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Abstract: Recent findings suggest that tumor microenvironment (TME) plays an important regulatory
role in the occurrence, proliferation, and metastasis of tumors. Different from normal tissue, the
condition around tumor significantly altered, including immune infiltration, compact extracellular
matrix, new vasculatures, abundant enzyme, acidic pH value, and hypoxia. Increasingly, researchers
focused on targeting TME to prevent tumor development and metastasis. With the development of
nanotechnology and the deep research on the tumor environment, stimulation-responsive intelligent
nanostructures designed based on TME have attracted much attention in the anti-tumor drug delivery
system. TME-targeted nano therapeutics can regulate the distribution of drugs in the body, specifically
increase the concentration of drugs in the tumor site, so as to enhance the efficacy and reduce adverse
reactions, can utilize particular conditions of TME to improve the effect of tumor therapy. This paper
summarizes the major components and characteristics of TME, discusses the principles and strategies
of relevant nano-architectures targeting TME for the treatment and diagnosis systematically.

Keywords: tumor microenvironment; targeted therapy; nanoparticles; nano therapeutics;
tumor imaging

1. Introduction

Owing to the complex and continuously evolving tumor microenvironment (TME),
cancer becomes one of the most difficult diseases to cure all over the world. The bidrec-
tional interactions between tumor and the TME bring about the progression, therapeutic
resistance, and metastasis of cancer [1]. TME composes various supporting cells such as
immune cells, fibroblasts, endothelial cells, and extra components like exosomes, cytokines,
enzymes, growth factors, and extracellular matrix (ECM), etc. [2,3]. In addition, the tumor
microenvironment displays unique pH values, hypoxic condition, high ATP concentra-
tion, and abundant tumor microvasculature [4–6]. The communications between tumor
cells and the microenvironment result in drug resistance by changing the phenotypes of
tumor cells as well [7]. Therefore, treatment targeting the microenvironment has attracted
increasing attention.

The rapid development of nanotechnology has provided a good platform for early
diagnosis and more effective therapy of tumors [8]. Nanoparticles (NPs) can effectively
improve the pharmacokinetic and pharmacodynamics properties of drugs and improve
the therapeutic effect due to its special size, shape, and material [9]. Coated with folic acid,
hyaluronic acid, and other molecules, nanoparticles can be used as good carriers concentrat-
ing drugs at the tumor site much better. Due to the high biocompatibility, good targeting
property and low toxicity of organic nanomaterials, related materials have been developed
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in large quantities. Some organic nanomaterials like liposomes (pegylated liposomal dox-
orubicin, paclitaxel liposome, vincristine sulfate liposome, etc.) have been used in clinical
chemotherapy very well [9]. Inorganic materials are also widely used in the preparation
of nanomaterials. Mesoporous silica nanoparticles (MSNs) have great advantages in the
fields of adsorption, separation, catalysis, and drug delivery [10]. Magnetic Nanoparticles
(MNPs), by means of an external magnetic field, can increase the aggregation of MNPs at
the tumor site and reduce the distribution in normal tissues. Furthermore, MNPs have the
functions of hyperthermia and imaging, and its super paramagnetism makes it an obvious
advantage as MRI (magnetic resonance imaging) contrast agent [11]. Other metal nanopar-
ticles, such as gold nanoparticles (GNPs), can inhibit tumor angiogenesis by themselves
and have photothermal effects as well [12]. However, these nanomaterials have shown
great success in treating tumors and reducing adverse reactions. The presence of TME still
bring limitations for nanomedicines to treat tumors. Aiming for the acidic pH, hypoxia
and abundant ATP quantity conditions of TME, NPs response to different stimuli were de-
veloped, which could remove the obstacle of low accumulation with enhanced permeation
and retention (EPR) effect in the tumor [13]. Nano-architectures established by virus-like
particles, polymer, inorganics, micelle, self-assembled proteins, liposomes, polypeptides
with suitable volume ratio, and tunable morphologies can achieve the purpose of broad
spectrum, low toxicity, and low drug resistance. These NPs can not only reach the tumor
site precisely, but also load much more lipophilic drug molecules by its special hollow
structure, cut off the interaction between tumor cells and the microenvironment, and inhibit
the proliferation of tumor cells more efficiently [14–16].

The role of the TME during nano-targeted tumor treatment strategies has been re-
viewed somewhere, however, most research just focused on part of the compositions or
stimuli categories [17–19]. This review aims to elaborate the components and physiological
conditions of TME, summarize the nano-architectures response to physiological barriers or
unique constituents, and discuss the prospect of nano therapeutics in TME (Figure 1).
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2. Special Characteristics of Tumor Microenvironment
2.1. Major Constituents of TME

Immune cells, ECM, cancer associated fibroblasts (CAFs), tumor vessels, exosomes
and chemokines are vital constituents of TME, all of which participate in tumor progression
and invasion particularly (Figure 2). Here, we will concentrate on the principles of their
respective activities.
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2.1.1. Immune Cells and Chemokines

The functions of immune cells and chemokines are controversial in TME. Current
research showed that there were a variety of immune cells in the inflammatory microenvi-
ronment, including adaptive immune cells as T lymphocytes (T cells) and B lymphocytes
(B cells), innate immune defense cells as macrophages, natural killer (NK) cells, dendritic
cells (DCs), and myeloid-derived suppressor cells (MDSCs) [20–22]. In the inflammatory
microenvironment, the special phenomenon-“immune escape” prevents cancer cells from
being recognized by killer cells such as CD8+ T cells and NK cells, making it easier for
cancer cells to survive, infiltrate, and metastasize [5,23,24]. Among them, tumor asso-
ciated macrophages (TAMs), regulatory T cells (Tregs) and MDSCs play vital roles in
the tumor immunosuppression environment. Recruitment and differentiation of these
immunosuppressive cells depend on the presence of numerous cytokines in the microenvi-
ronment [25–27].

Macrophages can be divided into M1 and M2 type according to different phenotypes
and functions. M1 macrophages with tumoricidal effects can inhibit tumor growth and
secrete pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin (IL)-6,
and IL-12 [26,28]. M2 macrophages activated by IL-4, IL-10, and IL-13 hold the function of
secreting cytokines such as vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), and transforming growth factor-β (TGF-β). All of them participate in promot-
ing repair, suppressing immune response, and angiogenesis [29,30]. M2 macrophages in the
tumor microenvironment account for a much higher proportion than M1 macrophages [26].
Programmed cell death 1 (PD-1) expressed on M2 macrophages combining with the pro-
grammed cell death ligand 1 (PD-L1) expressed on tumor cells exerted immunosuppressive
effect [31]. Meanwhile, tumor cells highly express CD47, which is the ligand of signal-
ing regulatory protein α (SIRPα), an immune checkpoint found on macrophages [32,33].
Binding of CD47-SIRPα axis will suppress phagocytosis effectively. Therefore, effectively
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improving phagocytosis of macrophages or transforming M2 macrophages into M1 type is
the main therapeutic direction in current research.

Tregs, which are abundant in the tumor stroma is a specific subgroup of CD4+ T cells
expressing the transcription factor Foxp3, CD25 and cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4) [34–36]. The chemokine ligand (CCL) 22 produced by macrophages
and tumor cells can bind to chemokine receptor (CCR) 4 expressed on Tregs, consequently
recruiting Treg into TME and leading to tumor growth and poor patients’ outcomes with
its immunosuppressive function [37]. Tregs create an immunosuppressive environment
through the activities of cell surface molecules (Foxp3, CTLA-4, CD25, CD39, CD73, TIGIT),
secretion of cytokines (IL-2, IL-10, TGF-β, CCR4) and immune molecules (granzyme,
cyclic AMP, and indole-amine-2,3-dioxygenase (IDO)) [36,38–42]. Therefore, blocking the
functional molecules expressed on Tregs such as CTLA-4, PD-1, CCR4, TGF-β, Foxp3, or
completely eliminating the presence of Tregs can improve the immune escape effect of
tumor inflammatory microenvironment.

MDSCs are a group of heterogeneous cells that lack lymphoid markers with multi-
directional differentiation potential and immunosuppressive function. This group includes
immature DCs, macrophages, granulocytes, and other myeloid cells in the early stage of
differentiation [43]. Immune suppression by MDSC involves several complex mechanisms.
Due to its suppression of T cells and NK cells in TME, the accumulation of MDSCs is
one of the main reasons for tumor immune unresponsiveness [44]. MDSCs can reduce
local tryptophan levels due to the activity of IDO to reduce the proliferation of T cells [45].
Peroxynitrite (PNT) produced by MDSCs can alter chemokines and block the entrance
of CD8+ T cells. MDSC also induce Tregs and affect function of NK cells by producing
immunosuppressive cytokines like IL-10 and TGF-β [46]. Besides the influence of differen-
tiation of TAMs, MDSCs also promote angiogenesis by secreting factors compensating for
VEGF [27,47]. Immunotherapy targeting MDSCs provides a new therapeutic strategy for
anti-tumor therapy.

2.1.2. Extracellular Matrix

ECM contains proteins, glycoproteins, proteoglycans, polysaccharides, and other
components. All of them provide structural support for tissue organization and promote
information transmission between cells [48]. In normal tissues, connective proteins and
adhesive proteins in ECM keep connection between cells and maintain tissue homeosta-
sis [49]. However, in solid tumors, remodeled ECM affects the migration and invasion
of cells, and promotes the occurrence and malignant progression of tumors. Working as
information transmitter between ECM and other cells, integrins are highly expressed on
tumor cells and vascular endothelial cells, and usually affect the function of some immune
cells and fibroblasts. Integrins on the surface of tumor cells regulate cell protrusion and
adhesion in the process of tumor migration. Meanwhile, they mediate the function of
multiple matrix metalloproteinases (MMPs) like MMP2, MMP9, and MMP14 to remodel
ECM [50,51]. ECM remodeling is mainly regulated by MMPs, and proteases such as serine
acid/cysteine [52]. In addition, the remodeled dense ECM slows the penetration and
diffusion of large molecules to create a high-pressure environment, thereby resulting in
therapy limitation [53,54].

2.1.3. Cancer Associated Fibroblasts

CAFs are one of the main components of TME. Unlike resting fibroblasts, CAFs metab-
olize vigorously and secrete large amounts of proteome, including cytokines, chemokines,
and various protease CAF spindles [55,56]. CAFs also provide structural support for
tissues and act as a transmitter of information between cells [57]. Due to the expression
of serine protease, fibrinogen activator, and MMPs on CAFs, ECM is hydrolyzed and
reconstructed. In addition, CAFs can also express a variety of cytokines and proteases,
such as stromal cell- derived factor 1 (SDF1), VEGF, MMPs, and monocyte chemotactic
protein-1 (MCP-1) to promote tumor growth, metastasis, and angiogenesis [58–60]. In
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addition, CAFs support cancer progression through changes of metabolism. In tumors,
p38 signal of CAFs activates by cancer cells, the fibroblast-derived p38-regulated cytokines
mobilize glycogen in cancer cells, which utilizes by cancer cells for glycolysis, promoting
cancer invasion and metastasis [61]. In breast cancer, glycolytic CAFs provide extra pyru-
vate and lactate for augmentation of mitochondrial activity of tumor cells, which confers
tumor cells with multiple drug resistance [62]. CAFs also regulate cancer cell metabolism
independently of genetic mutations of cancer cell. FAK-depletion in CAFs promoting
chemokin production, enhancing malignant cell glycolysis by activating protein kinase A
via CCR1/CCR2 axis [63]. Therefore, NPs targeting CAFs can prevent tumor cells growing
in numerous ways.

2.1.4. Exosomes

Exosomes are extracellular vesicles typically ~30 to ~200 nm in diameter and contain-
ing genetic material, proteins, and lipids [64]. They act as powerful signaling molecules
connecting cancer cells and the surrounding components. Exosomes secreted by tumor
cells carry miRNAs to regulate vascular endothelial cells. This phenomenon destroys the
barrier of endothelial cells, and then allows cancer cells to enter the blood vessels, promot-
ing tumor spread and metastasis [65]. Exosomes secreted by leukemia cells can promote
the activation of CAFs. In breast cancer research, exosomes secreted by CAFs promote
the invasion and metastasis of cancer by activating the Wnt-pathway [66]. Astrocytes in
the brain metastatic microenvironment secrete exosomes loading miRNAs, which specifi-
cally downregulate tumor suppressor gene PTEN and lead to metastatic colonization [67].
Cancer exosomes inhibit the cytotoxic of CD4+ T cells, CD8+ T cells, and NK cells [68].
Exosomes also inhibit the differentiation of DCs and MDSCs [69,70]. Exosomes derived
from cancer cells definitely have short-and long-term effects on cancer progress. Treatments
targeting exosomes might be new directions of tumor therapy.

2.1.5. Tumor Vasculature

The regeneration of vasculatures is a very complicated progress in TME. Vascular en-
dothelial cells regulated by the angiogenic factors can affect the migration and proliferation
of tumor. The new vessels formed by adhesion of loosely endothelial cells provide chances
for tumor growth and distant metastasis [71]. A variety of cells and growth factors are
involved in this process, such as vascular cell adhesion molecule-1 (VCAM-1), α(v)β(3)
integrin, VEGF, TGF, platelet-derived growth factor (PDGF), and angiogenin. Among
them, VCAM-1 and α(v)β(3) integrin not only promote the proliferation and differentiation
of endothelial cells but also improve vascular permeability [72,73]. PDGF, angiopoietin,
and TGF secreted by tumor cells can also affect the action of peripheral cells, vascular
maturation, and integrity. In addition, the highly abnormal and dysfunctional system of
tumor blood vessels can also lead to impaired ability of immune effector cells to penetrate
solid tumors. Therefore, the normalization of tumor blood vessels can enhance tissue
perfusion and improve the infiltration of immune effector cells, thus enhancing therapy
effects [74,75].

2.2. Physiological Condition of TME for Imaging and Targeting
2.2.1. Hypoxic Condition and Acid Microenvironment

Normal tissue is powered by mitochondrial oxidative decomposition, while cancer
cells are mostly powered by glycolysis, a reprogrammed way known as the “Warburg
effect” [76]. The majority of tumors are lack of adequate blood supply, and then hypoxic
regions appear, where metabolize glucose into lactic acid through anaerobic glycolysis.
When a large amount of lactic acid accumulates in the tumor cell, the proton pump trans-
ports H+ to the extracellular environment, resulting in an acidic extracellular environment
(pH = 5.6–6.8) [77]. During glycolysis, the hypoxia inducible factor (HIF) can regulate gly-
colysis enzymes (HK1, HK3, TGF-2, et al.) to affect the energy metabolism and proliferation
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of tumor cells [78,79]. Therefore, utilizing the acid environment of the TME to design a
platform acting on HIF-1 could be a new treatment strategy for tumors [80].

2.2.2. Extracellular ATP Content

It is an established notion that extracellular adenosine-5’-triphos-phate (ATP) is one
of the major biochemical constituents of TME [81]. Mitochondria are where ATP is pro-
duced. It is different between normal cells and cancer cells with mitochondrial metabolism.
Although there is little oxygen in cancer cells, in mitochondria, glycolysis is preferential
for providing energy, which is called Warburg effect. The reprogramming metabolism
in cancer is regulated by central regulators of glycolysis such as HIF-1, Myc, p53, and
the PI3K/Akt/mTOR pathways [82]. In tumor tissues, these active pathways promote
glycolysis in hypoxia, promoting mitochondria to produce large amounts of ATP. The sharp
different concentration of ATP contrast between extracellular (<0.4 mM) and intracellular
(1–10 mM) is a characteristic of TME, and the use of ATP can be a practical way for reg-
ulating drug release [83,84]. In addition, tumor cells usually metabolize vigorously, and
once there is a lack of energy, cell damage happens. The damage of plasma membrane is
a recognizable origin of ATP upregulating. Besides the cell injury, the hypoxic-induced
stress of TME is also a strong stimulus for ATP release [85]. The ATP concentration in
TME is remarkably more than those in normal tissues (10–100 nM) [84]. Based on such a
concentration difference, the ATP stimulating response system can be designed to ensure
the drugs reach the tumor site more accurately.

2.2.3. Redox Condition

Many organelles, such as cytosol, mitochondrion, and nucleus, contain very high con-
centrations of glutathione (GSH). In cancer cells, the concentration of GSH is 100–1000 folds
of the normal tissue. Due to the existence of thiol groups, GSH can act as electron donors
(reducing agents) for developing smart NPs [86].

3. Microenvironment-Targeted Nano-Delivery System as a Promising Strategy

The drug therapy for cancer has been unable to exert its maximum effect due to
insufficient orientation, pharmacokinetic obstacles. In order to overcome the shortcomings
of traditional drug delivery methods, a new method, a nano-delivery system, is being
researched. It can bring drugs accurately to the tumor site and prolong the half-life of the
drug in vivo. According to different conditions between TME and normal tissue, NPs are
designed to be new solutions for tumor imaging and treatment (Figure 3). All the works
mentioned were summarized in Table 1 to reflect the latest development of nano-target
strategies applied to TME.
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3.1. Major Composition Mediated Nanoparticles in TME
3.1.1. Nanoparticles Targeting Immune Cells

The immunosuppressive microenvironment is one of the main reasons for the poor
antitumor effect in vivo [87]. For M2 macrophages, the most popular methods are reducing
M2 macrophages, blocking the immune suppressive function of M2 by blocking PD-1/PD-
L1 and the CD47-SIRPα axis [88]. Qian and others designed a fibrin gel capsulate calcium
carbonate NPs used in the surgical wound which would polarize M2-like macrophages
to a M1-like phenotype. The pre-loaded anti-CD47 antibody in this vector further block
the “don’t eat me” signal in cancer cells [89]. Shi et al. utilized precision nanopart icle-
based reactive oxygen species photogeneration to reprogram M2 macrophages to M1
macrophages, then recruited cytotoxic lymphocyte (CTL) and direct memory T-cells to
make the tumoricidal response more effective [90]. Both gold nanoparticles (AuNPs) and
silver nanoparticles (AgNPs) can modulate ROS and reactive nitrogen species (RNS) to
activate inflammatory signaling pathways, which can re-polarize macrophages to M1-like
phenotypes [91]. We built a multifunctional nanoplatform (FA-CuS/DTX@PEI-PpIX-CpG
nanocomposites) for synergistic PDT, PTT, loading DTX to enhance immunotherapy of anti-
PD-L1, and polarizing myeloid-derived suppressor cells (MDSCs) toward M1 phenotype
successfully in breast cancer (Figure 4) [92].

Recently, interaction between the tumor metabolism and immunity has been proved
to be a potential therapeutic strategy. A mannosylated lactoferrin nanoparticulate system
(Man-LF NPs) is developed. It facilitated dual-targeting biomimetic codelivery of shikonin
and JQ1 to target the macrophage marker mannose receptor and LRP-1. JQ1 itself is a
PD-L1 checkpoint blockage that can combine with Man-LF NPs and reduce the generation
of immune cells such as Tregs [93]. Macrophages in TME have also contributed to tumor
diagnosis and localization, Kim et al. made imaging macrophages in tumors possible
towards a pharmacokinetically optimized, 64Cu-labeled polyglucose nanoparticle (Macrin)
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for quantitative positron emission tomography (PET). This technique not only detected the
number of macrophages, but also contributed to the effective image of tumor location [94].
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In general, the expression of receptor tyrosine kinases (RTKs) in cancer cells can
activate the STAT3/5 signaling pathway, which promotes the secretion of TH2 cytokines
and then promotes the survival of CD4+ Foxp3+ Tregs [95,96]. Thus, the sunitinib-targeting
receptor tyrosine kinase drug transferred by nanomaterial has been used to decrease CD4+

Foxp3+ Tregs and MDSCs [97]. Tlyp1 peptide coupled nanoparticles, combined with
anti-CTLA4 immuno-checkpoint inhibitors targeting microenvironments, can also enhance
imatinib’s ability of decrease Tregs by inhibiting the phosphorylation of STAT3 and STAT5
signaling pathways [98]. A CpG self-crosslinked nanoparticles-loaded IR820-conjugated
hydrogel with dual self-fluorescence to exert the combined photothermal-immunotherapy
was designed in a melanoma model. These NPs improve the immune response of adjuvant
through adjusting the quantity of CD8+ T cells, DCs, Tregs, and MDSCs in TME [99].

Stimulator of interferon genes (STING) could enhance tumor immunogenicity, and
researchers found, when packing STING into NPs, that its activity to 2’3’ cyclic guanosine
monophosphate-adenosine monophosphate (cGAMP) enhanced [100]. IDO,TGF-β, IL-10,
and IL-35 also have the abilities to modulate the immune microenvironment [101]. IDO is
a rate-limiting enzyme of human tryptophan metabolic that can oxidize tryptophan into
canine urine. IDO directly inhibits the function of T cells and enhances the immunosuppres-
sant effect of Tregs, thereby mediating the effect of local immune tolerance and promoting
the immune escape of tumors [102,103]. IDO is increasingly incorporated into the nano ther-
apeutics system to regulate the outcome of immunotherapy interventions. In melanoma,
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Cheng and colleagues built a peptide assembling nanoparticle, which concurrently block-
ade immune checkpoints and tryptophan metabolism towards on-demand release of a
short d-peptide antagonist of programmed cell PD-1 and an inhibitor of IDO [104]. Aimed
at TGF-β, Xu et al. silenced TGF-β in microenvironments to solve the problem that the
combined vaccine of tumor antigen (Trp 2 peptide) and adjuvant (CpG oligonucleotide)
has a poor effect on melanoma [105]. Our team constructed CpG capsuled Cu9S5@mSiO2-
PpIX@MnO2 NPs to promote infiltration of CTLs in tumor tissue, and further upregulated
interferon gamma (IFN-γ) to promote immune response [106].

Suppressing the function of immune-tolerant cells and promoting the anti-tumor
effect of cells have been the key points of tumor immunotherapy. Regulation of immune
tolerance in TME combined with nanomaterials can effectively avoid the obstacles caused
by microenvironments for drug entry. Therefore, regulating the function of immune cells
in microenvironments is one of the key tasks of the nanomaterials system.

3.1.2. Nanoparticles Targeting CAF

CAF is the main source of growth factors, chemokines, ECM proteins, and matrix
degrading enzymes in TME. It can produce a variety of growth factors and cytokines to
promote the survival and invasion of tumor cells [107]. Kovacs and colleagues found
that gold-core silver-shell hybrid nanomaterials could reduce the tumor promotion by
attenuating behavior of CAFs [108].

According to the regulation of CAFs of immune cells, Hou et al. developed a na-
noemulsion (NE) formulation to deliver fraxinellone (Frax). This NP was around 145 nm
length, could be taken by CAFs efficiently, and accumulated in the TME. Combining with a
tumor-specific peptide vaccine will enhance tumor-specific T-cell infiltration and activate
death receptors on the tumor cell surface (Figure 5) [109]. Recently, NPs targeting CAFs for
tumor therapy mainly focused on destroying the tumor tissue to promote drug penetration
and reprogramming immune TME. Since CAFs participate in cancer glucose metabolism
immediately, NPs targeting CAFs about decreasing glycolysis of cancer cells remain to
be developed.
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3.1.3. Nanoparticles Targeting ECM

People try to find ways to destruct the structure of ECM. As the most well-known ma-
trix enzyme, MMPs, particularly MMP2 and MMP9, were frequently applied in
NPs [110,111]. Many systems that respond to enzymes such as MMPs are also used
in drug delivery and imaging. Ji et al. utilized pirfenidone (PFD) loaded MRPL (MRPL-
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PFD), a MMP2 responsive peptide-hybrid liposome, to downregulate the components of
ECM, thus increasing the penetration of drugs in pancreatic cancer tissue (Figure 6) [112].
Other enzymes acting on the microenvironment can also degrade the structure of ECM.
Hyaluronidase (HAase) can break down hyaluronan and then enhance the efficacy of
nanoparticle-based PDT. Utilizing HAase and DOX together will also increase cancer
mortality [113–115]. Blocking collagen and integrin signaling for anti-fibrotic therapeutic
strategy can also be considered in future treatment for ECM to improve drug delivery [116].
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different PFD formulations, adapted with permission from [112].

3.1.4. Nanoparticles Targeting Exosomes

As a natural intercellular shuttle of miRNA, exosomes affect a series of physiological
and pathological processes in receptor cells or tissues, and are ideal nano carriers for
nucleic acid targeted delivery in vivo [117]. The antigen presenting function of dendritic
cells was utilized to develop a single membrane vesicle-based vaccine, which would
participate in repressing both melanoma (B16) and Lewis lung carcinoma (LLC) tumor
growth [118]. Utilizing exosomes to load NPs showed perfect biocompatibility. Xiong and
co-workers built NPs together laurate-functionalized Pt (IV) prodrug (Pt(lau)) and human
serum albumin (HSA) with lecithin, capsuled by the exosomes, had a good platinum
chemotherapy efficiency (Figure 7) [119].

Exosomes shed by cancer cells have also been designed on cancer diagnosis. Liu et al.
made exosomes immobilize on magnetic microbeads to produce fluorescent signal. They
qualified the exosomes in plasma samples from breast cancer patients for early diagnosis
of cancer in vitro [120]. Lewis et al. built an in vitro probe screening of bio-membrane
chips, which was composed of the captured exosomes and other extracellular vesicles in
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the plasma, and tested the express of glypican-1 and CD63 to diagnose pancreatic ductal
adenocarcinom in vitro [121].
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Figure 7. (A) Schematic illustration of the Pt(lau)HSA NP-loaded exosome platform (NPs/Rex) for efficient chemotherapy
of breast cancer; (B) biodistribution of DiR, DiR-Pt(lau)HSA NPs, and DiR-NPs/Rex in 4T1 tumor-bearing BALB/c mice;
(C) the volume of orthotopic tumors; (D) typical lung tissues with visualized metastatic nodules (black arrows) and H&E
for metastatic nodules of lungs in each group, adapted with permission from [119].

3.1.5. Nanoparticles Targeting Tumor Vasculature

Using EPR more effectively and enhancing the permeability of vascular have been
widely studied in the latest nano therapeutics [122,123]. There are some reports that
used NO to improve the EPR effect in pancreatic cancer and other diseases with low
vascular permeability [122,124,125]. Other delivery systems like actively targeting VEGF
and α(v)β(3) integrin were also used widely [126]. Integrins play important roles in cell
adhesion and cell signaling, and α(v)β(3) integrin is one type of them that can modulate
angiogenic endothelial cells. Graf et al. described a NP using cyclic pentapeptide c(RGDfK)
to active target α(v)β(3) integrin on cancer cells and tumor neovasculature [127].

To improve the diagnosis of tumor, Youbin and co-workers proposed the
poly(acrylicacid) (PAA)-modified NaLnF4:40Gd/20Yb/2Er nanorods ((Ln = Y, Yb, Lu,
PAA-Ln-NRs) to enhance the shifting of NIR-IIb (a general in vivo fluorescence imag-
ing technology), which successfully imaged the vessels of small tumors (about 4 mm),
metastatic tissue (about 3 mm), and even brain vasculatures (Figure 8) [128]. Cecchini et al.
reported a nanoMIPs against VEGF coupled with quantum dots (QDs) for tumor imaging
in melanoma [129]. In cholangiocarcinoma, α(v)β(3) integrin also combined with aggre-
gation induced emission (AIE) for image-guided PDT, and presented a good antitumor
response [130].
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3.1.6. Nanoparticles Targeting Multiconstituents

In addition to targeting single constituents, some NPs can regulate multiple barriers
and have also been simultaneously designed for tumor therapies. Targeting tumor cells
and immune cells simultaneously can effectively reduce the immune escape phenomenon
of TME. Shi et al. designed a versatile calcium ion nanogenerator. The degradation
and release of Ca2 + by nanoparticles can promote the maturation of DCs by promoting
autophagy of DCs, and it can promote tumor cells to produce damage-associated molecular
patterns (DAMPs), further maturing DCs and the enhanced infiltration of CTLs at the
same time [131]. In addition, researchers have combined exosomes with immunotherapy.
Xie’s team synthesized responsive exosome nano-bioconjugates. They modified exosomes
derived from M1 macrophages with antibodies of CD47 and SIRPα. The broken benzoic-
imine bonds are cleaved to release antibodies of SIRPα and CD47 in the acidic TME
abolished the “don’t eat me” signal between tumor cell and macrophages [132]. The native
M1 exosomes reprogram the M2 macrophages to M1 effectively at the same time [132].

3.2. Physiological Condition Mediated Nanoparticles in TME
3.2.1. Hypoxic Stimulus

The hypoxic condition in tumor microenvironment is considered to play an important
role in malignancy and progression of cancer. Hypoxic areas of tumors also bring obstacles
to radiation therapy due to the oxygen free radicals [133]. Utilizing this characteristic, the
low oxygen response nano-delivery systems were produced.
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The approaches developed thus far can be classified into three categories: countering
hypoxia, exploiting hypoxia, and disregarding hypoxia [134]. (i) Directly or indirectly
elevating O2 concentration to counter hypoxia is a promising way to improve the effi-
ciency of tumor therapy, especially for photodynamic therapy (PDT) and radiation therapy
(RT). PDT generates reactive oxygen species (ROS) by using light-excited photosensitizer
(PS), resulting in cell apoptosis and microvascular damage [125]. Red blood cells (RBCs)
carrying hemoglobin molecules are primary oxygen sources in our body. Because the
efficacy of PDT is deeply oxygen-dependent, a technique named RBC-facilitated PDT was
developed to improve hypoxia conditions in tumors. Wei et al. showed a nanocapsule
that encapsulated photosensitizers and tethered the conjugates onto RBC surface. By using
biotin-neutravidin-mediated coupling, they conjugated ZnF16Pc (photosensitizer)-loaded
ferritins onto each RBC [135]. This new structure, which could overcome low oxygen condi-
tions, showed efficient 1O2 production to overcome low oxygen conditions and enhanced
PDT capacity [135]. For RT, an artificial nanoscale RBC will remarkably enhance the treat-
ment efficacy as well. For example, an artificial blood substitute perfluorocarbon (PFC) was
encapsulated with biocompatible poly(d,l-lactide-co-glycolide) (PLGA) and then further
coated with a red-blood-cell membrane (RBCM), showing efficient loading of oxygen and
significantly enhanced treatment efficiency during RT [136]. With increasing production of
H2O2 in cancer cells, NPs converting endogenous H2O2 to toxic ROS and decomposing
endogenous H2O2 to O2 were rapidly developed. Noble metal nanoparticles like Mn, Au,
Pt, and Ir are well known for their catalytic performances in various fields [137]. MnO2 is a
common material to enhance PDT treatment and imaging. Mn2+ could react with H2O2
in the tumor, then downregulate the expression of HIF-1 to increase oxygen content and
optimize MRI imaging [138,139]. A nanoplatform based on mesoporous polydopamine
(MPDA) modified with Pt also produces O2 by decomposing overexpressed H2O2 in the
tumor. Meanwhile, the existence of Pt can act as a nano-factory to provide support for
PDT (Figure 9) [140]. (ii) Taking advantage of the deficiency of oxygen molecules is a
new approach for drug release and PDT. Yin et al. developed a novel amphiphilic block
copolymer radiosensitizers. After optimizing the ratios of carboxyl and metronidazole
(MN) groups, PEG-b-P(LG-g-MN) micelles could be used to encapsulate doxorubicin
(DOX@HMs) efficiently [141]. Hypoxia-responsive structural transformation of MN into
hydrophilic aminoimidazole triggers fast DOX release from DOX@HMs, which acted as
high-efficiency radiosensitizers and hypoxia-responsive DOX nanocarriers [141]. Some
drugs that are selectively toxic to hypoxic cells like Tirapazamine (TPZ) were designed to
combine with oxygen-dependent PDT to enhance bioreductive therapy. Shao’s group devel-
oped a core–shell upconversion nanoparticle@porphyrinic MOFs (UCSs) for combinational
therapy against hypoxic tumors [142]. TPZ was encapsulated in nanopores of the MOF
shell of the heterostructures (TPZ/UCSs), which enables the near-infrared light-triggered
production of cytotoxic reactive oxygen species [142]. Furthermore, with the combination
of PD-L1, this nanoplatform recruited specific tumor infiltration of cytotoxic T cells and
inhibited the metastasis of the tumor as well. Other methods like eliminating the oxygen
in the tumor, inhibiting the growth of tumor vessels, and stopping the nutrient delivery
to starve the tumor cells still have many challenges [143,144]. (iii) Using new anticancer
modalities to disregard hypoxia conditions becomes another innovative antitumor strategy.
PDT with diminished O2 dependence will effectively overcome its strong oxygen depen-
dence and limitation of treating deep tumors. It has been reported that fractional light
delivery may be a superior way to enhance PDT effects due to the reduction of short-term
oxygen consumption during PDT [145]. Since the generation of oxygen-irrelevant free
radicals is oxygen-independent, and the exploration of UCNP is an inner light source to
activate most organic photosensitizers (PSs) to create cytotoxic 1O2, researchers discovered
that the Ru complex displayed excellent type I PDT activity [142,146]. Due to its special
Fenton reaction, Fe nanoparticles can produce reactive •OH species with endogenous
H2O2 (Fe2+ + H2O2 → Fe3+ + •OH + OH−) and produce cytotoxic effects without external
energy through chemotherapeutic therapy (CDT). Yu et al. fabricated a core–shell struc-
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tured iron-based NPs (Fe5C2@Fe3O4) to release ferrous ions in acidic environments to
disproportionate H2O2 into •OH radicals, and its high magnetization is favorable for both
magnetic targeting and T2-weighted MRI [147]. In addition, gold nanospheres, graphene
oxide, polydopamine (PDA), and other materials have been widely used as PTT reagents
and nano carriers to deliver PDT reagents, so as to overcome the therapeutic limitations of
PDT [148–150].
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Figure 9. (A) Schematic illustration of the synthesis of MPDA-Pt-BSA/ Ce6/DOX (M-Pt-BCD); (B) schematic illustration of
the application of M-Pt-BCD for enhanced- PDT and synergistic therapy; (C) O2 generation of H2O2 blank, M-BCD and
M-Pt-BCD; (D) 1O2 production efficiency of H2O, H2O2, M-BCD and M-Pt-BCD; (E) confocal microscopic images of cellular
1O2 levels detected by DCFH-DA staining upon 650 nm irradiation; (F) tumor growth curves, reproduced by permission of
The Royal Society of Chemistry [140].

3.2.2. pH Response

pH responsive nano-vectors are one of the typical carriers for TME. Chemical bond
response to pH is one of the most widely used strategies in pH responsive nano delivery
systems. The most common pH sensitive bonds include hydrazone bond, imine bond,
oxime bond, amide bond, benzoic-imine bond, orthoesters, polyacetals, and ketals [151,152].
These chemical bonds break in acidic environments to degrade the carrier, and then
increase the uptake of tumor cells or accelerate drug release. When it comes to the design
of pH-sensitive materials, besides pH sensitive chemical bonds, other main strategies
are conformational change, protonation, and charge reversal with pH change [151]. For
example, Chen’s team developed a DNA-based stimulus-responsive drug delivery system
precisely responding to pH variations in the range of 5.0–7.0. On the face of the gold
nanoparticles, one DNA strand was an acti-MUC1 aptamer targeting tumor membrane, the
other DNA strand was switchable DNA, which has a linear conformation under neutral or
alkaline conditions and self-folds into a triplex under acidic conditions [153].
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In cells, nano-switches can react with endosomes and lysosomes and switch to triplex
in lysosomes, so as to achieve the goal of accurately drug release (Figure 10) [153]. Nanocar-
riers involved in protonation/deprotonation are mainly nano liposomes, peptides, and
polymers. The phospholipid components in liposomes are usually destabilized under
acidic conditions, so as to deliver the contents of liposomes to cells. In mouse cancer
models, Guangna et al. combined platelet membrane with the functionalized synthetic
liposome; because of its camouflage based on the platelet membrane, this platform en-
hanced tumor affinity and released DOX in acidic microenvironment more selectively and
efficiently [154]. The anionic/cationic polymers with different groups deform various
nanocarriers through the change of their hydrophilicity, which lead to drug release [155].
Inorganic salts such as MnO2, CaP, and CaCO3 are widely used for pH response NPs
because of their acid solubility [156–158]. Ma et al. designed a pH-sensitive dye linked
peptide substrate of MMP-9 with Fe3O4 nanoparticles, establishing a Forster resonance
energy transfer (FRET) system to detect the invasion and metastasis of tumor by detecting
the overexpression of MMP9 [159]. A pH responsive magnetic nanoparticle can combine
magnetic hyperthermia with drug delivery dependent on magnetic stimulation, achieving
the purpose of targeting TME and tumor treatment at the same time [160].
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Figure 10. (A) Schematic illustration of the DNA-based stimulus-responsive drug delivery system; (B) pH-responsive
regulation of the nanoswitch and drug release; (C) schematic illustration of DNA strands and the multidrug loaded on the
surface of AuNPs; (D) intracellular pH-responsive multidrug delivery and release, adapted with permission from [153].

3.2.3. ATP Response

Since the concentration of ATP in tumor cells is much higher than extracellular envi-
ronments and ATP is involved in many biochemical reactions in cells, NPs response to ATP
were widely developed. ATP sensitive NPs can release drugs without the help of external
forces. Zhenqi et al. developed nano ZIF-90 self-assembled from zinc ions and imidazole-2-
carboxaldehyde (2-ICA) to deliver DOX. Because the coordination between ATP and Zn2+

is much stronger than that between imidazole and Zn2+, nano ZIF-90 can be decomposed
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and respond to ATP [161]. Graphene oxide (GO) has been shown to bind single stranded
DNA. When the template DNA contains ATP binding domain and reached ATP specific
recognition, it could be circularized upon proximity ligation after hybridizing to linker
DNA on the surface of GO [162]. Then, rolling circle amplification was initiated from the
3′-end of the template DNA, and the elongated sequence was hybridized with thousands
of signal DNA (conjugated with Cy3), so as to amplify the template DNA, generate fluo-
rescent signals, and achieve the purpose of tumor monitoring [162]. Yuan et al. exploited
a ATP binding natural protein, GroEL (a bacterial chaperonin) loading DOX, once in the
presence of a critical concentration of ATP in tumor site, it releases drugs [163]. In addition
to using ATP as a switch for drug release, another way in which ATP participates is to
regulate its expression in cells with nanosystems. Xiao’s team exploited a multifunctional
theranostic platform combing CDT with limotherapy. While enhancing the CDT effect to
induce apoptosis of cancer cells, nano Se and Mn2+ ions inhibited the production of ATP,
which made cancer cells starve and further killed tumor cells, monitoring the treatment of
tumors by MRI simultaneously [164].

3.2.4. Reduction Response

In addition to GSH, tumor cells also contain thioprotein, Fe2+, cysteine, and other
reductive substances, and the difference of GSH concentration between tumor cells and
TME makes a reduction-responsive drug carrier come true [165,166]. GSH/glutathione
disulfide (GSSG) is one of the major redox couples in cells, and adding disulfide bonds
to drug carriers is one of the most commonly used methods to build GSH responsive
drug carriers. There are many forms of GSH-responsive nano-vehicles (like micelles,
nanogels, nanoparticles), so as to improve the drug release successfully. For example,
in order to solve the problems of drug resistance caused by cancer stem cells (CSC),
Rubone (RUB, a miR-34 activator for targeting CSCs) and DTX were utilized to treat taxane
resistant prostate patients. A self-assembled DTX/p-RUB micelles showed good stability
in vitro and could be accurately delivered to tumor cells though the EPR effect. After the
tumor cells endocytosed the micelles, the micelles expanded and disintegrated due to
the protonation of diisopropylaminoethanol (DIPAE) and GSH induced disulfide bond
cleavage of acid endocytosis vesicles, which led to the rapid release of DTX and RUB.
The release of RUB upregulated miR-34a and regulated the expression of chemoresistance
related proteins, thus making tumor cells sensitive to DTX, significantly inhibiting the
progress of drug resistance [167]. Ling and colleagues constructed a self-assembled NP
platform composed of amphiphilic lipid polyethylene glycol (PEG), and it can effectively
deliver Pt (IV) precursor drugs through the elimination of GSH [168].

Some metal oxides like MnO2 also have the potential of GSH response. MnO2 reacts
with GSH in cells to form glutathione disulfide and Mn 2+, which leads to the consumption
of GSH and enhancement of CDT. In addition to the MRI features of Mn2+, MRI monitored
chemo- chemical combination therapy is realized [167].

3.2.5. Enzyme Response

Many enzymes like MMPs regulate the function of cellular components and take part
in tumor progression. From this prospect, the presence of these abnormal enzymes gives
the chance for researchers to build a sensitive system for drug release. The presence of
NO can activate endogenous MMP1 and MMP2, and researchers have developed an MSN
loaded with a doxorubicin (DOX) and NO donor to enhance the antitumor effect [169]. In
addition, PLGLAG peptide and gelatin are both main target proteins of MMP9 and MMP2,
which can be widely used to MMP responsive NPs [170–172].

According to the Warburg effect, the proliferation of tumor cells mainly depends on
aerobic glycolysis, so tumor cells are more sensitive to the change of glucose concentra-
tion. Glucose oxidase (GOx), an endogenous oxidoreductase, reacts with glucose and
O2 in cells then produce gluconic acid and H2O2, which can inhibit the proliferation
of cancer cells through starvation therapy. In addition, H2O2 can be transformed into



Molecules 2021, 26, 2703 17 of 29

•OH free radical to kill cancer cells and enhance the oxidative stress response of can-
cer cells [173]. Through GOx, starvation therapy can together with chemotherapy, CDT,
PDT, or immunotherapy to explore new strategies for cancer treatment. For example,
Mengyu et al. constructed a multifunctional cascade bioreactor based on hollow meso-
porous Cu2MoS4 (CMS) loaded with GOx for synergetic cancer therapy by CDT/starvation
therapy/phototherapy/immunotherapy [174]. First of all, CMS containing multivalent
elements (Cu1+/2+, Mo4+/6+) showed Fenton like activity, which could produce · OH and
reduce GSH, thus reducing the antioxidant capacity of tumor. Secondly, in hypoxic TME
conditions, hydrogen peroxide like CMS can react with H2O2 to generate O2, activate the
effect of GOx, start starvation therapy, and regenerate H2O2. Finally, the regenerated H2O2
can participate in Fenton like reactions to realize GOx-catalysis-enhanced CDT. At the same
time, because of the excellent photothermal conversion efficiency under 1064 nm laser
irradiation, CMS killed tumor cells significantly in PDT. More importantly, the PEGylated
CMS@GOx-based synergistic therapy combined with anti-CTLA4 can stimulate a robust
immune response [174].

3.2.6. Multiply Response

A mesoporous silica-coated gold cube-in-cubes core/shell nanocomposites loading
DOX was combined with ArgGlyAsp (RGD) peptide to achieve a platform that can de-
liver drugs and produce O2 in situ. This nano platform simultaneously enhanced pho-
todynamic efficacy, achieving heat- and pH-sensitive drug release and location imaging
(Figure 11) [175]. Lan et al. decorated an emerging class of highly tunable two-dimensional
material: cationic Hf12-Ru nanoscale metal-organic frameworks (Hf12-Ru nMOF), then
functionalized with pH-sensitive fluorescein isothiocyanate and targeting mitochondria,
utilized the pH and quantities of O2 in the mitochondria to image living cells [176]. Yi
and colleagues developed a redox/ATP switchable theranostic NPs. They conjugated a
fluorescent probe (FAM) and a quencher (BHQ-1) to ATP, complexed with a GSH-sensitive
cationic polymer. This smart NPs loading fluorescent probes can monitor drug release
in vivo [177].
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Figure 11. (A) Schematic illustration of the synthesis process for the versatile RGD-
CCmMC/DOX nanovehicles; (B) schematic illustration of the therapeutic mechanism of the RGD-
CCmMC/DOX nanoplatforms to enhance the overall anticancer efficiency of triple-combination
photodynamic/photothermal/chemo-therapy in a solid tumor; (C) CLSM images of 4T1 cells treated
with different formulations under laser irradiation. The production of intracellular ROS and O2

generation were measured by the green fluorescence intensity of DCF; (D) fluorescence microscopy
images of 4T1 cells with various treatments using Calcein AM/PI staining, adapted with permission
from [175].
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Table 1. Nanoparticle approaches for targeting TME in this review.

Target Loading Drugs Nanocomposites and Outcomes Animal Models/Cell Lines Ref.

1. Physiological condition
Hypoxia response - P-FRT-RBCs to enhance PDT, show efficient 1O2 production U87MG-bearing subcutaneous models [135]

- PFC@PLGA-RBCM NPs to enhance RT 4T1 tumor-bearing mice model [136]
acriflavine ROS responsive ACF@MnO2 NPs to guide RT and MRI CT26 -bearing mice model [138]
DOX MPDA-Pt-BSA/Ce6/DOX combined PDT and PTT MDA-MB-231 tumor -bearing mice model [140]
DOX DOX@HMs to enhance chemoradiotherapy 4T1 tumor-bearing mice model [141]

TPZ and a-PD-L1 TPZ/UCSs combined with PDT to activate chemotherapy and
immunotherapy CT26-bearing mice model [142]

coumarin coumarin-modified cyclometalated Ru (II) complexes for better
PDT effect HeLa cell-bearing mice model [146]

- PEG/Fe5C2@Fe3O4 NPs with magnetic targeting for produce reactive
•OH species and MRI imaging 4T1 tumor-bearing mice model [147]

pH response DOX, cisplatin, and
asDNA

AuNPs with DNA bands, release three drugs due to nanoswitch changes
conformation in acidic condition MCF-7, Hela, L02 cells/Balb/c nude mice model [153]

DOX pH-sensitive PEOz-liposome-dox NPs for drug delivery CT26 and 4T1 -bearing mice model [154]

- ANNA/ MMP-9/PEGylated Fe3O4 particle for MR imaging to guide
tumor invasion in vivo BALB/c nude mice bearing human colon cancer [159]

ATP response DOX AP-ZIF-90@DOX, dual responsive to high ATP and low pH condition to
release DOX in tumor cells MDA-MB-231 tumor bearing mouse [161]

DOX DNA/MSN/FA/DOX NPs for drug release and fluorescence imaging HeLa cells [162]

- MCDION-Se with CDT, inhibit the generation of ATP, thus starving
cancer cells HeLa and HK-2 cells/BALB/C nude mice model [164]

Reduction response DTX and RUB DTX/p-RUB micelles, regulate the expression of chemoresistance DU145-TXR and PC3-TXR cells/mice model [167]

Pt prodrug self-assembled PEG/Pt (IV) NP through GSH-exhausting effect to
delivery safer and more effective A2780cis tumor-bearing athymic nude mice [168]

Enzyme response DOX MSN loaded with DOX and NO donor (S-nitrosothiol) to create
DN@MSN, activate MMP and degrade collagen in the tumor ECM 4T1 tumor-bearing mice model [169]

anti-CTLA4 PEGylated Cu2MoS4 (CMS)@GOx, promote CDT, PDT, PTT and
starvation therapy HeLa cell-bearing mice model [174]

Multiply response DOX RGD-CCmMC/DOX nanovehicles achieve heat- and pH-sensitive drug
release with precise control to specific tumor site 4T1 tumor-bearing mice model [175]

- Hf12-Ru nMOF for ratiometric pH and oxygen sensing in mitochondria
for monitoring pH and O2 in live cells CT26 cell line [154]

DOX FAM-ATP/BHQ-1-cDNA@DOX NPs,can monitor drug release in vivo HeLa, HepG2, or MCF-7 cell line [177]
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Table 1. Cont.

Target Loading Drugs Nanocomposites and Outcomes Animal Models/Cell Lines Ref.

2. Immune cells

Macrophages anti-CD47 antibody aCD47@CaCO3 nanoparticles encapsulated in fibrin gel to scavenge H+

in the surgical wound, polarize TAM Female C57BL/6 mice; B16F10 cell line [89]

- MAN-PLGA and MAN-PLGA-N NPs affected by acidic pH, disrupt the
endosome/lysosome membrane help rise ROS and M1 macrophages BALB/C mice; 4T1, B16, RAW264.7 cell lines [90]

- AuNPs and AgNPs modulate the reactive ROS and RNS production,
downregulate TNF-α and IL-10 murine fibrosarcoma model [91]

DTX FA-CuS/DTX@PEI-PpIX- CpG nanocomposites cooperated with PDT
and PTT, enhance immunotherapy successfully 4T1-tumor-bearing mice model [92]

shikonin and JQ1
Man-LF NPs targeting mannose receptor and LRP-1 expressed on cancer
cells and TAMs, inducing immune cell death, repressing glucose
metabolism and repolarizing TAMs

CT26-tumor-bearing mice model [93]

-
64Cu-labeled polyglucose nanoparticle (Macrin) for PET can image the
macrophages in tumor, to evaluate TAM-targeted therapy

KP-tumor bearing lungs-C57BL/6
mice,4T1-bearing-BALB/c mice [94]

Tregs and MDSCs sunitinib
polymeric micelle nano-delivery system (SUNb-PM) to increase cytotoxic
T-cell infiltration and decrease the percentage of MDSCs and Tregs in
the TME

C57BL/6 mice bearing B16F10 tumors [97]

Tregs imatinib tLyp1 peptide-modified hybrid NPs, downregulate Tregs suppression
and elevate intratumoral CD8+ T cells C57BL/6 mice bearing B16/BL6 tumors [98]

-
CpG NPs/IR820-hydrogel, combined photothermal-immunotherapy by
the dual fluorescence imaging method without additional fluorescent
labeling

BALB/c mice, B16 cell line [99]

Other immune molecules - NLG919@DEAP-DPPA-1 NPs, concurrent blockade of immune
checkpoints and tryptophan metabolism

B16-F10 bearing mice model [104]

siRNA LPH NP delivery TGF-β siRNA, increase tumor infiltrating CD8+ T cells
and decrease Tregs C57BL/6mice, B16F10 melanoma cell [105]

- CSPM@CpG and synergistic PTT/PDT/immunotherapy 4T1-tumor-bearing mice model [106]
3. CAF

- Au@Ag NP, attenuate the tumor cell-promoting behavior of CAFs NIH/3T3, MRC-5 fibroblast cells [108]
fraxinelloneand
vaccine

nanoemulsion deliver fraxinellone and tumor-specific peptide vaccine,
enhance anti-fibrosis ability and tumor-specific T-cell infiltration

Famale C57BL/6 mice, Murine BRAF-mutant
melanoma cell line BPD6 [109]

4. ECM

pirfenidone MRPL-PFD, downregulate ECM levels and enhance penetration of
therapeutic drugs

Mia-paca-2 co-implanted tumor-bearing mice
model [112]
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Table 1. Cont.

Target Loading Drugs Nanocomposites and Outcomes Animal Models/Cell Lines Ref.

5. Exosomes

Pt prodrug exosome capsule Pt(lau)-HSA-lecithin NPs develop chemotherapy for
breast cancer 4T1 tumor bearing lung metastasis mice model [119]

-
AC electrokinetic direct immunoassay procedure permits specific
identification and quantification of target biomarkers within as little as 30
min total time

Blood samples from patients [120]

- magnetic beads conjugated with CD63 antibody for early diagnosis of
cancer exosome MDA-MB-231 cell line [121]

6. Vasculature

cisplatin prodrug cyclic pentapeptide and Pt (IV) loaded PLGA- PEG NPs targetingα(v)β(3)
integrin were more efficacious and better tolerated Female nude mice, DU145, MCF-7 cell line [127]

-
poly (acrylic acid) (PAA)-modified NaLnF4:40Gd/20Yb/2Er nanorods,
for in vivo optical-guided tumor vessel/metastasis and noninvasive
brain vascular imaging

LLC tumor bearing mice model [128]

- anti-hVEGF molecularly imprinted polymer nanoparticles coupled with
quantum dots for cancer imaging WM-266 hVEGF(+) and A-375 hVEGF(−) model [129]

- aggregation-induced emission (AIE) photosensitizer to fabricate integrin
α(v)β(3) for image-guided and PDT Nude mice, QBC939, L-O2, and HK-2 cells [130]

7. Multiconstituents - Ca2+ in NPs can promote the maturation of DCs and release DAMPs
from tumor cell to enhance infiltration of CTLs

[131]

anti-CD47 and
anti-SIRPα

exosomes NPs from M1 macrophages stopped SIRPα—CD47 axis in the
acidic TME abolished the “don’t eat me” signal between tumor cell and
macrophages and reprogram the M2 macrophages to M1 type

4T1 tumor-bearing BALB/c mice [132]
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4. Conclusions and Outlook

Traditional cancer diagnosis, chemotherapy, radiotherapy, surgery, and other treat-
ments have kept the high mortality rate of cancer patients, and this led us to develop
new strategies with more accurate diagnoses and more effective treatments. Using NPs
to treat cancers is an emerging approach. In addition to targeting tumors themselves,
utilizing TME and physicochemical properties to treat and orientate tumors have been a
great inspiration and challenge for the development of nanoparticles. More evidence is
needed for the clinical application of NPs, and here we summarize current results and
several challenges of NPs.

The special conditions of the tumor microenvironment give us superior delivery
conditions. The immunosuppressed environment of tumor causes “immune escape” and
serves as a good direction for the treatment of tumors. The extracellular matrix, enzymes,
and inflammatory factors also provide promising therapeutic targets. The physiological
features such as hypoxia, acidic microenvironment, and abundant angiogenesis also give
NPs good access conditions to reach tumor site and release drugs.

How to use the particular microenvironment of tumor to design delivered nanoparti-
cles is a big hurdle. A question that remains to be solved is how to deliver drugs to tumor
tissues more efficiently and specifically. PEG and zwitterionic materials can effectively
reduce the blood clearance rate. In order to improve the biocompatibility, it is also a
breakthrough for people to use the biological membranes to cover the material. According
to the EPR effect and the abundance of blood vessels in tumors, drugs will be delivered to
tumor tissue precisely, hence improving therapeutic efficiency for tumors. However, there
is a huge difference between the internal environment of human beings and that of animal
models, and how to reduce the side effects of materials and systems is what we need to
work on. Clinical trials on nanoparticles are yet to be developed, and we should make
more efforts to develop safe and efficient therapy strategies.
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Abbreviations

Abbreviation Full terms
TME Tumor microenvironment
ECM Extracellular matrix
NPs Nanoparticles
EPR Enhanced permeation and retention
MSNs Mesoporous silica nanoparticles
MNPs Magnetic nanoparticles
GNPs Gold nanoparticles
CAFs Cancer associated fibroblasts
T cell T lymphocyte
B cell B lymphocyte
ROS Reactive oxygen species
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NK Natural killer
DCs Dendritic cells
SIRPα Signaling regulatory protein α

Tregs Regulatory T cells
TAMs Tumor associated macrophages
TNF-α Tumor necrosis factor-α-T
IL Interleukin
CTLA-4 Cytotoxic T-lymphocyte-associated antigen-4
CCL Chemokine ligand
CCR Chemokine recepter
MDSCs Myeloid-derived suppressor cells
VEGF Vascular endothelial growth factor
EGF Epidermal growth factor
TGF-β Transforming growth factor-β
MMP Matrix metalloproteinase
SDF1 Stromal cell- derived factor 1
MCP-1 Monocyte chemotactic protein-1
VCAM-1 Vascular cell adhesion molecule-1
PDGF Platelet-derived growth factor
DAMPs produce damage-associated molecular patterns
HIF Hypoxia inducible factor
ATP Adenosine-5’-triphos-phate
GSH Glutathione
MPDA Mesoporous polydopamine
FRET Forster resonance energy transfer
ssDNA Single-stranded DNA
GSSG GSH/glutathione disulfide
CSC Cancer stem cells
PEG polyethylene glycol
DOX Doxorubicin
CTL Cytotoxic lymphocyte
AuNPs Gold nanoparticles
AgNPs Silver nanoparticles
RNS Reactive nitrogen species
PTT Photothermal therapy
PDT Photodynamic therapy
DTX Docetaxel
ROS Reactive oxygen species
Man-LF NPs Mannosylated lactoferrin nanoparticulate system
cGAMP Cyclic guanosine monophosphate-adenosine monophosphate
STING Stimulator of interferon genes
PD-1 Programmed cell death 1
PD-L1 Programmed cell death ligand 1
IDO Indole-amine-2,3-dioxygenase
NE Nanoemulsion
PFD Pirfenidone
LLC Lewis lung carcinoma
HSA Human serum albumin
QDs Quantum dots
ACF Acriflavine
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