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Abstract
Radiation therapy (RT) is currently the standard treatment for diffuse intrinsic pontine 
glioma (DIPG), the most common cause of death in children with brain cancer. A phar-
macodynamic model was developed to describe the radiation-induced tumor shrinkage 
and overall survival in mice bearing DIPG. CD1-nude mice were implanted in the brain 
cortex with luciferase-labeled patient-derived orthotopic xenografts of DIPG (SJDIPGx7 
H3F3AWT/K27 M and SJDIPGx37 H3F3AK27M/K27M). Mice were treated with image-guided 
whole-brain RT at 1 or 2 Gy/fraction 5-days-on 2-days-off for a cumulative dose of 
20 or 54 Gy. Tumor progression was monitored with bioluminescent imaging (BLI). A 
mathematical model describing BLI and overall survival was developed with data from 
mice receiving 2 Gy/fraction and validated using data from mice receiving 1 Gy/fraction. 
BLI data were adequately fitted with a logistic tumor growth function and a signal dis-
tribution model with linear radiation-induced killing effect. A higher tumor growth rate 
in SJDIPGx37 versus SJDIPGx7 xenografts and a killing effect decreasing with higher 
tumor baseline (p < 0.0001) were identified. Cumulative radiation dose was suggested to 
inhibit the tumor growth rate according to a Hill function. Survival distribution was best 
described with a Weibull hazard function in which the hazard baseline was a continuous 
function of tumor BLI. Significant differences were further identified between DIPG cell 
lines and untreated versus treated mice. The model was adequately validated with mice 
receiving 1 Gy/fraction and will be useful in guiding future preclinical trials incorporat-
ing radiation and to support systemic combination therapies with RT.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Pharmacokinetic and pharmacodynamic models have been successfully applied to 
describe the effects of radiation therapy in mouse xenografts to guide the design of 
future preclinical studies.
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INTRODUCTION

Pediatric high-grade gliomas (pHGGs) are highly aggres-
sive tumors and represent about 20% of all pediatric glio-
mas.1,2 They comprise a heterogenous group of World Health 
Organization grades III and IV diffuse and infiltrating tu-
mors.3,4 Approximately half of pHGGs are diffuse intrinsic 
pontine gliomas (DIPGs), which are exclusively located in 
the pons, regulating many of the body's vital functions.5 No 
standard of care beyond radiation therapy (RT), traditionally 
delivered at 1.8 Gy/day to a cumulative dose of 54 Gy over 
6 weeks, is accepted as treatment for these tumors. Despite 
many therapeutic attempts, pHGGs respond poorly to current 
treatments, with a 2-year survival outcome of less than 20%,2 
and DIPG remains the leading cause of brain tumor–related 
death in children.6

Although the majority of patients with DIPGs expe-
rience symptomatic improvement with RT, radiographic 
responses based on tumor size as assessed by magnetic 
resonance imaging are limited.7 The combination of 
radio-sensitizing agents with RT has the potential to 
significantly contribute to therapy by enhancing tumor 
cell kill while minimizing normal tissue toxicity. With 
any agent combination, the selection of the right dosing 
approach (e.g., relevant dosages, sequential vs. simul-
taneous dosing) is a significant determinant to achieve 
therapeutic efficacy and assess the benefit of combina-
tion versus single-agent therapy. However, identifying 
the best dosing approach to guide clinical investigation 
remains challenging as it requires multiple experiments, 
which is both time consuming and cost intensive. An 
alternative is to use mathematical modeling based on a 

limited number of experiments to inform this important 
decision.

Pharmacokinetic and pharmacodynamic modeling has 
shown to be a useful tool to guide the selection of dos-
ing regimens and support the development of novel ther-
apeutic strategies.8–10 Semimechanistic models have been 
developed to describe tumor shrinkage induced by single-
drug and combination systemic treatments11–14 and more 
recently by RT alone or combined with chemotherapy.15,16 
Physical measurements of tumor volume/size are widely 
used to monitor disease progression in vivo, except for in-
tracranial tumors for which noninvasive imaging, such as 
bioluminescent imaging (BLI), is a useful surrogate.17,18 
Although BLI and tumor volume may not perfectly cor-
relate during the time course of tumor growth, it remains 
the most commonly employed method for monitoring 
tumor dynamics and response to therapy for intracranial 
tumor models.18

We initially embarked on a series of clinically relevant 
image-guided RT dose regimens in a DIPG patient-derived 
orthotopic xenograft (PDOX) mouse model to determine the 
most appropriate RT regimen (i.e., a regimen significantly 
extending survival but noncurative) to optimize the evalua-
tion of RT-drug interactions. To extend these studies across 
an expanding diverse set of PDOX models of DIPG and other 
pHGGs5,19 in an efficient and practical manner, we sought 
to develop a pharmacodynamic model that may accurately 
describe the effects of RT on pHGG PDOX tumor burden 
and overall survival, identify treatment variables that sig-
nificantly impact this effect, and ultimately be expanded to 
model in vivo RT-drug interactions and guide optimal pre-
clinical RT-based combination therapies.

WHAT QUESTION DID THIS STUDY ADDRESS?
Can we apply those models to describe the tumor progression of mice implanted with 
different orthotopic pediatric high-grade glioma measured with bioluminescent imag-
ing? Can they be extended to describe the overall survival of the animals?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The developed model adequately captured the tumor dynamics and overall survival of 
different gliomas xenografts and confirmed the correlation between bioluminescent 
imaging and survival. It allowed the quantification of the differences between the tu-
mors in terms of tumor growth and genetic background and identified the significant 
impact of tumor baseline burden on the radiation killing effect.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
The model provides useful information to guide the design of future preclinical trials 
incorporating radiation therapy, including dosing and tumor baseline burden selec-
tion, that will facilitate the observation of a relevant antitumor effect and the charac-
terization of effective combination therapies.
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METHODS

Animals and tumor implantation

Preclinical studies were performed in 6 weeks or older CD1-
nude mice (Charles River Laboratories) implanted with 
luciferase-labeled SJDIPGx7 H3F3AWT/K2 M (DIPGx7 or line 7) 
or SJDIPGx37 H3F3AK27M/K27M (DIPGx37 or line 37) PDOX 
cells in the brain cortex originally derived from human autopsy 
samples as previously described.5 PDOXs are passaged directly 
into the mouse brain without in vitro expansion. Three studies 
were performed with DIPGx7 (studies L7S1, L7S2, and L7S3), 
and one was performed with DIPGx37 (study L37S1). Mice 
were maintained in a facility accredited by the Association for 
Assessment and Accreditation of Laboratory Animal Care. The 
studies were approved by the appropriate Animal Care and Use 
Committee and performed in accordance with the National 
Institutes of Health guidelines.

Whole-brain radiation and BLI

In each study, DIPG xenografts were randomized into control 
and treatment groups at a predefined BLI total flux threshold 
>2.0 × 105 p/s after implantation. Treatment consisted in fully 
fractionated image-guided whole-brain radiation, performed 
with the Small Animal Radiation Research Platform (SARRP, 
Xstrahl Inc.) as described previously.20 In all studies, treated 
mice were radiated with a dosage of 2 Gy/ay, 5 days on and 
2 days off, for a total dosage of 20 Gy (10 days of treatment). 
In study L7S1, additional groups were radiated with 54 Gy as 
2 Gy/fraction 5 days on and 2 days off (27 days), and 20 Gy as 
1 Gy/fraction, 5 days on and 2 days off (20 days).

Tumor progression was measured either weekly or biweekly 
using BLI until moribund. Mice were anesthetized with isoflu-
rane and injected intraperitoneally with 125  mg/kg luciferin 
(no. 337050500; ACROS Organics). BLI was acquired using a 
Xenogen IVIS System (Xenogen IVIS-200, PerkinElmer).

Pharmacodynamic modeling

Modeling strategy

Measured BLI data were divided into a model-building and 
validation data sets. All control animals and mice receiving 
RT at 2  Gy/fraction were included in the model-building 
data set, whereas mice treated at 1 Gy/fraction were set aside 
for model validation. The model included the tumor growth 
dynamics without treatment, the radiation-induced tumor 
shrinkage, and the overall survival. These three components 
were sequentially modeled using a population-based ap-
proach with Monolix (version 2019R2; Lixoft). Fixed-effects 

and random-effects parameters were estimated with the sto-
chastic approximation expectation maximization algorithm. 
Interindividual variability terms were assumed log-normally 
distributed and implemented using an exponential model. 
Proportional error models described the residual variability. 
Data below the limit of quantification (defined as 2.0 × 105 
p/s) were censored (Beal's M3 method).21 Model selection 
and evaluation were based on statistical changes in the objec-
tive function value, precision of parameter estimates (relative 
standard error [RSE%]), and diagnostic plots.22 Internal vali-
dation was performed using prediction-corrected visual pre-
dictive checks (pcVPCs) based on 1000 data set replicates.23

Tumor growth model

Different tumor growth models used to describe tumor dy-
namics in xenografts were tested.11,24 The time between 
tumor implantation and start of treatment differs across stud-
ies, resulting in highly variable tumor burden baselines at en-
rollment. Those values were used as the initial conditions of 
the equations describing the tumor BLI dynamics. Statistical 
differences between the two DIPG PDOXs were tested by 
including a categorical covariate on the model parameters, 
with criteria p values of 0.05.25

Radiation-induced tumor shrinkage model

The parameters estimated to describe the tumor growth were 
fixed as Bayesian priors to model the radiation-induced kill-
ing effect. Based on the delay observed between the start of 
radiation and the tumor shrinkage, the following two com-
mon models were investigated: the cell distribution model12 
and the signal distribution model.13 The radiation input was 
modeled as an intravenous bolus with fast decline over time. 
Linear and nonlinear functions were explored to describe the 
radiation-killing effect. The impact of the baseline tumor BLI 
at enrollment was investigated as a continuous or categorical 
covariate on the parameters, with a criteria p value of 0.05.25 
Differences between the two DIPG PDOXs were also tested 
as described previously. The continuous covariate was tested 
as a power model scaled to the median covariate value. The 
categorical covariate was implemented as an exponential 
change. In addition, the impact of the cumulative radiation 
dose administered was investigated on parameters using a 
continuous Hill function.

Survival model

Survival was considered as a one-off event (i.e., length of 
time until moribund). A time-to-event model was developed 



602  |      HUSBAND et al.

to describe the survival time distribution in all mice using 
parametric hazard functions.24 Exponential, Weibull, log-
logistic, uniform, Gompertz, and gamma hazard functions 
were investigated. Interindividual variability terms were 
tested on each parameter.

The survival model was first developed independently 
from the tumor dynamics. Then all the individual tumor BLI 
profiles, derived from the previous steps, were included to 
characterize the correlation between the BLI dynamics and 
survival. Thus, the survival baseline hazard was assumed 
to be a function of the tumor BLI data. Differences be-
tween DIPG cell lines, and between untreated versus treated 
mice, were tested as categorical covariates as previously 
described.

Model external validation and simulations

External model validation was performed with the cohort 
of mice radiated with 20 Gy at 1 Gy/fraction. Based on the 
RT dosing schedule and the characteristics of the validation 
group (e.g., cell line, median tumor burden at baseline), the 
fixed-effects and random-effects parameters were used to 
simulate the tumor BLI dynamics and the survival distribu-
tion. The model predictions of the tumor BLI dynamics (me-
dian and 90% prediction interval) were graphically compared 
with the observed tumor BLI data of the validation cohort. 
The model predictions of the overall survival for the median 
tumor shrinkage profile (median and 90% confidence inter-
val) were also overlaid with the survival distribution of the 
validation cohort for visual assessment.

Model-based simulations were then performed for differ-
ent RT dosing regimens to further evaluate the impact on the 
tumor dynamics and overall survival. The simulations were 
performed using Simulx (mlxR 4.1.4 R package).26

RESULTS

Bioluminescence and survival data

Study L7S1 included a control group and three groups ra-
diated to 20 Gy at 1 or 2 Gy/fraction or to 54 Gy at 2 Gy/
fraction (six mice/group). Study L7S2 consisted of a control 
group and mice radiated to 20  Gy at 2  Gy/fraction (seven 
mice/group). Study L7S3 included a control cohort and 
mice radiated to 20 Gy at 2 Gy/fraction (eight mice/group). 
Study L37S1 comprised a control group and mice radiated to 
20 Gy at 2 Gy/fraction (eight mice/group). In studies L7S1, 
L7S2, L7S3, and L37S1, treatment started 27, 25, 15, and 
25 days after implantation, respectively, and mean tumor BLI 
baseline at enrollment was 3.38 · 105, 1.79 · 106, 9.26 · 106, 
and 2.18  · 106 p/s, respectively, 1 to 4 days before start of 
treatment.

The cohort treated to 20  Gy at 1  Gy/fraction in study 
L7S1 constituted the model validation data set (six mice). 
The remaining animals, that is, all control groups and mice 
receiving RT at 2 Gy/fraction from each study, were included 
in the model-building data set (64 mice), and the correspond-
ing tumor BLI data after enrollment and survival distribution 
are shown in Figure 1. In the group radiated to 54 Gy, tumor 
BLI was measured for up to 98 days after enrollment.

F I G U R E  1   Observed bioluminescence and survival data. Observed tumor bioluminescence data versus time (a) and observed survival 
distribution using Kaplan-Meier plots (b) for each preclinical study. Radiation treatment was administered with a 5-days-on and 2-days-off 
schedule. The dotted line represents the threshold of BLI quantification used for modeling purpose (2 · 105 p/s). BLI, bioluminescent imaging
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Tumor growth model

The tumor BLI measurements of the untreated mice were used 
to develop the tumor growth model. The tumor growth dy-
namics were best described using a logistic growth function:

where TV is the tumor BLI reflecting tumor volume, kg is 
the tumor growth rate constant, and TVMAX represents the 
maximum tumor volume. Interindividual variability was es-
timated on all parameters. A significantly faster kg was iden-
tified in DIPGx37 xenografts (mean 0.388/day) compared 
with DIPGx7 animals (mean 0.205/day, Mann-Whitney 
p = 0.0003; Figure 2a). The categorical covariate (DIPGx7 
vs. 37) implemented on kg explained 25% of the variability 
initially observed. The parameters were well estimated with 
RSE% <30%. Figure 2b–d shows the model fits for representa-
tive animals in each study, diagnostic plots, and pcVPCs. The 
model adequately captured the data with no significant bias. 

From this model, the doubling times of DIPGx7 and DIPGx37 
xenografts were estimated at 3.6  ±  1 and 1.9  ±  0.62  days, 
respectively.

Tumor growth inhibition model

The tumor BLI measurements of the treated mice included 
in the model-building data set were best described using the 
signal distribution model with three transit compartments 
(Figure S1). The radiation-induced tumor killing effect was 
described as a linear function of the radiation dose with the 
rate constant k1. Tumor burden at baseline significantly in-
fluenced both k1 and the transduction time τ (Figure 3a). k1 
significantly decreased with a higher tumor burden at enroll-
ment (correlation coefficient p  =  0.0002). Tumor baseline 
included as a continuous covariate on k1 explained 39% of 
the variability associated with k1. τ was significantly lower 
in mice with tumor burdens at baseline greater than 4 · 106 
p/s (p = 0.0009). However, in mice with lower tumor base-
lines, the correlation between τ and tumor BLI values was 

dTV

dt
= kg ⋅ TV ⋅

(

1 −
TV

TVMAX

)

F I G U R E  2   Tumor growth model fits and covariate relationships. (a) Distribution of tumor growth rates estimated in mice implanted with the 
diffuse intrinsic pontine glioma cell line 7 versus line 37. (b) Model predictions (solid lines) overlaid with observed data for four representative 
untreated mice (one selected mouse per study). (c) Goodness-of-fit plots including observed versus individual predicted values (first column), 
IWRES versus predictions (second column) and versus days (third column). (d) Prediction-corrected visual predictive checks stratified by 
preclinical study. In each graph, dots represent individual observed tumor bioluminescence data, and solid lines and shaded areas are the medians 
and 90th prediction intervals of the model-based simulations. BLI, bioluminescent imaging; IWRES, individual weighted residuals; kg, tumor 
growth rate
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not significant. Therefore, tumor baseline was associated 
with τ as a categorical covariate (“high” >4  ·  106 p/s vs. 
“low” ≤4  ·  106 p/s) and explained 20% of the variability. 
Mice radiated to 54 Gy exhibited prolonged low BLI values, 

which were considered as below the threshold of quantifica-
tion. This long-term effect of RT was modeled by adding an 
inhibitory effect on the tumor growth rate kg, driven by the 
cumulated RT dose, according to a Hill function, as follows:

F I G U R E  3   Tumor growth inhibition model fits and covariate relationships. (a) Association between the radiation-induced killing rate constant 
k1 and tumor burden at baseline (first column) and distribution of radiation effect transduction time in mice with baseline tumor burden ≤4 · 106 
p/s versus >4 · 106 p/s (second column). (b) Model predictions (solid lines) overlaid with observed data (circles) for representative mice treated 
with 20 or 54 Gy as 2 Gy per fraction. The dotted line is the threshold of quantification, crosses are data below the limit of quantification, and the 
dashed line reflects complete inhibition of tumor proliferation. (c) Goodness-of-fit plots including observed versus individual predicted values (first 
column), IWRES versus predictions (second column) and versus days (third column). (d) Prediction-corrected visual predictive checks stratified by 
preclinical study. Solid lines and shaded areas are the medians and 90th prediction intervals of the model-based simulations. (c,d) Crosses represent 
simulated observations below the limit of quantification. BLI, bioluminescent imaging; IWRES, individual weighted residuals; k1, radiation-
induced killing rate constant



      |  605RADIOTHERAPY MODELING IN GLIOMA XENOGRAFTS

where ΣRT is the cumulative RT dose, IC50 is the cumulative 
RT dose leading to a 50% inhibition of kg estimated at 32.8 Gy, 
and γ is the Hill coefficient. Figure S2 depicts the shape of the 
inhibition curve.

No significant difference in the radiation effect parame-
ters was identified between DIPG PDOXs. The parameters 
were well estimated (Table 1). Figure 3b–d shows the model 
fits for representative animals in each study, diagnostic plots, 
and pcVPCs. The model adequately characterized the central 
tendency and variability of the data.

Survival model

The survival distribution of all mice included in the model-
building data set was first modeled independently from the 
tumor BLI dynamics. The survival distribution was best de-
scribed with the Weibull hazard (h) function:

where p is the shape parameter, and Te is the median of the Weibull 
distribution. Interindividual variability was included on Te and 
was significantly influenced by two categorical covariates: treat-
ment status (control vs. RT) and DIPG PDOX (DIPGx7 vs. 37).

k�
g
= kg ⋅

�

1 −

∑

RT�

IC
�

50
+
∑

RT�

�

h (t) =
p

Te
⋅

(

t

Te

)p−1

Parameter (unit) Symbol Estimate (RSE%)
Interindividual 
variability (RSE%)

Tumor growth model

Tumor growth rate (per 
day)

kg 0.388 (11.9) 0.315 (14.2)

DIPG cell line 7 effect 
on kg

βline7 −0.639 (21.6) –

Maximum tumor size (p/s) TVMAX 1.44 × 109 (28) 1.06 (19.7)

Proportional residual error εprop 0.39 (6.2) –

Tumor growth inhibition model

Radiation killing rate 
constant (per day)

k1 34.9 (5.3) 0.239 (16.7)

Baseline effect 
coefficient on k1

βbase −0.259 (14.6) –

Radiation effect 
transduction time

τ 3.29 (7.3) 0.288 (16.2)

High baseline effect 
coefficient on τ

βhigh base −0.46 (29) –

Cumulative RT dose 
inhibiting 50% kg (Gy)

IC50 32.8 (3.5) –

Proportional residual error εprop 0.39 (5.0) –

Survival model

Shape parameter p 5.3 (0.36) –

Median Weibull 
distribution

Te 1320 (6.3) 0.115 (29)

DIPG cell line 7 effect 
on Te

βline7 0.323 (19.5)

Treatment status effect 
on Te

βtreat 0.663 (8.3) –

Note: Interindividual variability is reported as standard deviation.
The covariate relationships were implemented as follows: kg,i = kg ⋅ e

� line7 ⋅ LINE; K1,i = k1 ⋅

(

Baseline

843900

)�base

 and 
� ,i = � ⋅ e

�high base ⋅
HIGH BASE; Te,i = Te ⋅ e

� treat ⋅ TREATMENT
⋅ e

� line7 ⋅ LINE.
where LINE equals 1 for DIPGx7 and 0 otherwise, HIGH BASE equals 1 for tumor burden baseline >4 · 106 
p/s and 0 otherwise, and TREATMENT equals 1 for radiated mice and 0 for untreated mice. Baseline 
corresponds to the observed tumor baseline burden for each individual mouse.
Abbreviations: DIPG, diffuse intrinsic pontine glioma; RSE%, relative standard error.

T A B L E  1   Final model parameter 
estimates
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Then the model-predicted individual tumor BLI profiles 
obtained previously were integrated, and the hazard baseline 
was modeled as a function of the BLI dynamics as follows:

After including the tumor dynamics, the model fits 
were improved, and the estimated interindividual variabil-
ity associated with Te was decreased by 38%, confirming 
that tumor BLI measurements were good predictors of sur-
vival. The two previous covariates were still significant. 
Te estimates were lower in the control cohorts and lower 
in the DIPGx37 xenografts (Figure  4a). The parameters 
are reported in Table 1. The predictive performance of the 
survival model was evaluated using simulations. The ob-
served survival distribution was reasonably predicted by 
the model-based simulations for each study and treatment 
group despite some bias for the treated mice in study L7S3 
(Figure 4b).

Model external validation and simulation

Mice included in the model-validation data set received 
20 Gy at 1 Gy/fraction. The model was used to simulate 
tumor shrinkage and survival outcomes after this radia-
tion dosing schedule. A total of 500 simulations were per-
formed based on the range of baseline BLI values of the 
validation cohort. The 50th percentile of the model tumor 
BLI predictions adequately matched the central tendency 
of the observed BLI data (Figure 5a). The observed sur-
vival distribution was well predicted by the model with 
an observed versus predicted median survival of 90 versus 
91 days.

The validated model was used to further explore the im-
pact of different radiation dosing schedules and tumor burden 
at baseline in both DIPG PDOXs. Figure 5b shows the simu-
lated mean tumor BLI and survival profiles after a total dose 
of 10 Gy (2 Gy/fraction), 20 Gy (1 or 2 Gy/fraction), 39 Gy 
(3  Gy/fraction), and 40  Gy (5  Gy/fraction), with the same 
tumor burden baseline of 2.7 · 105 p/s. Figure 5c shows the 

h (t) = TV ⋅

p

Te
⋅

(

t

Te

)p−1

F I G U R E  4   Survival model fits and 
covariate relationships. (a) Distribution 
of the Weibull hazard parameter between 
control and treated mice implanted with 
diffuse intrinsic pontine glioma lines 7 
and 37. (b) Kaplan-Meier plots and visual 
predictive checks stratified by preclinical 
study. In the different panels, black, green, 
and red colors represent untreated mice, 
mice receiving 20 Gy and 54 Gy (2 Gy/
fraction), respectively. Solid lines are the 
observed survival distribution. Dashed lines 
and shaded areas are the medians and 90th 
prediction intervals of the model-based 
simulations. RT, radiation therapy; Te, 
Weibull scale parameter
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simulated mean tumor BLI and survival profiles after a total 
dose of 20 Gy (2 Gy/fraction) with different tumor burden 
baselines (2.7  · 105 p/s, 1.0  · 106 p/s, or 4.5  · 106 p/s). All 
regimens were simulated as one fraction/day, 5 days on and 2 
days off, starting on day 4.

DISCUSSION

The pharmacodynamic model developed in mice bearing 
luciferase-labeled PDOX DIPGx7 and DIPGx37 adequately 
described tumor progression and survival distribution after 
different RT regimens that resemble clinical dose fraction-
ation schemes. A difference in the tumor growth rate was 
identified between the two DIPG xenografts. The radiation 
killing rate was not different between the two DIPG mod-
els but was significantly smaller with higher tumor burden 
at baseline. Tumor BLI, DIPG PDOX type, and treatment 
status were significant predictors of survival. This model can 

now be further used to investigate different radiation dosing 
strategies to inform the design of future preclinical studies. 
It also constitutes a base framework for developing a model 
describing the outcomes after RT when combined with sys-
temic therapies.

Measurable chemotherapy effects often peak days or even 
weeks after the first administered dose. The same delay is 
characteristic of tumor response to radiation as seen in the 
treated xenografts with a tumor shrinkage from the first radi-
ation dose not starting until 2 weeks. The signal distribution 
model selected to describe the radiation-induced effect has 
been commonly used to capture long delayed chemotherapy-
induced tumor shrinkage.11,13,27 More complex models have 
been developed to describe radiation effects, including a 
model by Cardilin and colleagues.15,28 A noteworthy com-
ponent of their model is the linear-quadratic equation to 
quantify the radiation-induced damages. The Cardilin model 
was explored using our data, although we failed to obtain 
model fits as good as with our own model structure, which 

F I G U R E  5   Model validation and model-based simulations. (a) Model predictions for the validation cohort receiving 20 Gy (1 Gy/fraction). 
Left panel: observed data (dots and crosses for data below the limit of quantification) and 90th prediction interval of model simulations (shaded 
area). Right panel: observed (black line) and predicted mean and 90th confidence interval of survival distribution (dashed blue line and shaded 
area). (b, c) Mean simulated tumor bioluminescence and survival profiles for mice implanted with DIPGx7 or DIPGx37 at different radiation 
dosing schedules or at different tumor burden baselines. All treatments were simulated as one fraction per day, 5 days on and 2 days off, starting on 
day 4. BLI, bioluminescent imaging
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is less mechanistic but much less complex and thus may 
be more suitable for highly variable data such as our BLI 
measurements.

A common feature between our model and the Cardilin 
model is the inclusion of a long-term radiation-induced effect 
on the tumor growth rate along with the cell-killing effect.28 
In our studies, mice receiving 54 Gy exhibited low BLI mea-
surements until 98 days after enrollment and were still alive 
after 130 days (Figure 1). This prolonged tumor suppression 
suggested that 54 Gy was curative for these mice. To model 
this effect, we assumed that cumulative radiation leading to 
extensive tumor shrinkage progressively inhibited the capac-
ity for tumor reproliferation using a typical Hill function. One 
potential explanation supporting an altered tumor growth 
rate is the change in tumor vascularization and microenvi-
ronment caused by radiation.29,30 After a cumulative dose of 
54  Gy, a close to complete inhibition of the tumor growth 
rate was achieved, resulting in prolonged low BLI predic-
tions (Figure S2). We had BLI data after 54 Gy dosing for 
the DIPGx7 but not for the DIPGx37 xenografts. Thus, our 
estimated IC50 of the cumulative radiation dose inhibition 
effect may not represent the “true” IC50 value for DIPGx37 
xenografts.

The impact of the tumor burden at baseline on the extent 
of radiation-induced killing effect was an important finding. 
A larger tumor burden at baseline significantly decreased the 
radiation killing rate for the same total dose and fractionation. 
In addition, a tumor burden >4  ·  106 p/s before treatment 
started decreased the transduction time, that is, the length of 
the radiation effect. As shown by our simulations (Figure 5c), 
radiating mice that have large differences in tumor burden 
baseline with the same dose and fractionation can result in 
significant differences in tumor shrinkage and survival. This 
is critical to consider when comparing different dosing regi-
mens and therapeutic agents to properly assess the advantage 
of RT. The high 4  · 106 p/s value was empirically selected 
based on the observed data. Although it should not be consid-
ered as a strict threshold, it can still guide the course of future 
studies. Generally, our model could now be used to further 
inform the design of studies in DIPG xenografts by deter-
mining a desired range of BLI values before beginning RT 
and by predicting the time to reach these values. The impact 
of tumor size on RT effect has been previously observed in 
clinic for other tumors.31,32 Larger tumors containing larger 
amounts of hypoxic cells more resistant to irradiation could 
possibly explain this phenomenon. It was suggested that che-
motherapy or other interventions be applied before radio-
therapy to decrease tumor size and enhance radiation effect. 
Although resection is generally not feasible for patients with 
DIPGs and currently effective systemic therapy remains elu-
sive, the observation of this relationship may be informative 
for guiding future preclinical drug-radiation studies if more 
efficacious agents are identified.4

Another interesting result is the significant difference in 
tumor growth rate between the two DIPG cell lines without 
a difference in the radiation killing rate parameter. The two 
DIPG cell lines used in this study differ, at least in part, by 
their TP53 status: DIPGx7 harbors a pathogenic TP53 mu-
tation and DIPGx37 is wild type for TP53. Recently, TP53 
mutations were shown to drive DIPG resistance to RT in 
vitro and in patients.33 In contrast, in our study, by only ob-
serving the BLI measurements collected in mice receiving 
20 Gy (Figure 1), one could see the smaller impact of RT on 
the BLI profiles and the inferior survival in the study using 
DIPGx37 compared with those using DIPGx7. Our modeling 
analysis first showed in the control groups that the tumors 
of TP53 wild-type DIPGx37 xenografts grew faster than 
that of mutant DIPGx7 xenografts. This was still observed 
in the radiated animals. The lack of difference between the 
DIPG lines regarding the radiation killing rate suggests that 
the smaller effect of radiation on DIPGx37 xenografts may 
be more driven by proliferative differences than an acquired 
resistance to RT. This is currently being further investigated 
with in vitro studies evaluating the effect of RT on the cell 
cycle of pediatric glioma cells.

BLI is widely performed to monitor tumor progression 
in vivo when the localization of the tumor does not allow 
the use of conventional nonimaging methods such as direct 
caliper measurements. BLI signals have shown a good cor-
relation with actual tumor sizes, although some discrepancies 
may occur with very large tumor volumes.18 Our model was 
extended to include the prediction of survival distributions, 
a clinically relevant outcome. Our analysis showed that the 
BLI data and survival end points were significantly associ-
ated. This confirmed that BLI was a good predictor survival 
in our DIPG xenograft models.

Our model was validated for both the tumor dynamics 
and overall survival of DIPGx7 xenografts receiving a dif-
ferent RT fractionation and can now be used to further in-
vestigate other radiation dosing strategies. In particular, the 
model can inform optimal radiation dosing strategies to use 
in the context of combination therapies. In terms of extrap-
olation to humans, it is known that radiation alone has rarely 
achieved lasting remission or long-term survival in pediat-
ric patients with DIPGs. Thus, a commonly explored clini-
cal therapeutic strategy has been to explore drug-radiation 
combinations to identify synergistic relationships.15 To 
model this strategy preclinically, it is critical to identify an 
RT dosing schedule that allows the researcher to observe 
drug-radiation synergy, additivity, or antagonism. The se-
lected RT dosing schedule needs to be sufficiently effective 
alone, but not curative, as 54  Gy was in our L7S1 study. 
Selecting a radiation dosing regimen (i.e., total dose and 
fractionation) that is clinically relevant in terms of current 
standard of care still remains challenging, and we believe 
that the model developed here can guide this decision to 
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optimize the future preclinical studies evaluating combina-
tion therapies This was the primary purpose of our analy-
sis: providing a framework to determine optimal conditions 
(e.g., radiation dosing, initial tumor burden to reach) across 
various DIPG xenograft models to use in conjunction with 
systemic therapy to enhance the evaluation of new treat-
ments for pediatric brain tumors rather than providing direct 
clinical predictions.

The analysis has several limitations. Most of the stud-
ies were performed in DIPGx7 xenografts. Additional data 
using DIPGx37 xenografts would allow for confirmation of 
the observed differences observed in the tumor growth rates 
between DIPGx7 and DIPGx37 xenografts. The long-term 
effect of RT on the tumor growth rate was not observed in 
DIPGx37 xenografts, and thus the estimated IC50 should be 
interpreted carefully for those mice. Additional data from 
DIPGx7 xenografts with intermediate cumulative RT doses 
between 20 Gy and 54 Gy might also improve the charac-
terization of the IC50. Toxicity was not investigated here; 
however, the motivation of the study was to characterize 
tumor shrinkage with various radiation regimens, and the 
determination of a maximum tolerated dose schedule was 
not considered. Finally, the current model was not designed 
here to provide direct clinical predictions. Our immediate 
goal was to inform and optimize the preclinical evaluation 
of new therapeutic strategies including RT. The inclusion 
of more mechanistic processes, such as cell cycle and DNA 
repair capacity, is currently under investigation. By inte-
grating these cellular end points observed across a broad 
selection of pHGG PDOXs and derived cell line models in 
to our model, the influence of driver mutations (i.e., histone 
H3, TP53, PDGFRA) can be evaluated and potentially used 
to predict mutation-specific drug class dependencies when 
combined with concurrent RT. Although the evaluation of 
similar clinical data may also be useful to develop this ob-
jective, unfortunately to date no systemic agent has been 
identified that consistently improves outcomes. Despite nu-
merous attempts at varying RT regimens and/or techniques, 
outcomes have remained stagnant, highlighting the need to 
better understand the cellular effects of RT and to identify 
genetic liabilities and systemic agents that may exploit these 
effects.

This is the first time that radiation-killing effect has been 
explicitly modeled in pediatric DIPG xenografts and can 
provide useful information to guide the design of future pre-
clinical trials incorporating RT. Given radiation remains the 
only therapy that consistently provides clinical responses in 
DIPGs, albeit in a temporary and ultimately unsatisfactory 
fashion, future studies including more mechanistic models 
of the in vivo effects of fractionated RT and drug-radiation 
combination therapy are desperately needed to define prom-
ising strategies that may increase the therapeutic ratio of this 
treatment modality.
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