses represent
promising approaches to identify molecular determinants and biomarkers to improve the clinical
efficacy of cancer immunotherapy.

Keywords: immunotherapy; immune monitoring; T cell responses; soluble markers;
genomic determinants

1. Introduction

The control of tumor development and growth by the immune system has been shown to be
orchestrated by the elimination, equilibrium, and escape phases [1,2]. The interaction between
tumor cells and their microenvironment is regulated by a variety of immune cell types and
molecular mechanisms playing a determinant role for patients’ clinical outcome [3,4]. Additionally,
tumor evolution and progression are accompanied by continuous remodeling of genetic, epigenetic,
and metabolic make-up. Advances in the knowledge of cancer immunology have led to an
unprecedented clinical development of immunotherapy with, for the first time, a documented
improvement for cancer patients’ survival. Immune checkpoint blockade agents targeting either
Cytotoxic T Lymphocyte Antigen-4 (CTL-4) or Programmed Cell Death/Ligand-1 (PD-1/PD-L1),
that can unleash anti-tumor immune responses, have been approved for the treatment of different solid
tumors, e.g., melanoma, lung, head and neck cancer, bladder, and Merkel cell cancer, as well as some
hematological malignancies [5]. These drugs showed durable clinical responses also in cancer patients
with advanced diseases, changing the paradigm of cancer treatment [5–9]. However, a significant
proportion of patients fail to respond or develop resistance to these treatments [9]. This represents
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the rationale to investigate whether their clinical efficacy can be increased through the combination
of either different agents or of standard therapies with immune checkpoint blockade. Many efforts
have been dedicated to the development of combinations based on monotherapy encouraging results,
such as CTLA-4 and PD-1/L-1 mAbs. Both the Food and Drug Administration (FDA) and the
European Medicinal Agency (EMA) approved the combination of CTLA-4 and PD-1 blockade for
advanced melanoma. More than 400 clinical trials have been developed based on observational data for
combinations of anti-cancer agents, although mechanistic evidences of their synergistic effects are not
available [10,11]. Nevertheless, the identification of the molecular landscape of tumors and of the host’s
immunological make-up can provide tools to improve cancer patients’ stratification and for managing
and predicting any immune checkpoint blockade-associated toxicities. In this review, an overview of
the molecular determinants of immune responsiveness in cancer patients and of immunomonitoring
approaches will be provided.

It is likely that a deep understanding of the molecular mechanisms regulating the complex
interplay between host and tumor microenvironment (TME) through the molecular classification of
cancer patients, will guide to the best choice of treatment, sequence, and combination based on.

2. Immunomonitoring of Circulating Immune Cells

Major focus has been placed on the identification of the correlation of immune parameters in
the peripheral blood of cancer patients treated with immunotherapy. The evidence of increased
(≥1000/µL) absolute lymphocyte count (ALC) upon infusion of an immune checkpoint agent
represented the first observation of clinical benefit in melanoma patients with advanced disease
treated with anti-CTLA-4 mAb [12]. The augmentation of eosinophil count (>100/mm3) and of
ALC (>1000/mm3) in the circulation after the first infusion of anti-CTLA-4 mAb showed correlation
with improved overall survival (OS) in a retrospective analysis of N = 77 metastatic melanoma
patients [13]. In addition, a predictive role of the neutrophils/lymphocytes ratio (N/L) for the
clinical efficacy of immune checkpoint blockade was found in a group of metastatic melanoma
patients treated with the combination of anti-CTLA-4 mAb and chemotherapy [14]. In this cohort of
patients, the baseline N/L value ≤5 could discriminate patients with statistically significant improved
progression-free survival (PFS) from patients with unfavorable clinical outcome [15]. In addition,
the modulation of the frequency of T cell subpopulations (Figure 1), in particular, activated central
memory or effector memory T cells (CCR7+CD45RA− or CCR7−CD45RA−), has been investigated as
a correlative biomarker for immune checkpoint infusions in melanoma patients [12,16–19]. A deep
multiparametric cytofluorimetric analysis of circulating T cells in advanced melanoma patients
undergoing the combination treatment with anti-CTLA-4 mAb plus chemotherapy highlighted that
increased levels in the peripheral blood of central memory T cells expressing co-stimulatory and
activatory molecules (CD45RA−CD62L+ CCR7+ CD27+ CD28+ BTLA+/PD-1+) were associated with
objective clinical responses [20,21]. Moreover, the same study highlighted that the frequency at
baseline of CD3+CD4+CD45RO+BTLA+, CD3+CD4+CD45RO+4-1BB+, or TH17 T cells could predict
patients’ clinical outcome [20,21]. Different studies showed that the frequency in the circulation of
CD4+ T cells expressing the Inducible T-cell Costimulator (ICOS) molecule was augmented following
infusion of CTLA-4 blocking agents in bladder, breast cancer, and mesothelioma patients [22–26].
In some cases, the modulation of ICOS+ T cells within few weeks (4–7) following the administration of
anti-CTLA-4 mAb was associated with improved OS of cancer patients [22,24,26]. Interestingly,
either the frequency at baseline or the modulation in the course of treatment of immune cells
endowed with negative immunoregulatory properties, such as T regulatory (Tregs) or Myeloid-Derived
Suppressor Cells (MDSCs) have been shown to represent predictors of patients’ clinical outcome for
immune checkpoint regimens (Figure 1) [27–32].
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Figure 1. Immune profiling of cancer patients. 1. Tumor and immune cells in tissues specimens
can be evaluated through IHC or mass cytometry for: i. defined marker expressions, assessment
of type, quantity, and localization of immune infiltration, spatial relationship between tumor and
immune cells. ii. Molecular analysis of gene signatures. iii. Genomic and epigenetic analyses. Ideally,
a longitudinal analysis of tumor tissues should be performed to monitor changes along with treatment
regimens. 2. Peripheral blood represents a minimally invasive procedures to monitor dynamic
changes of immune responses through: iv. Immunophenotypic characterization of subpopulations
of lymphocytes and monocyte/myeloid cells. v. Monitoring antigen-specific T cell responses or
humoral responses. vi. Assessment of soluble biomarkers. vii. Genomic profiling of blood cells.
viii. Transcriptomic analyses. 3. Host microbiome can shape the immune responses and affect patients’
clinical outcome after immunotherapy. The assessment of microbiome genomics is assuming a relevant
role in immune monitoring of cancer patients. IHC: immunohistochemistry; WGS: whole-genome
sequencing; WES: whole-exome sequencing; RNAseq: sequencing of RNA; TCR seq: sequencing of T
cell receptor; miRNAs: microRNAs; MDSCs: myeloid-derived suppressor cells; ELISA: enzyme-linked
immunosorbent assay; EliSpot: enzyme-linked immunospot assay; miRNAs: micro RNAs.

Interestingly, low levels of lactate dehydrogenase (LDH), absolute monocyte and MDSC counts
associated with high frequency of Tregs, absolute eosinophil count, and relative lymphocyte count,
represented a predictive baseline signature for favorable clinical outcome of melanoma patients treated
with anti-CTLA-4 mAb [33].

Tumor cells express antigens, defined as tumor-associated antigens (TAAs), that can be recognized
in the form of MHC–peptide complexes by T lymphocytes [34]. The monitoring in the peripheral blood
of TAA-specific T cells through the EliSpot assay has been widely exploited to determine the efficacy
in terms of immunization of TAA-based cancer vaccines (Figure 1) [35,36]. Interestingly, in some cases,
these anti-TAA T cell responses correlated with patients’ clinical outcome [35,36]. Circulating T cells
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with specific reactivity against TAAs, such as MART-1 and NY-ESO-1, have been observed in melanoma
patients administered with CTLA-4 blocking agents [31,37–39]. A predictive role for patients’ clinical
outcome of baseline detection of T cells recognizing these TAAs has been observed [21].

TAAs are also recognized by antibodies in the context of humoral responses [40]. Indeed,
therapeutic interventions with antagonistic mAbs targeting CTLA-4 could augment humoral immune
responses against molecularly known TAAs, including NY-ESO-1, and in some cases these responses
were associated with patients’ clinical benefit [19,37,39]. All together these results have contributed to
show the efficiency of immune checkpoint blockade in unleashing antigen-specific immune responses.
Although these investigations have provided insights into the mechanisms of action of immune
checkpoint blocking agents, none of the candidate correlative or predictive parameters has been
validated as a definitive biomarker in large cohorts of cancer patients.

3. Serum Biomarkers

The identification of soluble molecules that could represent predictive biomarkers for immune
responsiveness to immunotherapy represents a field of major interest. The monitoring of soluble
parameter(s) will allow to utilize relatively simple experimental techniques and easy accessible
biological samples, such as serum or plasma (Figure 1). The presence of soluble CD25 (the α-chain
receptor of interleukin-2; IL-2) in pre-treatment serum of melanoma patients undergoing anti-CTLA-4
mAb therapeutic regimen has been shown to be an independent indicator of OS [41].

NKG2D ligands (NKG2DLs) represent an indicator of cellular stress and are over-expressed by
tumor cells; these molecules bind NKG2D that is either an activatory or a co-stimulatory receptor
expressed by NK and T cell, respectively [42]. Shedding of NKG2DLs in the soluble form by tumor
cells has been described as part of the tumor escape from immunity through the engagement of the
NKG2D receptor on immune cells, resulting in the impairment of their anti-tumor activity [42,43].
Interestingly, soluble NKG2DLs have been detected in the serum of tumor patients with different
histological origins with, in some cases, a prognostic role [42–44]. The first observation that the clinical
activity of the combination of vaccination plus anti-CTLA-4 mAb was affected by soluble NKG2DL
was reported by Jinushi et al. [45].

Some years later, it was reported that the baseline serum levels of soluble NKG2DLs (ULBP-1 or -2)
could discriminate melanoma patients treated with anti-CTLA-4 mAb plus chemotherapy with
improved (median 33.6 months) or poor (median 9.8 or 6.6 months, respectively) OS [21]. Moreover,
this study highlighted that the absence of sNKG2DL in the pre-treatment serum of melanoma
patients with improved OS correlated with the enrichment of few circulating T cell subsets
(e.g., CD3+CD4+CD45RO+BTLA+, CD3+CD4+4-1BB+, and Th17) [21].

Recently, the role of soluble NKG2DLs as candidate predictive biomarkers of clinical outcome to
immunotherapy has been confirmed in a cohort of N = 194 melanoma patients treated with anti-CTLA-4
or anti-PD-1 mAb monotherapy or their combinations [46]. The absence of these molecules (MICB and
ULBP-1) in the baseline serum was associated with patients’ improved survival (OS = 21.6–25.3 months
and p = 0.02 and 0.01, respectively), while these molecules were detected in patients with poor survival
(OS = 8.8 and 12.1 months, respectively) [46]. The predictive role of sNKG2DLs was independent
from the serum levels of LDH, that is a prognostic marker routinely used for patients with a diagnosis
of melanoma.

Interleukin-6 (IL-6) and C-reactive protein (CRP) were found as candidate predictive biomarkers
for the high-dose IL-2 treatment of patients with metastatic renal cell carcinoma; in particular,
high levels of these molecules in the serum (>50 mg/L) were found in patients with progressive
disease [47]. CRP is an acute-phase protein of hepatic origin whose levels are commonly increased
upon inflammation. CRP is classified as an acute phase reactant detectable in the blood, and its
levels are augmented following IL-6 secretion by macrophages and T cells. High levels of CRP
(>50 mg/L) at baseline represented an independent predictor of clinical outcome for metastatic
melanoma patients treated with high doses of IL-2 [48]. VEGF associated with either fibronectin or
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CRP in pre-treatment serum was predictive of the clinical outcome of patients treated with high doses
of IL-2 or anti-CTLA-4 mAb [49,50]. High levels of LDH (twice upper the limit of healthy donors) could
represent a negative predictive marker of clinical response in patients treated with immune checkpoint
blockade [51], and decreasing levels of this molecule in the course of treatment were associated with
improved OS [30]. Thus far, none of the markers described above are included in the current clinical
assessment for treatment decisions.

4. Tumor- and TME-Associated Biomarkers

In 2006, Galon and colleagues demonstrated in a seminal paper the predictive role of cytotoxic
and memory T cells in determining patients survival [52]. Indeed, patients with a high density of
CD3+CD45RO+ memory T cells in the center and in the periphery of tumors have improved clinical
outcome, independently of the T and N stages according to TNM classification. Conversely, a low
density of these cells in the TME was associated with very poor survival. The strong predictive
value of these parameters was confirmed in subsequent studies [53]. The qualitative, quantitative,
and spatial localization of immune infiltrate in colorectal cancer (CRC) [54] has been precisely defined
as “immunoscore”, representing a prognostic value with superior significance compared with the
American Joint Committee on Cancer (AJCC) and Union for International Cancer Control (UICC)
TNM classification [53]. These evidences have led to the classification of cancer in “cold” and “hot”
tumors [55].

Further studies showed that also in a specific biologic framework, such as CRC patients with
microsatellite-instability, the characterization of the immune infiltrate represents a determinant of
tumor recurrence [56]. Recently, Mlecnik et al. [57] demonstrated that, also in the setting of metastatic
disease, the type of immune infiltrate correlated with patients’ prognosis. Altogether, these studies
highlighted the essential significance of the information derived from the TME to define patients’
prognosis and to predict their sensitivity to specific therapies. However, the limited accessibility
to tumor specimens represents the principle hurdle for this type of investigations. In this context,
a critical feature is the use of archival versus fresh collected tissues. Archival tissues present some
clear advantages, such as the possibility of retrospective analyses of neoplastic tissues avoiding
invasive and potentially dangerous clinical interventions. However, these advantages are outweighed
by different limitations. The analysis of specific immune cell subsets and genomic profiling in
Formalin-fixed Paraffin-embedded (FFPE) tissues is more complex and, in some cases, less reliable
compared to the usage of fresh tissues. Additionally, in these types of tissues, the dynamic nature of
the immune system cannot be monitored. In this respect, the assessment of PD-L1 in tumors represents
a prominent example. The adaptive nature of this molecule and its modulation on the cell surface are
regulated by the TME; the dynamic expression of this molecule cannot be monitored in retrospectively
collected tissues.

These critical points suggest that is not feasible to grasp the immune system in a single snapshot.
Indeed, immune functions are the results of multiple interconnected players which dynamically
shape each other. The expression in the TME of PD-L1 might results from the activation by
immunotherapy treatment of IFN-γ signaling. Therefore, a longitudinal assessment of immune
responses is crucial to understand the complex dynamic evolution of tumor genomic, phenotype,
and immunological make-up.

PD-L1 expression in tumor cells and TME can represent a defense mechanism that these cells can
use to evade the immune responses. PD-L1 is physiologically expressed by a variety of immune cells
in order to restore an immune equilibrium [58]. Since the initial clinical development of anti-PD-1/L1
therapy, the role of PD-L1 expression in tumor and stromal cells has been debated.

Although anti-PD-1 and -L1 antagonistic monoclonal antibodies had a substantial impact in
non-small cell lung cancer (NSCLC), only 20% of unselected patients showed clinical benefit to
treatment. In most instances, the clinical efficacy of these drugs was registered in patients with PD-L1+

tumors. However, durable responses were also observed in patients with tumor cells negative or
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with low levels of this molecule [59]. Brahmer and colleagues, in the first-in-human study with
one anti-PD-1 agent, showed that PD-L1 expression could predict patients’ clinical outcome [60].
Subsequently, several studies in patients with different types of tumors, including NSCLC, melanoma,
and renal cell cancer (RCC) have demonstrated the predictive role of PD-L1 expression to identify
patients who can benefit from anti PD-L1-targeting therapy.

In 2015, the FDA approved an anti-PD-1 blockade agent for the treatment of NSCLC only for
patients with expression of PD-L1 in tumor cells >50%, based on the evidence that these patients
had a prolonged progression-free survival and OS compared with patients with lower PD-L1
expression [61–64]. The complexity and the dynamic nature of tumor–host interactions during cancer
development and treatments require a more comprehensive approach for tumor and TME molecular
and genomic characterization, in order to evaluate multiple parameters simultaneously (Figure 1).

The investigation of the molecular traits of the TME is crucial also in the case of chemotherapy,
such as neoadjuvant chemotherapy [65–67]. Denkert and colleagues showed that the levels
of stromal tumor-infiltrating lymphocytes (TILs) can represent a predictive marker of clinical
responses to neoadjuvant chemotherapy, particularly in carboplatin-containing regimens [65].
Multiple methods exist to characterize the nature and immunological profile of the TME, including
Immunohistochemistry (IHC), Whole-Exome Sequencing (WES), proteomics, flow cytometry,
and others (Figure 1).

The genomic profiling of tumor tissues can provide useful information about the immunogenicity
of cancers [68,69]. It has become clear that in some type of tumors, such as lung cancer, melanoma,
and microsatellite-instable (MSI) CRC, the mutational load of the tumor can affect patients’ clinical
responses to immune checkpoint blockade [70–74]. Non-synonymous mutations in tumor cells can
lead to the expression of mutated antigens and neoantigens that display superior immunogenicity
compared to the “self-antigens” shared with normal tissues and can elicit efficient anti-tumor immune
responses [75,76]. These mutations may determine the immunosurveillance process promoting
tumor elimination by the immune cells through the recognition of new and highly immunogenic
tumor-specific antigens [76]. Different evidences showed that either T cell responses against
neoantigens or tumor mutational burden are predictive of neoantigen generation and of clinical
responses to immunotherapy [70,72–74,77–79]; however, further investigations are warranted to
validate the role of neoantigens as predictive biomarkers to immunotherapy. Clinical studies evaluated
the clinical outcome of patients treated with anti-PD-1 mAb, presenting mutations in the mismatch
repair machinery or in other enzymes involved in DNA replication and repair, such as the DNA
polymerase epsilon gene (POLE) and DNA polymerase delta 1 (POLD1) gene [77]. These studies
confirmed that tumors bearing a high mutational burden can be more susceptible to immune checkpoint
treatments [77].

Further mechanisms related to host–tumor interactions and their influence on immune
checkpoints resistance have been elucidated through the analysis of a cohort of longitudinal tissues
from N = 56 melanoma patients treated with anti-CTLA-4 mAb and subsequently, upon progression,
with anti-PD-1 mAb. WES and T cell receptor (TCR) sequencing have been performed for tumor
lesions, showing that a higher clonality of TCR was predictive of clinical responses to anti-PD-1
mAb. Preliminary results in this context were previously reported by the same group [8]. In addition,
the proportion of patients showing clinical benefit from immune checkpoint blockade displayed high
tumor mutation burden and low copy number loss [80]. Along this line, the extent of copy number
loss correlated with the downmodulation of genes with immune functions [80], suggesting that an
integrated signature of mutational load and copy number variation could represent a biomarker for
patients’ stratification for immunotherapy.

A recent study demonstrated that bystanders T cells, recognizing different epitopes unrelated
to cancer, could be detected among TILs; these T cells displayed a variety of phenotypes resembling
TAA-specific T cells but could be distinguished on the basis of the lack of the expression of CD39 [81].
This study also highlighted that the lack of clinical responses to immune checkpoint blockade, although
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in tumors with high mutational burden such as lung cancer and microsatellite instable CRC, could rely
on the relative abundance at the tumor site of bystander CD39− T cells [81]. Thus, CD39-expressing
T cells might represent useful predictive biomarkers of immune responsiveness to immunotherapy
treatments and clinical outcome.

Novel technologies, such as Whole-Genome Sequencing (WGS), WES, RNA sequencing, and TCR
sequencing have been exploited to investigate the relationship between tumor, TME, and immune
responsiveness, revealing their advantages for biomarkers discovery. However, future efforts are
needed to validate these platforms for clinical treatment decisions. Limitations to the exploitation
of these techniques are represented by the relatively large efforts and high amount of time required
to perform genomic and molecular characterizations of large cohorts of cancer patients. Another
limitation is represented by the requirement of tumor samples, at least at pre-treatment and possibly
along treatment, for monitoring reasons, thus excluding a sizeable proportion of cancer patients from
these studies.

Another innovative approach is represented by single-cell analysis, that can be performed both at
the tumor level and for TCR sequencing, providing an accurate profiling of cellular heterogeneity and
its relationship to patients’ clinical outcome. The application of these platforms is still in pre-clinical
phase; however, it can be envisioned that the application for the monitoring of cancer patients might
occur in the next future [82–85].

MicroRNA (miRNAs) profiling of tumor tissues could also represent a tool to identify biomarkers
associated with patients’ immune responsiveness (Figure 1). The modulation of miRNAs levels was
associated with immune-related genes in a cohort of patients treated with anti-CTLA-4 mAb [86].

Epigenetics is another area of growing interest in cancer. Indeed, epigenetic modifications are
among the critical mechanisms that regulate and skew gene expression toward a more aggressive cancer
phenotype. It has been shown that the modulation of epigenetics in the tumor microenvironment can
favorably sensitize the tumor response to immunotherapy [87]. Agents that modulate epigenetics in
the TME can determine the upregulation of subclasses of TAA, denominated cancer testis antigens
(CTAs), that either are recognized by T lymphocytes or can elicit humoral responses. Thus, the study
of epigenetic mechanisms in the TME might contribute to the identification of biomarkers predictive
of clinical responsiveness to immunotherapy (Figure 1).

5. Host Microbiome

The role of the gut microbiota in determining the fate of immunotherapy was initially analyzed
through pre-clinical models by comparing germ-free or antibiotic-treated mice to germ-competent
mice treated with CpG oligodeoxynucleotide and anti-IL-10 mAb [88]. Effective immune responses
were detectable only in mice with a functional microbiome; moreover, the impairment of the immune
responses was dependent on the enrichment of MDSCs and the failure of inflammatory signals [88].
Additionally, chemotherapy-mediated anti-tumor activity was impaired in antibiotic-treated or
germ-free animals [88]. Notably, lymphoablating or myeloablating chemotherapy and radiotherapy can
damage the gut mucosa causing the transmucosal translocation of commensal bacteria and inducing
the augmentation of endotoxin levels, thus increasing the levels of systemic inflammatory cytokines
leading to the activation of dendritic cells [89]. This phenomenon mediates adoptive cell therapy
clinical activity following chemo- and radiotherapy [89].

The gut microbiome can affect patients’ responsiveness to immunotherapy [90]. Indeed,
anti-CTLA-4 mAb treatment failed in germ-free or antibiotic-treated sarcoma, melanoma, and CRC
mouse models [91]. The therapeutic efficacy of immune checkpoint blockade was restored by the
adoptive transfer of specific strains of bacteria [91]. Similarly, the therapeutic mouse model of anti-PD-1
showed that mice harboring distinct microbiota displayed variable tumor growth and response to the
treatment [92].

Moreover, different dietary habits and frequent administration of antibiotics and drugs can
increase the variability of the microbiota, resulting in different effects on immunotherapy’s outcome.
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The microbiome role in immune responsiveness needs to be accurately dissected; nevertheless,
these analyses should be integrated with analyses of the tumor microenvironment and immune
responses in order to create biomarker platforms to predict the clinical outcome of cancer patients
treated with immunotherapy or combined treatments (Figure 1).

6. Conclusions

The remarkable progress in tumor immunotherapy, either with monotherapies or combinatorial
therapies, has dramatically changed the paradigm of cancer treatment. The identification of
predictive biomarkers could contribute to achieve efficient patients’ stratification and to design optimal
sequencing and scheduling for combinations of treatments. Although a variety of markers, including
soluble molecules, lymphocyte subpopulations, immune infiltrate, and genomic determinants,
have been isolated as candidate predictive biomarkers of immune responsiveness, thus far, none of
them has been validated for routine clinical application. In order to identify valid biomarkers predictive
of patients’ clinical outcome, assays that are standardized, reproducible, and available in a large number
of laboratories are needed. The advent of high-throughput genomic platforms has provided more
efficient tools to investigate the heterogeneity of tumors and TME as well as to identify genomic
determinants associated with immune responsiveness. However, the limitations in accessibility and
availability of patient’s neoplastic tissues, the choice of archival versus freshly collected tissues, and the
need to perform longitudinal monitoring of tissues have to be considered. Moreover, the application of
these techniques implies complex analyses and data mining. Along this line, the advent of single-cell
genomic platforms allows deep investigations of tumor heterogeneity and of the characterization
of immune cell infiltration; however, they are still in an early phase of development, and further
efforts are needed to validate their exploitation for biomarker discovery. The heterogeneity and
complexity of the host genomic, immunologic, and microbiome landscapes increase the complexity
of the identification of determinants of immune responses and clinical efficacy of immunotherapy
in cancer patients. Therefore, the development of multiparametric analyses as well as the usage of
integrated platforms are critical to achieve a comprehensive monitoring of genomic and immunological
biomarkers (Figure 1).
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