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Metagenomics reveals differences 
in microbial composition and metabolic 
functions in the rumen of dairy cows 
with different residual feed intake
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Abstract 

Background:  Rumen microbial composition and functions have vital roles in feed digestion and fermentation and 
are linked to feed efficiency in cattle. This study selected Holstein cows, which are high in both milk protein content 
and milk yield, to analyse the relationship between the rumen microbiota and residual feed intake (RFI). Eighteen mul-
tiparous lactating cows were divided into low RFI (LRFI, high efficiency, n = 9) and high RFI (HRFI, low efficiency, n = 9) 
groups to investigate the differences in microbial composition and functions.

Results:  The relative abundances of butyrate producers, including the Clostridium, Butyrivibrio, Eubacterium and 
Blautia genera, were higher in HRFI cows than in LRFI cows (P < 0.05). Four carbohydrate metabolic pathways (gly-
colysis/gluconeogenesis, pentose phosphate pathway, fructose and mannose metabolism, and butanoate metabo-
lism) and one energy metabolism pathway (methane metabolism), were more abundant in HRFI animals (P < 0.05). 
Quorum sensing and DNA replication pathways were more abundant in HRFI cows. For CAZyme profiles, 14 out of 19 
genes encoding carbohydrates-deconstructing enzymes were more abundant in HRFI cows (P < 0.05). Seven Lach-
nospiraceae species associated with carbohydrate metabolism and quorum sensing may contribute to the difference 
in feed efficiency. Moreover, the LRFI cows had lower abundances of Methanosphaera (P < 0.01), Methanobrevibacter 
ruminantium (P = 0.09) and methanogenesis functions (P = 0.04).

Conclusions:  The rumen microbiota of low-efficiency cows has stronger abilities to degrade carbohydrates and pro-
duce methane, and quorum sensing pathways could also be associated with differences in feed efficiency. This study 
provides a deeper understanding of the microbial ecology of dairy cows with different feed efficiencies and highlights 
the possibility of modulating the rumen microbiome or microbial functions to improve the feed efficiency of dairy 
cows.
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Introduction
Feed efficiency is an important trait in the dairy indus-
try since feed inputs account for 40–60% of the total 
variable costs in dairy farms [1]. Improving the feed 
efficiency of dairy cows has profound significance, 
as it is expected to decrease the total feed cost and 
reduce greenhouse gas emissions and urinary nitro-
gen excretion. Additionally, there are various methods 

Open Access

Animal Microbiome

*Correspondence:  liujx@zju.edu.cn
1 Institute of Dairy Science, College of Animal Sciences, Zhejiang 
University, Hangzhou 310058, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5812-5186
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42523-022-00170-3&domain=pdf


Page 2 of 12Xie et al. Animal Microbiome            (2022) 4:19 

to evaluate feed efficiency, among which residual feed 
intake (RFI) is one of the most common measurements 
in cattle [2, 3]. The RFI is defined as the difference 
between the actual and predicted dry matter intake 
(DMI) for an animal. A low or negative RFI value rep-
resents high efficiency, while a high RFI value repre-
sents low efficiency. The RFI is independent of the 
level of production, and animals with lower values are 
deemed more efficient [4].

Physiological processes have been identified as 
important factors contributing to the differences in 
RFI among dairy cows, including feeding behaviour, 
activity, digestibility, and rumen-temperature vari-
ables [5, 6]. Several studies have reported that rumen 
fermentation variables and nutrient absorption affect 
the RFI of cattle [7, 8]. Rumen fermentation is largely 
mediated by diverse rumen microbes to produce the 
major products volatile fatty acids (VFAs), which can 
provide greater than 70% of the energy requirement 
for ruminants [9]. Therefore, the rumen microbiome 
plays a vital role in variations in RFI.

Previous studies have reported differences in the 
rumen microbial composition between efficient and 
inefficient beef cattle [10, 11]. McGovern et  al. [12] 
found that the abundances of Lactobacillales and 
Ruminobacter genera were associated with RFI. Lower 
abundances of Methanosphaera stadtmanae and Meth-
anobrevibacter sp. has been identified in high RFI 
animals [13]. Most of these studies used beef cattle 
or growing heifers, but there are distinct differences 
between dairy and beef cattle. Limited studies have 
shown a correlation between rumen microbial ecology 
and RFI in lactating dairy cattle [13]. However, a high 
concentrate diet (70% concentrate) may lead to abnor-
mal ruminal microbial metabolism and further affect 
the rumen microbiota. Thus, it is important to exam-
ine the relationship between RFI and the microbiome 
in cows fed an optimal forage-to-concentrate ratio. 
Furthermore, a previous study did not address the 
impact of differences in individual performance (e.g., 
milk protein yield) on microorganisms [13]. Xue et al. 
[14] revealed the differences in the rumen microbiome 
and its metabolites between individual cows with dif-
ferent milk protein yields and indicated a correlation 
between rumen ecology and host performance. In the 
present study, we profiled the rumen microbial com-
position and functions in dairy cows with relatively 
high milk yield and milk protein content that had 
divergent RFI to uncover the relationship between RFI 
and microbiome components. The results will provide 
a better understanding of the rumen microbiome and 
its impact on the RFI of lactating dairy cattle.

Results
Characterization of phenotypes
The low RFI (LRFI) cows consumed 2.43 kg dry matter/d 
less than their high RFI (HRFI) counterparts. The ratios 
of milk yield to DMI (P < 0.01) and of energy-corrected 
milk to DMI (P = 0.03) were greater in LRFI group than 
in HRFI group (Additional file  1: Table  S1). Although 
the percentage of milk protein was significantly lower 
(P = 0.04) in the LRFI group, no significant differences 
(P > 0.10) were detected in the yields of milk and milk 
protein between the two groups.

The concentrations of total VFAs (P = 0.08), acetate 
(P = 0.10), butyrate (P = 0.10), valerate (P = 0.08) and 
isovalerate (P = 0.09) tended to be lower in the LRFI 
group (P < 0.10, Table 1). However, the molar proportion 
of propionate tended to be higher in LRFI cows (24.0 vs. 
22.7, P = 0.09), and the molar proportions of isobutyrate 
(0.90 vs. 0.74, P = 0.05) and isovalerate (1.50 vs. 1.23, 
P < 0.01) were significantly greater in LRFI cows than 
HRFI cows. Methane (CH4) production was higher in 
HRFI cows than in LRFI cows (P = 0.04).

The rumen metagenome profile
A total of 909,094,550 raw reads were obtained from 
the 18 rumen digesta samples, with an average of 
50,505,253 ± 928,365 (SEM) raw reads per sample. After 
quality control and host gene removal, 901,313,532 clean 

Table 1  Fermentation variables and methane production in the 
rumen of dairy cows with high and low residual feed intake (RFI)

a Methane was predicted by the following equation: CH4 (g/d) = [3.23 
(± 1.12) + 0.81 (± 0.086) × DMI (kg/d)] × 18.03 [36], where DMI is the dry matter 
intake

Items High RFI Low RFI SEM P value

pH 6.40 6.46 0.06 0.57

Volatile fatty acid, mM

 Total 105 96.7 3.25 0.08

 Acetate 66.3 59.4 2.78 0.10

 Propionate 23.7 23.5 0.82 0.88

 Butyrate 11.7 10.2 0.60 0.10

 Isobutyrate 0.76 0.86 0.04 0.12

 Valerate 1.52 1.32 0.08 0.08

 Isovalerate 1.27 1.45 0.07 0.09

Molar proportion, mM/100 mM

 Acetate 62.8 61.6 1.15 0.47

 Propionate 22.7 24.0 0.53 0.09

 Butyrate 11.0 10.5 0.28 0.30

 Isobutyrate 0.74 0.90 0.05 0.05

 Valerate 1.44 1.38 0.06 0.43

 Isovalerate 1.23 1.50 0.06 < 0.01

 Acetate: propionate 2.90 2.63 0.19 0.30

Methanea, g/d 533 506 8.50 0.04
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reads, with 50,072,974 ± 921,079 raw reads per sam-
ple, were retained (Additional file 1: Table S2). Multiple 
megahit assembly of the raw sequencing reads resulted in 
11,670,011 contigs, with an average of 648,334 ± 44,632 
contigs per sample. At the domain level, the rumen 
metagenome consisted of 94.84% bacteria, 3.10% eukary-
otes, 1.33% archaea, and 0.51% viruses (Additional file 1: 
Fig. S1).

Differences in microbial community compositions 
between LRFI and HRFI cows
The permutational multivariate analysis of variance 
(PERMANOVA) showed no differences between HRFI 
and LRFI groups in bacteria (P = 0.17), eukaryotes 
(P = 0.25) archaea (P = 0.15) or viruses (P = 0.13, Addi-
tional file 1: Table S3). The principal coordinate analysis 
(PCoA) did not show clear separation between the HRFI 
and LRFI groups based on archaeal species (Additional 
file 1: Fig. S2a). Meanwhile, no significant difference was 
found between the HRFI and LRFI groups in archaeal 
phyla. However, the abundance of Methanosphaera was 
higher in HRFI group (4.66 vs. 3.28, P < 0.01). The rela-
tive abundance of Methanobrevibacter ruminantium, the 
most abundant archaeal species, tended to be higher in 
HRFI cows than in LRFI cows (22.45 vs. 20.14, P = 0.09, 
Fig. 1).

The PCoA of bacterial species showed no clear sepa-
ration between the HRFI and LRFI groups (Additional 
file 1: Fig. S2b). At the phylum level, compared with LRFI 
group, the relative abundance of Firmicutes was signifi-
cantly greater in HRFI group (36.57 vs. 31.91, P = 0.04), 
and Proteobacteria tended to be lower in the HRFI cows 
than in LRFI cows (4.45 vs. 7.61., P = 0.09, Fig.  2A). At 
the genus level, the abundances of Clostridium, Butyrivi-
brio, Eubacterium and Blautia were significantly higher 
in HRFI cows (P < 0.05, Fig. 2B). At the species level, 28 
species, including 24 Firmicutes sp., showed significantly 
higher abundances in HRFI group (LDA > 2, P < 0.05), 
while 10 species were more abundant in the LRFI group 
(LDA > 2, P < 0.05, Fig. 2C).

Differences in functions of the rumen microbiome 
between LRFI and HRFI cows
For Kyoto Encyclopedia of Genes and Genomes (KEGG) 
profiles, a total of 206 endogenous level-3 pathways 
were observed in our study. These pathways belonged 
to 4 level-1 KEGG functional categories, includ-
ing “metabolism” (69.67 ± 0.47%), “genetic informa-
tion processing” (15.77 ± 0.07%), “cellular processes” 
(7.38 ± 0.02%) and “environment information processing” 
(7.18 ± 0.02%). At the second level of KEGG pathways, 
a total of 24 functional categories were identified. The 
categories “carbohydrate metabolism” (16.54 ± 0.14%), 

“global and overview maps” (11.62 ± 0.13%), “amino 
acid metabolism” (10.25 ± 0.10%), “replication and 
repair” (8.07 ± 0.10%), and “nucleotide metabolism” 
(10.25 ± 0.10%) were the most abundant functions.

The PCoA indicated no separation in functional poten-
tial between the two feed efficiency cohorts (Additional 
file  1: Fig. S3a). At KEGG level 2, the category “carbo-
hydrate metabolism” tended to be higher in the HRFI 
animals than in the LRFI animals (P = 0.06, Fig. 3A). At 
KEGG level 3, 13 pathways, including 10 “metabolism” 
pathways, 2 “genetic information processing” pathways, 
and 1 “cellular processes” pathway, were upregulated 
in HRFI cows (P < 0.05; Fig.  3B), and two KEGG path-
ways were significantly enriched in LRFI cows (P < 0.05; 
Fig. 3B). Within the category “carbohydrate metabolism”, 
“ko00010: Glycolysis/gluconeogenesis”, “ko00030: pen-
tose phosphate pathway”, “ko00051: fructose and man-
nose metabolism”, and “ko00650: butanoate metabolism” 
were significantly enriched in the HRFI cows (P < 0.05; 
Fig.  3B). For the category “energy metabolism”, only 
“ko00680: methane metabolism” was enriched in HRFI 
cows (P = 0.04, Fig.  3B). For the other highly abundant 
biological processes, “DNA replication” and “quorum 
sensing” were higher in the HRFI group (P < 0.05; Fig. 3). 
However, “ko00100: steroid biosynthesis” and “ko00909: 
sesquiterpenoid and triterpenoid biosynthesis” were sig-
nificantly enriched in LRFI cows (P < 0.05; Fig. 3B).

CAZyme functions of the rumen microbiome between LRFI 
and HRFI cows
In terms of CAZyme profiles, 199 genes were detected, 
including 97 glycoside hydrolases (GHs), 42 glycosyl-
transferases (GTs), 31 carbohydrate-binding modules 
(CBMs), 14 carbohydrate esterases (CEs), 10 polysaccha-
ride lyases (PLs), and 5 auxiliary activities (AAs). Among 
them, GT2 (6.99% ± 0.15%), GH2 (6.33% ± 0.08%), and 
GT4 (3.85% ± 0.05%) were the most abundant CAZymes 
in the rumen of these cows.

No obvious separation was observed for the CAZyme 
profiles between feed efficiency groups based on PCoA 
(Additional file 1: Fig. S3b). We then compared the rela-
tive abundance of CAZymes, and 19 differentially abun-
dant CAZymes related to deconstructing carbohydrates 
(GH, CE, PL, AA, and CBM) were identified between the 
two RFI groups. Only five CAZymes (4 GHs, 1 CE) were 
more abundant in LRFI animals, while 14 CAZymes (9 
GHs, 3 CEs, and 2 AAs) were enriched in HRFI animals. 
Among the GTs, five CAZymes were more abundant in 
the LRFI group, while four CAZymes were enriched in 
HRFI cows. Regarding the CBMs, three CAZymes were 
more abundant in the LRFI group, while only one was 
enriched in the HRFI group (P < 0.05; Fig. 4).
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Relationships between microbial species and functions
Spearman’s rank correlation was constructed between 
differential microbial species and metabolic pathways. 
A total of 38 species showed significant relationships 
with 15 differentially abundant pathways (R > 0.50 and 
P < 0.05, Fig.  5), and 22 species had positive relation-
ships with “quorum sensing” pathway (R > 0.50 and 
P < 0.05. Figure 5). Among these 22 species, 15 also had 

a positive relationship with “carbohydrate metabolism” 
pathways (ko00010, ko00030, ko00051, and ko00650, 
Fig. 5). Among these 19 species, 7 belonged to the fam-
ily Lachnospiraceae, including Ruminococcus torques, 
Clostridium clostridioforme, Blautia obeum, B. pro-
ducta, L. bacterium FE2018, Marvinbryantia formatex-
igens and an unclassified Butyrivibrio sp. (Fig. 5).
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Fig. 1  Comparison of archaeal phyla, genera and species between the cows with high (HRFI) and low residual feed intake (LRFI). The difference of 
archaeal phyla (A) and genera (B) were tested by Wilcoxon rank-sum test, *P < 0.05, **P < 0.01, (C) Significantly different archaeal species. Significant 
differences were tested by Linear discriminant analysis effect size (LEfSe) analysis, with linear discriminant analysis (LDA) score of > 2 and P value 
of < 0.05
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Microbial functions and species related to carbohy-
drate metabolism, energy metabolism and other pro-
cesses in the rumen of the animals are summarized in 
Fig.  6. Among the genes encoding enzymes involved 

in the fructose and mannose metabolism pathway, 
8 genes, EC 1.1.1.140, EC 2.7.1.198, EC 2.7.1.202, EC 
2.7.1.206, EC 2.7.1.3, EC 2.7.1.56, EC 4.1.2.17 and EC 
5.3.1.1, tended to be more abundant in the HRFI cows 
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Fig. 2  Comparison of bacterial phyla, genera and species between the cows with high (HRFI) and low residual feed intake (LRFI). The difference of 
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(P < 0.10). In the glycolysis pathway, the abundance of 
EC 1.2.1.59, EC 2.7.1.146 and EC 2.7.1.40 tended to be 
higher in the HRFI cows (P < 0.10), and EC 2.7.1.199 
was more abundant in the HRFI cows (P = 0.03). In the 
pentose phosphate pathway, two genes (EC 2.7.1.13 
and EC 5.3.1.27) tended to be more abundant in the 
HRFI group (P < 0.10), and 5 genes (EC 1.1.1.215, EC 
1.1.1.363, EC 1.1.1.49, EC 4.1.2.9 and EC 5.4.2.7) were 
enriched in the HRFI group (P < 0.05). Three genes 
(EC 4.1.1.15, EC 4.2.2.2 and EC 6.2.1.32) involved in 
quorum sensing pathways, and 6 genes (EC 1.5.98.1, 
EC 1.5.98.2, EC 2.1.1.248, EC 2.1.1.86, EC 2.1.1.90 and 
EC 2.3.1.101) involved in methane metabolism were 
significantly enriched in the HRFI group (P < 0.05). 
In the butyrate metabolism pathway, four genes (EC 
1.2.1.10, EC 1.2.7.1, EC 2.7.2.7 and EC 6.2.1.1) tended 
to be more abundant in HRFI cows (P < 0.10), and 3 
genes (EC 4.2.1.120, EC 4.2.1.55, EC 5.3.3.3) related 
to butyrate production were significantly enriched in 
HRFI cows (P < 0.05). However, in the succinate path-
way for propionate production, three genes encod-
ing enzymes (EC 1.1.1.37, EC 6.2.1.5, EC 2.8.3.1) were 
more abundant in the LRFI cows.

Discussion
Improvement in feed efficiency could greatly reduce feed 
costs and increase profits. In our study, LRFI cows with 
similar milk production consumed 2.50 kg less dry mat-
ter per day than the HRFI cows did, which is consistent 
with previous studies [15, 16]. The conversion of feed to 
VFAs is dependent on rumen microbes, and the rumen 
microbiome plays an important role in determining an 
animal’s RFI [17, 18]. In our study, the microbial differ-
ences at the taxonomic and functional levels between the 
two RFI groups explain the underlying mechanisms.

A greater amount of bacterial species (28 vs. 10) were 
more abundant in HRFI cows than in LRFI cows, which 
is in line with previous findings showing that HRFI ani-
mals tended to have higher microbiome richness [13]. 
Our results found higher abundances of Clostridium, 
Butyrivibrio, Eubacterium and Blautia in HRFI cows. 
Clostridium species ferment carbohydrates to form 
hydrogen and butyrate [19]. The genus Butyrivibrio plays 
an important role in hemicellulose and pectin breakdown 
in the rumen, and the end product of this fermentation 
is butyrate [20, 21]. The genera Eubacterium and blautia 
possess the capability to produce butyrate [22]. Moreo-
ver, most of the species that abundances were higher in 
HRFI cows were butyrate producers and showed positive 
associations with the “ko00650: butanoate metabolism” 
pathway, suggesting their important roles in butyrate 
biosynthesis. Indeed, we detected a trend towards higher 
butyrate concentrations in HRFI cows.

Methanosphaera is a methanogenic archaeon that uti-
lizes methyl group compounds to generate methane [23]. 
In the rumen, methanol is a product of pectin hydroly-
sis by protozoa and esterase activity of bacteria [24]. The 
higher DMI in HRFI cows means more substrates avail-
able for fermentation in the rumen. The greater potential 
for increased availability of methanol is associated with 
the higher abundance of Methanosphaera in HRFI group 
in the current study, suggesting the importance of Meth-
anosphaera in affecting host feed efficiency. The higher 
abundance of Methanobrevibacter ruminantium in HRFI 
cows was consistent with the study of Shabat et al. [13]. 
These results suggest that HRFI cows may produce more 
methane, leading to energy waste and lower efficiency. 
Moreover, methane metabolism and KO genes related 
to methanogenesis were more abundant in HRFI cows. 
In line with our results, previous studies also reported a 
higher abundance of methanogenesis pathways in HRFI 
cows [13]. Methane emissions cause a significant loss of 
dietary energy and reduce the efficiency of animals [23]. 
A higher abundance of KO genes related to propionate 
production and a higher tendency of the molar propor-
tion of propionate in LRFI cows indicates that the rumen 
microbiomes of LRFI cows are more likely to generate 

Fig. 4  Significantly different CAZyme functions between the cows 
with high (HRFI) and low residual feed intake (LRFI). AA: Auxiliary 
Activities; CBM: Carbohydrate-Binding Modules; CE: Carbohydrate 
Esterases; GH: Glycoside Hydrolases. GT: Glycosyl Transferases. * 
P < 0.05
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substances with greater usable energy values. As men-
tioned above, we found a lower tendency of butyrate 
concentrations and higher tendency of the molar propor-
tion of propionate in LRFI cows. Moss et al. [25] reported 
that formation of butyrate results in production of addi-
tional methanogenic substrates (formate and H2), while 
propionate formation is involved in hydrogen utilisation, 

which can be considered as a competitive pathway for 
hydrogen use in the rumen. Thus, the lower butyrate con-
centrations and higher molar proportion of propionate in 
LRFI cows may decrease methanogenesis by competing 
for hydrogen.

The functional genes of the rumen microbiome iden-
tified by metagenomics provide a way to evaluate the 
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functions of rumen microorganisms [26, 27]. In a recent 
study, Xue et  al. [14] found that rumen microbial func-
tions (21.56%) make a greater contribution to milk pro-
tein yield than rumen microbial composition (17.81%). 
These findings suggest that the rumen microbial function 
may reflect the mechanism by which microorganisms 
influence phenotypes. Previous studies used metagen-
omics [13] or metatranscriptomics [26] to investigate the 
functional profiles of rumen microbiomes in cows with 
different RFI. A metagenomic study using rumen sam-
ples from beef cattle reported a higher number of KEGG 
pathways enriched in HRFI cattle [26], consistent with 
the results in our study. Shabat et al. [13] investigated the 
linkages between the rumen microbiome and host effi-
ciency in dairy cows with different RFI and revealed less 

diverse metabolic pathways in efficient cows, suggesting 
that efficient microbiomes are more specialized to meet 
the energetic need of ruminants. Additionally, we found 
that the KEGG functions of carbohydrate degradation, 
including “glycolysis”, “pentose phosphate pathway” and 
“fructose and mannose metabolism”, were enriched in 
the rumen of HRFI animals. These results indicate that 
HRFI microbiome may generate more diverse products 
such as pyruvate, acetyl-CoA and hydrogen. In the cur-
rent study, HRFI cows had a higher number of CAZyme-
encoding genes. Similar results were reported at the RNA 
level in beef cattle in a metatranscriptomics study [26]. 
The higher abundance of KO genes related to carbohy-
drate degradation in HRFI cows indicates higher activi-
ties of degrading complex substrates in inefficient cows. 

Fig. 6  Microbial functions and species involved in carbohydrate metabolism, energy metabolism and other processes in the rumen of the cows 
with high (HRFI) and low residual feed intake (LRFI). Among the genes encoding enzymes involved in the fructose and mannose metabolism 
pathway, 8 genes tended to be more abundant in the HRFI cows. In the glycolysis pathway, the abundance of 4 genes tended to be higher in the 
HRFI cows (P < 0.10), and 1 gene was more abundant in the HRFI cows (P = 0.03). In the pentose phosphate pathway, 2 genes tended to be more 
abundant in the HRFI group (P < 0.10), and 5 genes were enriched in the HRFI group (P < 0.05). Three genes involved in quorum sensing pathways, 
and 6 genes involved in methane metabolism were significantly enriched in the HRFI cows. In the butyrate metabolism pathway, 4 genes tended to 
be more abundant in HRFI cows (P < 0.10), and 3 genes related to butyrate production were significantly enriched in HRFI cows (P < 0.05). The blue 
text represents the genes or metabolites enriched in HRFI cows, and the red (orange) text indicates the genes or metabolites enriched or tended 
to be enriched in LRFI cows. The text in brackets under the gene name is HRFI/LRFI fold change of gene. The text over the arrow is the gene code. 
Inside the pink rectangles are the microorganisms that play an important role in the pathway



Page 9 of 12Xie et al. Animal Microbiome            (2022) 4:19 	

Most species showing positive relationships with car-
bohydrate metabolism belonged to the Lachnospiraceae 
family. Many members of the family Lachnospiraceae 
have cellulolytic activity and are related to butyrate pro-
duction [28, 29]. In the current study, we found increased 
butyrate metabolism in HRFI cows. Therefore, the Lach-
nospiraceae species may play an essential role in carbo-
hydrate metabolism and further affect feed efficiency in 
dairy cows. However, it is unclear whether the rumen 
microbiota is either the causes or results of cattle feed 
efficiency. Thus, our results warrant further research to 
fully elucidate the relationship between the alteration in 
microbiota and host functional changes.

The higher activity of rumen microbiomes in HRFI 
animals could be attributed to their higher feed intake. 
Pathak [30] reported a strong positive correlation of 
microbial activities with feed intake because more avail-
able substrates and nutrients from animals with higher 
feed intake were provided for microbial growth. Indeed, 
the higher abundance of the DNA replication pathway 
in our current study provides further evidence for the 
greater microbial growth rate in HRFI cows. The higher 
microbial growth rate may result in higher population 
density in bacteria. Enrichment of the quorum sensing 
pathway in HRFI cows has not been reported previously. 
In a recent study, some of the bacterial species in rumen 
were identified the existence of luxS genes, and these spe-
cies showed positive relationships with quorum sensing 
pathway in our current study and others [31]. Moreover, 
LuxS proteins, which are encoded by the luxS gene, were 
proven to be critical enzymes for activating the bacterial 
methyl cycle and for producing AI-2 [32], a member of 
a family of signalling molecules used in quorum sens-
ing. These results indicate that quorum sensing could be 
associated with the difference in feed efficiency between 
dairy cows with divergent RFI values. Additionally, the 
bacterial species showing positive associations with car-
bohydrate metabolism were all positively correlated with 
quorum sensing pathways. In short, several Lachno-
spiraceae species, including Ruminococcus torques, Blau-
tia obeum, Blautia producta, Blautia schinkii, Blautia 
wexlerae, Dorea longicatena, Clostridium clostridioforme, 
Clostridium symbiosum, Marvinbryantia formatexigens 
and Lachnospiraceae bacterium FE2018, may play a vital 
role in both carbohydrate metabolism and quorum sens-
ing. Further studies are required to fully elucidate the 
relationship between the key microbes and pathways 
described above to validate our current findings.

Conclusions
The current study revealed the taxonomic features and 
functions of rumen microbiomes. Although carbohydrate 
degradation functions were more abundant in HRFI 

cows (low efficiency), the higher abundances of butyrate-
producing species, functions in butyrate metabolism, 
methanogenic archaea and methanogenesis pathways 
indicate that HRFI cows may promote methane produc-
tion because of their tendency towards butyrate produc-
tion. Compared with HRFI group, the higher abundances 
of KO genes related to propionate production and higher 
tendency of the molar proportion of propionate in LRFI 
cows may partly explain the higher efficiency in these 
cows. Several Lachnospiraceae species associated with 
carbohydrate metabolism and quorum sensing may con-
tribute to the differences in RFI. This study provides a 
in-depth understanding of the microbial ecology of dairy 
cows with different RFI, and highlights the possibility of 
modulating the rumen microbiome or microbial func-
tions to improve the feed efficiency of dairy cows. Future 
studies are required to assess information on the meta-
bolic intermediates related to carbohydrate metabolism, 
which will provide evidence for the effect of microbial 
carbohydrate metabolism on feed efficiency.

Materials and methods
Experimental design and sample collection
All the procedures involving animals in this study were 
approved by the Animal Use and Care Committee of 
Zhejiang University (Hangzhou, China, No. 12410). The 
RFI value of each animal was calculated as described 
previously [33]. Briefly, the RFI was estimated as the dif-
ference between expected feed intake and actual feed 
intake, where the expected feed intake was computed 
through a multiple linear regression model using the 
regression of actual feed intake on energy-corrected milk 
yield, metabolic body weight (BW0.75), and average daily 
gain over the measurement period. Based on previous 
RFI value calculations [33], the 9 dairy cows with the low-
est RFI (LRFI) and 9 with the highest RFI (HRFI) were 
selected from the cohort of 53 multiparous mid-lactation 
Holstein dairy cows. Power calculations revealed that our 
sample size will produce 99.0% power while controlling 
type I error under 5%, based on a t test of RFI. The RFI 
coefficients distribution of the LRFI and HRFI groups are 
depicted in Additional file 1: Fig. S4. Cows were housed 
in a free-stall barn equipped with electronic recognition 
feeding system for each cow (Zhenghong Co., Shanghai, 
China). Cows were allowed free access to a total mixed 
ration consisting of 41% roughage and 59% concentrate, 
and diet composition has been described previously 
[32]. Rumen fluid was collected using oral stomach tubes 
before morning feeding as described by Shen et al. [34]. 
The pH was immediately measured using a calibrated pH 
meter (Starter 300; Ohaus Instruments Co. Ltd., Nan-
jing, China). Samples were stored at − 80 °C until further 
processing. Two mL of rumen fluid was mixed with 20 
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μL of 25% orthophosphate acid and then centrifuged at 
20,000 × g at 4  °C for 10 min. The supernatant was har-
vested to use for analysis of VFA by gas chromatograph 
(GC-2010, Shimadzu, Kyoto, Japan) [35]. Mathemati-
cal model was employed to predict methane production 
by the equation of Ellis et  al. [36]: CH4 (MJ/d) = 3.23 
(± 1.12) + 0.81 (± 0.086) × DMI (kg/d).

DNA extraction and metagenome sequencing
Microbial DNA was extracted from rumen fluid samples 
by the repeat bead-beating plus column method [37]. The 
DNA concentration and purity were determined by using 
NanoDrop spectrophotometer (Thermo Fisher Scientific, 
Wilmington, DE, USA). The paired-end library was con-
structed using TruSeq™ DNA Sample Prep Kit (Illumina, 
San Diego, CA, USA) and paired-end sequencing was 
performed on the Illumina HiSeq 4000 platform (150 bp 
paired-end).

The 3’ and 5’ends were then stripped with SeqPrep, and 
low-quality reads (length < 50 bp, quality value < 20, or N 
bases) were removed with Sickle (version 1.33). The reads 
were aligned to the bovine genome (bosTau8 3.7) with 
BWA (Version 0.7.9a), and any hit that associated with 
a read with a corresponding reads was removed [38]. 
Reads from metagenomic trimmed data were assembled 
by multiple megahit using Megahit (Version 1.1.2) [39]. 
Open reading frames (ORFs) in each metagenomic sam-
ple were predicted with MetaGene, and the predicted 
ORFs with lengths > 100  bp were extracted and trans-
lated to amino acid sequences using the NCBI transla-
tion table [40]. The assembled contigs were clustered 
using CD-HIT, and non-redundant gene catalogue were 
constructed based on the sequences from gene sets with 
a 95% identity (90% coverage) [41]. After quality control, 
SOAPaligner (Version 2.2.1) was used to map the reads 
to predicted genes with 95% identity, and the gene abun-
dance in each sample was evaluated [42].

Taxonomic and functional annotation of rumen microbiota
We used BLASTP (version 2.2.28 +) for taxonomic anno-
tation [43], by aligning the nonredundant gene cata-
logues against the NCBI NR database [44]. The PCoA 
based on Bray–Curtis dissimilarity matrices was applied 
to visualize the taxonomic composition at species level. 
Microbial taxa with a relative abundance greater than 
0.1% in at least 50% of animals within each efficiency 
group were used for downstream analysis. The KEGG 
pathway annotation was performed with Diamond 
against the KEGG database, with an e-value of 1e-5 [45]. 
Carbohydrate-active enzyme annotation was made with 
hmmscan (Version 3.1b2). The abundances of pathways, 
KEGG Orthology (KO), KEGG enzymes, and CAZymes 

were normalized into counts per million reads (cpm) for 
downstream analysis.

Correlation analyses between rumen microbiota 
and pathways
Correlations between significantly different species and 
significantly different metabolic pathways were analysed 
using Spearman’s rank correlation, and significant cor-
relation coefficients with R > 0.5 or < -0.5 (P < 0.05) were 
determined to generate the correlation network. The 
correlation networks were visualized by Gephi software 
(version 0.9.2).

Statistical analysis
Lactation performance and rumen VFAs concentrations 
were analysed by Student’s t test. Taxonomic and func-
tional data were analysed on the online platform of the 
Majorbio Cloud Platform [46]. Differential abundances 
of phylum, family, genus, and CAZymes were tested by 
Wilcoxon test using stats R package in R software (ver-
sion 3.3.1). Significance was considered at P ≤ 0.05, and a 
tendency was defined as 0.05 < P ≤ 0.10.
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