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with microbial profiling leads to 
overestimated stochasticity 
inference in community 
assembly
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Revealing the mechanisms governing the complex community assembly over 

space and time is a central issue in ecology. Null models have been developed 

to quantitatively disentangle the relative importance of deterministic vs. 

stochastic processes in structuring the compositional variations of biological 

communities. Similar approaches have been recently extended to the field 

of microbial ecology. However, the profiling of highly diverse biological 

communities (e.g., microbial communities) is severely influenced by 

random sampling issues, leading to undersampled community profiles and 

overestimated β-diversity, which may further affect stochasticity inference 

in community assembly. By implementing simulated datasets, this study 

demonstrate that microbial stochasticity inference is also affected due to 

random sampling issues associated with microbial profiling. The effects on 

microbial stochasticity inference for the whole community and the abundant 

subcommunities were different using different randomization methods in 

generating null communities. The stochasticity of rare subcommunities, 

however, was persistently overestimated irrespective of which randomization 

method was used. Comparatively, the stochastic ratio approach was more 

sensitive to random sampling issues, whereas the Raup–Crick metric was 

more affected by randomization methods. As more studies begin to focus 

on the mechanisms governing abundant and rare subcommunities, we urge 

cautions be taken for microbial stochasticity inference based on β-diversity, 

especially for rare subcommunities. Randomization methods to generate null 

communities shall also be carefully selected. When necessary, the cutoff used 

for judging the relative importance of deterministic vs. stochastic processes 

shall be redefined.
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Introduction

Revealing the mechanisms governing the complex community 
assembly over space and time is a central issue in ecology. Two 
distinct types of theories, including the niche theory and the 
neutral theory (Vandermeer, 1972; Hubbell, 2001), have been 
developed to explain the compositional variations of biological 
communities. Historically, the niche theory has gained great 
success in explaining the dynamic changes in community 
composition in various ecosystems (Harpole and Tilman, 2007; 
O'Malley, 2007; Holt, 2009; Kylafis and Loreau, 2011). However, 
the existence of highly diverse ecosystems such as rainforest, in 
which many organisms coexist in a same ecological niche 
(Hubbell, 1979; Scheffer and van Nes, 2006), challenges the throne 
of niche theory in community ecology. To solve such issues, 
Hubbell (2001, 2011) proposed the neutral theory, by which many 
challenges in community ecology can be well resolved. Until now, 
a general consensus has been reached by ecologists that both 
deterministic (niche theory) and stochastic (neutral theory) 
processes shape the assembly of biological communities, but their 
relative importance may differ in different ecosystems (Dumbrell 
et al., 2010; Ofiţeru et al., 2010; Chase and Myers, 2011; Stegen 
et al., 2012; Fisher and Mehta, 2014). Interestingly, recent studies 
show that sampling scale could be an important factor affecting 
the relative importance inference of determinism vs. stochasticism 
in shaping community assembly (Chase, 2014; Correa-Metrio 
et al., 2014).

Similar issues have been recently recurred in microbial 
community ecology. Over the last decade, our understanding 
regarding the complex microbial community assembly has been 
revisited. For many years, the niche theory has dominated the field 
with studies mainly focusing on environmental factors that 
structure the diversity and composition of microbial communities 
(Fierer and Jackson, 2006; Martiny et al., 2006; Lozupone and 
Knight, 2007; Fierer et al., 2009; Fuhrman, 2009; Caporaso et al., 
2011; Freitas et al., 2012; Thompson et al., 2017; Oliverio et al., 
2020). Such efforts can date back as early as to 1930s when Baas 
Becking proposed the famous hypothesis “Everything is 
everywhere, but, the environment selects” (Baas-Becking, 1934; 
Wit and Bouvier, 2006). Important progresses have been made 
toward our understanding of the relationship between 
environmental factors and microbial communities. For instance, 
pH and temperature are found as important factors shaping the 
diversity and composition of soil microbial communities at large 
scales (Griffiths et al., 2011; Shen et al., 2013; Sunagawa et al., 
2015; Tu et al., 2016; Zhou et al., 2016; Jiao and Lu, 2020; Liang 
et al., 2020; Xu et al., 2020). Recent studies also demonstrate that 
both deterministic and stochastic processes play critical roles in 
structuring the immense microbe world (Zhou et al., 2014; Dini-
Andreote et al., 2015; Xue et al., 2018; Nyirabuhoro et al., 2020), 
and the question to resolve is which process is relatively more 
important (Antwis et  al., 2017; Zhou and Ning, 2017). More 
recently, studies show that organism size (Farjalla et al., 2012; Wu 
et al., 2018; Luan et al., 2020) and spatial scale (Shi et al., 2018; 

Zhang et  al., 2020b; Song et  al., 2022) are also critical factors 
influencing the relative importance of deterministic and stochastic 
processes in structuring microbial communities.

Microbial communities are substantially different from 
microbial communities regarding the diversity and the role of 
rare taxa. Typical microbial communities are composed by a 
small set of abundant taxa and an extremely long tail of rare 
taxa (Lynch and Neufeld, 2015). The abundant subcommunity 
usually occupies < 20% of the total richness, but comprises 
> 80% in relative abundance (Sogin et  al., 2006; Lynch and 
Neufeld, 2015; Zhang et al., 2020a). Notably, studies suggest that 
the abundant taxa are usually abundant, whereas the rare taxa 
are persistently rare (Galand et al., 2009). Such scenario also 
holds true when looking at more systematic microbial 
community data generated by the Earth Microbiome Project 
(EMP; Gilbert et al., 2014), the Human Microbiome Project 
(HMP; Turnbaugh et  al., 2007), and the TARA Oceans 
Expedition (Pesant et  al., 2015). Although low in relative 
abundance, recent studies suggest that the rare subcommunities 
execute nonnegligible ecosystem functions in the environment 
(Lyons and Schwartz, 2001; Lyons et al., 2005; Mouillot et al., 
2013). For such reasons, efforts have been made to disentangle 
the underlying ecological mechanisms structuring rare 
subcommunities (Jia et al., 2018; Mo et al., 2018; Zhang et al., 
2018; Jiao and Lu, 2020). Although carried out in different 
ecosystems, these studies suggest that the abundant and rare 
subcommunities are structured by different mechanisms (Jia 
et  al., 2018). For instance, the rare subcommunities in 
subtropical ecosystems are more structured by stochastic 
processes than abundant subcommunities (Mo et al., 2018; Xue 
et al., 2018). Similar patterns are also observed for microbial 
communities in oil-contaminated soils (Jiao et al., 2017). While 
in the Qinghai-Tibet Plateau wetland ecosystem, it is found that 
variable selection (deterministic process) governs the 
community assembly of rare bacteria, whereas dispersal 
limitation (stochastic process) dominates community assembly 
of abundant bacteria (Wan et al., 2021).

Notably, the profiling of microbial communities is severely 
affected by random sampling issues, even using high-throughput 
sequencing approaches (Zhou et al., 2011, 2013; Zhan et al., 2014b; 
Tu, 2020). Random sampling issues are associated with each step 
the microbial communities are profiled, including sample 
collection, DNA extraction, library construction, amplification, 
sequencing, and subsequent rarefaction to a same sequencing 
depth (SeqD). This is mainly caused by the tiny size and high 
diversity of microbial communities in nature, as well as the 
limitations of current technologies that complete capturing every 
single microorganism is not feasible. As a result, only a small 
portion of the microorganisms in the collected samples are 
analyzed, leading to undersampled microbial profiles. Specifically, 
each gram of soil contains as high as 104 prokaryotic species and 
108 organisms (Whitman et al., 1998; Torsvik and Øvreås, 2002; 
Daniel, 2005), while < 100,000 sequences are usually captured for 
each sample. This number goes much lower after data processing 
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such as quality control and random subsampling/rarefaction to a 
same SeqD.

In this study, we  investigated how microbial stochasticity 
inference was affected by such undersampled microbial profiles 
using simulated datasets. Previous studies suggest that random 
sampling issues associated with microbial profiling lead to 
overestimated β-diversity (Zhou et al., 2011, 2013; Zhan et al., 
2014b; Tu, 2020). And, the effects of random sampling on 
abundant and rare subcommunities were dramatically different 
(Zhan et al., 2014a). Because microbial community stochasticity 
is usually inferred by comparing the observed β-diversity with null 
expectations, the overestimated β-diversity may lead to more 
similar/dissimilar patterns with null expectations. Therefore, 
we  expected that microbial stochasticity may also be  strongly 
affected, especially for rare subcommunities. Such effects may 
differ by different randomization methods generating null 
communities. By implementing well-controlled simulated 
datasets, the current study demonstrated solid evidence showing 
overestimated microbial stochasticity due to random sampling 
issues associated with microbial profiling, especially for rare 
subcommunities. Such overestimation eased with increasing 
SeqD, but could not be eliminated with current sequencing efforts. 
We therefore urge cautions be made for microbial stochasticity 
inference using null models.

Materials and methods

Methodological framework

A framework was developed to investigate the effects of 
random sampling issues associated with microbial community 
profiling on community stochasticity inference (Figure 1). In 
order to precisely quantify how microbial stochasticity was 
affected, simulated datasets were constructed and used in this 
study. First, pseudo seed communities containing 104 microbial 
taxa and 108 organisms were created. Based on the pseudo seed 
communities, seed communities with different levels of 
β-diversity were generated. Then, a seed metacommunity was 
formed by randomly selecting one of the each seed 
communities with different diversities and merging them. 
Second, mock (meta)communities were generated by random 
subsampling select numbers of organisms from the seed (meta) 
communities, representing the microbial communities 
obtained in typical microbial ecological studies. Multiple sets 
of mock (meta) communities with different organism numbers 
were generated in order to investigate whether increasing SeqD 
would eliminate the effects of random sampling issues. Third, 
microbial profiles were generated for both seed and mock 
metacommunities, based on which microbial community 
stochasticity was calculated. The community stochasticity for 
the seed and the mock metacommunities was comparatively 
analyzed, with the differences representing the effects of 
random sampling issues on microbial stochasticity inference. 

Two different types of stochasticity analyses methods, including 
the stochastic ratio (Zhou et al., 2014; Zhou and Ning, 2017; 
Guo et al., 2018) and the Raup–Crick (RC) metric (Raup and 
Crick, 1979; Chase et al., 2011; Stegen et al., 2013, 2015), were 
employed here to evaluate how random sampling affected 
stochasticity inference.

Seed and mock community construction

A total of 15 pseudo seed communities were constructed 
following lognormal distributions, which is the species abundance 
distribution (SAD) model followed by most microbial 
communities in both natural and artificial ecosystems (Shoemaker 
et al., 2017). Each seed community was composed by 104 taxa and 
108 organisms, representing the basic microbial diversity in per 
unit environmental samples (e.g., soil; Whitman et al., 1998). A 
select number (0 to 100%) of taxa in the seed communities were 
renamed as new taxa and/or randomly shuffled, mimicking 
community assembly processes such as drift and dispersal 
limitation. As a result, seed communities with different β-diversity 
(Bray–Curtis dissimilarity) were generated, and further seed 
metacommunities were obtained (Supplementary Table 1). Mock 
(meta)communities were then generated by random subsampling 
a select number (5 × 103–2 × 105) of organisms from the seed 
(meta) communities, representing microbial communities under 
different SeqD. Two major parameters associated with lognormal 
distribution, including “meanlog” and “sdlog,” were assessed here. 
The seed metacommunities were found with “meanlog” of 
6.80 ± 0.03 and “sdlog” of 2.20 ± 0.00, whereas the values for mock 
metacommunities (e.g., SeqD = 30,000) were, respectively, 
1.00 ± 0.00 and 1.14 ± 0.00 (Supplementary Table 2). These values 
were comparable to what have been observed for microbial 
communities in different studies (Supplementary Table 2), such as 
the Earth Microbiome Project (EMP; Gilbert et al., 2014), the 
TARA Oceans expedition (Pesant et al., 2015) and the Human 
Microbiome Project (HMP; Turnbaugh et al., 2007). R packages 
“mobsim” (May et al., 2018) and a developed R script rarefy_vt.R 
were, respectively, used for seed community and mock 
community constructions.

Defining abundant and rare taxa

No standard is currently available for the definition of 
abundant and rare microbial taxa in complex communities. 
Different criteria were used in different studies (Chen et al., 2020; 
Hou et al., 2020; Jiao and Lu, 2020; Nyirabuhoro et al., 2020). For 
instance, some studies defined the collection of species with 
> 0.5% relative abundance as abundant, while the ones with 
< 0.05% relative abundance as rare (Chen et al., 2020; Hou et al., 
2020), whereas in another study the species with > 0.1% relative 
abundance were considered as abundant and the ones < 0.01% as 
rare (Jiao and Lu, 2020). In this study, the top ranked microbial 
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taxa who contributed to 80% total relative abundance were defined 
as abundant, while the rest as rare. Notably, all these criteria satisfy 
the basic rule of species abundance distribution in community 

ecology, i.e., the vast majority abundance of microorganisms is 
dominated by only a few microbial species (Lynch and Neufeld, 
2015). Although the abundant and rare taxa identified by different 

FIGURE 1

The flowchart for investigating the effects of random sampling issues on microbial stochasticity inference. First, fifteen pseudo seed communities 
containing 104 microbial taxa and 108 organisms were created. A select portion of microbial taxa were renamed and/or randomly shuffled 
(Supplementary Table 1), yielding seed communities with different levels of dispersal and drift. Second, mock communities with different 
sequencing depths were generated by randomly picking 5,000, 10,000, 30,000, 50,000, 70,000, 100,000 and 200,000 sequences from the seed 
communities. Third, the stochastic ratio and Raup-Crick metric were employed to assess the stochasticity of the seed metacommunity and mock 
metacommunity, with the difference between them representing the effect of random sampling. Microbial taxa accounting for 80% of the total 
relative abundance were defined as abundant subcommunity, and the rest were defined as rare subcommunity. The effect of random sampling on 
abundant and rare subcommunities was also investigated.
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methods may slightly differ, we did not expect strong effect of 
them on stochasticity analyses.

Randomization methods to generate null 
communities

Null models are commonly used to quantitatively disentangle the 
relative importance of deterministic vs. stochastic processes in 
structuring the compositional variations of microbial communities. 
Two different types of randomization methods were employed to 
generate null communities. The first method shuffles community 
composition by holding the local diversity and regional diversity close 
to a constant (Chase et al., 2011; Zhou et al., 2014). Here, the regional 
species pool is defined as the total number of microbial taxa found in 
all of the simulated communities with the same SeqD. Dissimilar null 
communities were expected. The second method draws an individual 
into a given taxon with a chance proportional to the relative 
abundance of that taxon in the regional species pool, i.e., all local 
communities, and at the meanwhile the local diversity and regional 
diversity are close to a constant (Stegen et al., 2013, 2015). As such, 
low compositional variations for null communities were expected. 
The “taxo. Null” function in the R package “NST” was used to 
generate different types of null communities (Ning et al., 2019). For 
the first randomization method, parameters including “sp. freq = prop, 
samp. Rich = fix, abundance = shuffle” were used. For the second 
randomization method, parameters including “sp. freq = prop, samp. 
Rich = fix, abundance = region” were used.

Microbial stochasticity inference using 
the stochastic ratio approach

Two different approaches were employed to evaluate the 
effects of random sampling issues on microbial community 
stochasticity inference. The first one is stochastic ratio analyses 
(Zhou et al., 2014; Zhou and Ning, 2017; Guo et al., 2018), which 
was a recently developed approach to quantitatively measure the 
relative importance of deterministic vs. stochastic processes in 
structuring the compositional variations of microbial 
communities. Two kinds of situations were considered in 
stochastic ratio calculation. First, if communities are governed by 
deterministic factors leading to more similar communities, the 
observed community similarity (Cij ) between the i- and j-th 
communities shall be greater than the null expectations ( Eij ). 
Second, if communities are governed by deterministic factors that 
makes communities more dissimilar, the observed community 
similarity (Cij ) between the i- and j-th communities shall 
be smaller than the null expectations ( Eij ). That being said, the 

observed dissimilarity ( D Cij ij= −1 ) shall be greater than the 

null model dissimilarity (G Eij ij= −1 ). The stochastic ratio can 
therefore be calculated according to the following functions:
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For each type of the abovementioned randomization methods, a 
total of 1,000 iterations were carried out. The null expectations were 
calculated by averaging similarity values across these 1,000 null 
communities. The modified function “tNST” in the R package “NST” 
to include “shuffle” option in the “abundance” parameter in the source 
code was used for stochastic ratio analysis (Ning et al., 2019).

Microbial stochasticity analyses using the 
RCbray metric

In addition to the stochastic ratio approach, the RCbray metric 
was also employed to quantify the contribution of different 
ecological processes to the compositional variations of microbial 
communities. A similar procedure as described previously was 
used (Chase and Myers, 2011; Stegen et al., 2013, 2015). Because 
it was technically almost impossible to simulate the phylogenetic 
relationships representing the community assembly process of 
mock communities, null model analysis based on the taxonomic 
compositional turnover was performed here. Briefly, RCbray values 
that characterize the magnitude of deviation between the Bray–
Curtis dissimilarity values of observed and null communities were 
calculated. RCbray values larger than 0.95 suggest greater 
community turnover than null expectations, meaning that 
deterministic factors that favor different microbes account for the 
compositional variations. RCbray values smaller than –0.95 suggest 
less community turnover than null expectations, meaning that 
deterministic factors that favor similar microbes could be  the 
dominant process for the compositional variations. The fraction 
of pairwise comparisons with|RCbray| ≤ 0.95 suggests comparable 
community turnover between the observed and null communities, 
meaning that the compositional variations is a result of stochastic 
processes. The R function “Raup_Crick_Abundance.r” provided 
by Stegen et al. (2013)1 wasused for RCbray metric analysis.

Results

Undersampled microbial profiles 
dramatically deviated from full profiles.

By comparing the compositional variations of mock 
communities with the seed communities, we investigated whether 

1 https://github.com/stegen/Stegen_etal_ISME_2013
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and how undersampled microbial profiles deviated from full 
profiles. Here, 15 seed communities following lognormal 
distribution and with different levels of β-diversity were generated. 
Each seed community was composed of 104 species and 108 
organisms. As a result, seed communities with β-diversity ranging 
from 0.07 to 0.88 were generated (Supplementary Table 1). Mock 
communities were then generated by random subsampling a select 
number of organisms from the seed communities. Here, the seed 
communities with 0.35 shuffling rate and 0.35 new taxa were 
randomly selected to illustrate the deviation of undersampled 
microbial profiles from full profiles (Supplementary Table 1). As 
a result, a large number of rare taxa (3,228 ~) were not captured 
by the mock communities, whereas the abundant taxa were rarely 
affected (Figures 2A–C).

The β-diversity for the seed communities and the mock 
communities was also comparatively analyzed. Overestimated 
β-diversity was observed for the undersampled mock communities 
(~ 0.11), including the whole community, the abundant, and rare 
subcommunities (Figures 2D–F). Among these, the β-diversity for 
rare subcommunities (~ 0.20) was the most overestimated 
(Figure 2F), while the β-diversity for abundant subcommunities 
(~0.08) was only slightly overestimated (Figure  2E). Notably, 
increasing SeqD from 50,000 to 200,000 can only slightly ease the 
situation of overestimated β-diversity (Figures 2D,F), suggesting 
that the random sampling issues associated with microbial 
profiling could be  persistent with current and near 
future technologies.

The β-diversity of null mock 
communities was also affected

We then investigated how random sampling affected the 
β-diversity of null communities, based on which microbial 
stochasticity is inferred. Two types of commonly used 
randomization methods in microbial community analyses were 
investigated here.

As a result, deviated β-diversity of null communities was 
also observed. Several issues were noticed here (Figure 3). First, 
as expected, the β-diversity of null communities relative to 
observed values differed with different randomization methods. 
For instance, when the community composition was randomly 
shuffled under constraints, the β-diversity of null communities 
(Figure 3A) was larger than the observed β-diversity (i.e., whole 
and SeqD = 5,000: 0.913 > 0.766; Figures 2D–F). However, when 
the community composition was generated proportionally 
according to the relative abundance of the taxa in the regional 
species pool, the β-diversity of null communities (Figure 3B) 
was much smaller than the observed β-diversity (i.e., whole and 
SeqD = 5,000: 0.724 < 0.766; Figures  2D–F). Second, the 
β-diversity of null mock communities relative to that of null 
seed communities differed with different randomization 
methods. The β-diversity of null mock communities was smaller 
than the β-diversity of null seed communities when the 

community composition was randomly shuffled under 
constraints (~ 0.927 < 0.935; Figure 3A, “whole”). In contrast, 
opposite patterns were observed when the randomization of 
community composition was proportional to the relative 
abundance of microbial taxa in the regional species pool 
(0.552 ~ > 0.455; Figure 3B, “whole”). Such different patterns 
mainly resulted from rare subcommunities, whereas the 
abundant subcommunities were less affected (Figure  3). 
Importantly, such thoroughly differed β-diversity of null 
communities by different randomization methods may result in 
differed conclusions in microbial community stochasticity 
inference. Third, samples with low SeqD (e.g., 5,000 and 10,000) 
deviated more utterly, or even showed opposite pattern 
(Figure 3). The results suggested that different randomization 
methods exerted different effects on undersampled microbial 
profiles, and rare subcommunities were more strongly affected.

Microbial stochastic ratios were 
overestimated

Multiple community stochasticity inference approaches 
are available. Here, the stochastic ratio approach (Guo et al., 
2018; Ning et  al., 2019) was first evaluated to see how 
undersampled microbial profiles affected microbial 
community stochasticity. Overestimated stochastic ratio was 
observed for both randomization methods (Figure 4). Such 
overestimated stochastic ratio was persistently observed for 
rare subcommunities regardless of randomization methods 
(“shuffle” and SeqD = 200,000: 0.796 > 0.724, “proportional” 
and SeqD = 200,000: 0.765 > 0.671; Figures 4C,F). Comparing 
to what was observed for rare subcommunities, the effects of 
random sampling issues on stochastic ratio for abundant 
subcommunities differ by randomization methods 
(Figures  4B,E). The stochastic ratio for abundant 
subcommunities was rarely affected when the “shuffle” 
randomization method was used (Figure 4B). Most critically, 
undersampled microbial profiles may lead to dangerously 
deviated conclusions. For example, when the community 
composition was randomly shuffled under constraints, high 
stochastic ratio (> 0.75) was observed for both seed and mock 
metacommunities (Figures  4A–C). However, when the 
randomization of community composition was performed by 
drawing individual organisms proportional to the relative 
abundance of microbial taxa in the regional species pool, the 
stochastic ratio was low (~ 0.44) for the seed metacommunity, 
but high (> 0.59) for mock metacommunities, even for those 
with 200,000 SeqD (Figure 4D). Such issues also tended to 
occur with rare subcommunities (Figure  4F). Overall, the 
results here suggested that undersampled microbial profiles 
could lead to overestimated stochastic ratio inference, 
especially for rare subcommunities. Such overestimation may 
lead to carelessly different conclusions depending on which 
randomization methods was used.
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Microbial stochasticity inference using 
the RCbray metric was also affected

In addition to stochastic ratio analyses, the RCbray metric that 
characterizes the deviation between null distributions and 
observed taxonomic turnovers to infer the contributions of 
different processes in community assembly (Stegen et al., 2013, 
2015), was also employed to evaluate how stochasticity inference 
was affected by random sampling issues. Notably, as it was not 
possible to experimentally generate the required datasets (e.g., 
deep sequencing of 108 organisms per sample), the same simulated 
datasets were also used here. And as it was technically almost 
impossible to simulate the phylogenetic relationships representing 
the community assembly process of mock communities, the 
taxonomic compositional turnover was assessed here using the 
RCbray metric not considering the selection process inferred based 
on phylogenetic signals. Similarly, the same two different 
randomization methods (i.e., “shuffle” and “proportional”) were 
investigated here. Again, thoroughly different results were 
observed for different randomization methods (Figure 5). Such 
difference was mainly reflected by the relative contribution of 
different processes as judged by RCbray values. Notably, when the 
“shuffle” method was used, the contribution of deterministic 
factors causing variable communities (RCbray > 0.95) is 
overestimated, whereas the contribution of deterministic factors 

causing similar communities (RCbray < −0.95) is underestimated. 
Such pattern was consistently observed for the whole community, 
the abundant, and rare subcommunities (Figures 5A–C). However, 
when the “proportional” randomization method was used, 
overestimation of stochastic processes was observed for the rare 
subcommunities (Figure  5F). For the whole and abundant 
subcommunities, deterministic factors causing variable 
communities were found as the sole process responsible for the 
compositional variations of the mock and seed metacommunities 
when SeqD is larger than 70,000 (Figures  5D,E). The results 
suggested that RCbray metric is relatively robust to random 
sampling issues, but could be  strongly affected by 
randomization methods.

Discussion

Random sampling is a common issue in community ecology 
as complete sampling is not feasible for large-scale ecosystems or 
highly diverse communities. This issue becomes more critical in 
microbial community ecology that almost each step for profiling 
microbial communities is associated with random processes (Tu, 
2020), resulting in undersampled microbial profiles. Previous 
studies suggest that such random sampling issues affect both the 
α- and β-diversity estimations of complex microbial communities 

A B C

D E F

FIGURE 2

Effects of random sampling issues on the microbial profiles. The number of observed taxa (A–C) and the β-diversity (D– F) of mock communities 
with different sequencing depths were investigated. The whole community, the abundant and the rare subcommunities were investigated. The * 
symbol represents the seed communities consisting of 104 microbial taxa and 108 organisms.
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(Zhou et al., 2011, 2013; Zhan et al., 2014b). The reproducibility 
could be as low as 17.2% for two technical replicates and 8.2% for 
three technical replicates, as revealed by 16S rRNA gene amplicon 
sequencing using 454 pyrosequencing (Zhou et al., 2011). Our 
recent study suggest that random sampling issues not only affect 
the α- and β-diversity, but also ecological mechanisms inferred 
based on these indices, such as spatial scaling laws of microbial 
communities (Tu, 2020).

In this study, we show that microbial stochasticity inference 
using null model approaches is also affected by random sampling 
issues. The inferred community stochasticity for the whole 
communities, the abundant and the rare subcommunities was all 
affected due to random sampling issues. This was an especially 
critical issue for rare subcommunities, whose community 
stochasticity was persistently thoroughly affected regardless of 
which null model was used. This was in general consistence with 
a previous study that random sampling issues mainly affected the 
reproducibility of rare microbial taxa (Zhan et al., 2014a). As more 
studies are being made to disentangle the relative importance of 
deterministic vs. stochastic processes in driving the abundant and 

rare subcommunities (Jiao et al., 2017; Mo et al., 2018; Xue et al., 
2018; Wan et al., 2021), we urge cautions shall be made when 
interpreting null model results, especially for rare subcommunities.

Different randomization methods to generate null models 
may lead to different conclusions in microbial stochasticity 
analyses (Zhou and Ning, 2017). Here, the effects of random 
sampling issues on microbial community stochasticity inference 
also thoroughly differ by the randomization methods. Such 
difference is mainly caused by the fact that microbial stochasticity 
is inferred by comparing the observed community (dis)similarity 
with null expectations. The two randomization methods (“shuffle” 
and “proportional”) used in this study, respectively, generated 
highly dissimilar and similar null model communities. This 
consequently led to different conclusions in stochasticity 
inference. In this study, we found that stochastic ratio approach 
was more sensitive to random sampling issues than the RCbray 
approach that overestimated stochastic ratio was observed 
irrespective of which randomization method was used. In 
contrast, the RCbray approach was more robust to random sampling 
issues but more strongly affected by randomization methods. 

A

B

FIGURE 3

The β-diversity of null communities with different sequencing depth. Null communities were generated by two different types of randomization 
methods. The β-diversity of the whole community, the abundant and rare subcommunities were investigated. (A) The β-diversity of null 
communities generated by shuffling the community composition by holding the α- and γ-diversity close to a constant (i.e., “shuffle”); (B) The 
β-diversity of null communities generated by drawing an individual into a given taxa proportional to the relative abundance of that taxa in the 
regional species pool (i.e., “proportional”). The * symbol represents the seed community consisting of 104 microbial taxa and 108 organisms.
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Therefore, proper selection of randomization methods for null 
models is also strongly recommended.

Mock (meta)communities were generated and used due to 
the high cost and potential technical barriers of generating the 
ultra-deep sequence dataset required by this study. The 
simulated dataset in this study is typical and representative for 
most environmental samples, although different microbiome 
types might be differently affected by random sampling issues. 
For instance, human microbiome that are less diverse than 
environmental microbiome might less affected (Lozupone 
et  al., 2012). The application of mock (meta)communities 
allows us to effectively control the variations of microbial 
communities and generate expected microbial profiles, 
simulating ecological processes such as drift and dispersal 
limitation (Ning et al., 2020). However, meanwhile, there are 
notable caveats associated with simulated datasets. First, as 
previously pointed out, random sampling is associated with 
almost all steps microbial profiles are generated, such as sample 
collection, DNA extraction, PCR amplification, library 
construction, sequencing and rarefaction (Tu, 2020). Mock 
(meta) communities, however, are not capable to simulate such 
complex procedures. In fact, generating mock (meta)
communities from seed (meta)communities in the current 
study could be considered as a unified process anchoring the 

beginning and ending status of microbial community profiling, 
leaving the more complex reality not thoroughly considered. 
Even though, strongly affected microbial stochasticity inference 
was observed, meaning that the real situation could be much 
more severe. Secondly, to our best of our knowledge, it was not 
possible to simulate the phylogenetic relationships representing 
the complex microbial community assembly processes. 
Therefore, the current study only considered microbial 
stochasticity based on taxonomic information, leaving the 
selection process inferred by phylogenetic signals untapped. 
Consequently, phylogeny-based β-diversity metrics such as 
UniFrac (Lozupone and Knight, 2005) and phylo-rpca 
(Martino et al., 2022) were also not incorporated, though it is 
relatively easy to incorporate different types of β-diversity 
metrics in null models. Nonetheless, the obtained results were 
still informative, showing clearly affected microbial 
stochasticity inference by random sampling issues associated 
with microbial community profiling.

Although this study focused on microbial community 
stochasticity, the ultimate reason causing this scenario was still the 
overestimated β-diversity by random sampling issues. As a result 
of random sampling processes associated with microbial profiling, 
the observed community dissimilarity (i.e., β-diversity) was 
overestimated, making it closer to the null community 

A B C

D E F

FIGURE 4

The effect of random sampling on the stochastic ratios of mock metacommunities with different sequencing depths. Two types of randomization 
methods were investigated, including the “shuffle” (A–C) and the “proportional” approach (D–F). The * symbol represents the seed 
metacommunity consisting of 2 × 104 microbial taxa and 108 organisms.
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compositions. As a result, the stochasticity for the observed 
communities was overestimated. Because rare subcommunities 
were more influenced by random sampling issues (Zhan et al., 
2014a), the stochasticity of rare subcommunities was more 
affected than that of abundant subcommunities.

Conclusion

This study investigated the effects of random sampling issues 
on microbial stochasticity inference. By implementing simulated 
datasets, we show evidence that the stochasticity of undersampled 
microbial communities inferred using null models is 
overestimated. This issue is especially serious for rare 
subcommunities. Notably, such effects on the whole community 
and abundant communities may differ when different 
randomization methods are used. As more studies begin to focus 
on the different mechanisms governing the abundant and rare 
subcommunities, we urge cautions be taken when disentangling 
the relative importance of deterministic vs. stochastic processes, 
especially for rare subcommunities. Importantly, such issues could 
be  more severe in reality, as real samples could be  far more 
complex than simulated datasets.
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