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Introduction
Ischemic stroke is harmful to human health, and accounts 
for a large proportion of clinical cerebrovascular disease. 
Its main pathophysiological process is cerebral ischemia/
reperfusion (I/R) injury, with apoptosis to be a key disease 
pathology (Hauk et al., 2002; Abas et al., 2010; Wang et al., 
2014). Apelin is the endogenous ligand for the G protein 
coupled receptor, APJ. The Apelin gene encodes a group 
of functionally active endogenous peptides with differ-
ent molecular structures, including Apelin-36, Apelin-31, 
Apelin-17, and Apelin-13 (Kleinz et al., 2005; Masri et al., 
2005). By combining with the APJ receptor, Apelin regulates 
a number of physiological states including cardiovascular 
function (Barnes et al., 2010), endocrine function (Wei et 
al., 2005), nervous system function (Cheng et al., 2012), and 
control of feeding and drinking behavior (Falcao-Pires et 
al., 2009; Gu et al., 2013). Recent studies have shown that 
the Apelin/APJ system is expressed in neurons from many 
brain regions. Moreover, in vitro experiments show that 
hypoxia regulates neuronal Apelin expression (Zhang et al., 
2011), and Apelin not only promotes survival of primary cul-
tured neurons (O’Donnell et al., 2007; Cook et al., 2011), but 
also inhibits neuronal apoptosis induced by hydrogen perox-
ide (Zeng et al., 2010; Kasai et al., 2011). Current studies on 

Apelin have mainly focused on Apelin-13 and Apelin-36. 
Apelin-13 more readily combines with APJ and has stronger 
biological activity than Apelin-36. 

Here, we performed lateral intracerebroventricular injec-
tion of Apelin-13 to observe the effect on apoptosis during 
cerebral I/R injury. We measured infarct volume, neuronal 
apoptosis and related factors (e.g., anti-apoptotic factor Bcl-
2 and pro-apoptotic factor caspase-3) in rat brain to deter-
mine the neuroprotective effect of Apelin-13.

Materials and Methods
Animals 
Thirty six healthy adult male Wistar rats aged 6–7 weeks, 
weighing 200 g, of specific-pathogen-free level, were provid-
ed by Shandong Lukang Pharmaceutical Co., Ltd. (Shandong 
Province, China; animal license No. SCXK (Lu) 20130001). 
Experimental animal management followed the National 
Experimental Animal Breeding Guide and Regulations of 
Jining Medical University. All experimental animals were 
maintained at 25 ± 3°C in a 12-hour light/dark cycle, with 
free access to food and water.

Animal grouping
The 36 rats were randomly divided into three groups: sham, 
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cerebral I/R, and Apelin-13 treatment (n = 12 for each 
group). In the sham group, the right carotid artery was iso-
lated with no further processing. In the cerebral I/R group, 
the right middle cerebral artery occlusion model was per-
formed. While in the Apelin-13 treatment group, after reper-
fusion, Apelin-13 (0.1 μg/g; Phoenix Pharmaceuticals, Inc., 
Burlingame, CA, USA) diluted in 10 μL physiological saline 
was injected into the lateral ventricle using a brain stereotax-
ic instrument (Stoelting Co., Wood Dale, IL, USA).

Middle cerebral artery occlusion (MCAO) model
The rat right middle cerebral artery occlusion model was 
performed using the suture-occluded method (Longa et al., 
1989). In brief, rats were fasted for 12 hours before surgery, 
and anesthetized by intraperitoneal injection of 10% chloral 
hydrate (0.3 mL/100 g). Anesthetized rats were fixed on the 
operating table, and hair removed and disinfected. An inci-
sion was made along the cervical midline to isolate the ca-
rotid, external carotid, and internal carotid arteries, and then 
the carotid and external carotid arteries were ligated. The 
distal end of the internal carotid artery was occluded using 
clips, the carotid artery cut via an incision using ophthalmic 
scissors, and the thread line inserted to cut the arterioles. 
Line insertion was terminated at a depth of 18 mm and the 
skin wounds sutured. Lines were removed after 2 hours of 
ischemia and 24 hours of reperfusion.

Verification of model establishment
Two hours after the operation, rats were scored using the five 
stage evaluation method of Zea Longa (Longa et al., 1989). 
Specifically, 0 point: rats have no neurological symptoms; 
1 point: rats cannot fully extend the contralateral forepaw; 
2 points: rats circle towards the contralateral side; 3 points: 
rats fall towards the contralateral side; 4 points: rats cannot 
walk spontaneously or show loss of consciousness; 5 points: 
death. Rats with 1–3 points and no subarachnoid hemor-
rhaging qualified as established models.

2, 3, 5-Triphenyl-2H-tetrazolium chloride (TTC) staining  
After model establishment, rat brains were harvested 24 
hours after injury in the sham group, and 24 hours after 
reperfusion in the other two groups. Three brains were 
randomly selected from each group and kept at −20°C. 
Brains were cut into 2-mm-thick coronal sections placed 
in 1% TTC solution (Sigma, St. Louis, MO, USA) at 37°C, 
and stained for 20 minutes in the dark. Slices were then re-
moved for imaging. Infarcted areas appeared white. Infarct 
areas were determined using Image-Pro Plus v 6.0 software 
(Media Cybernetics Inc., Bethesda, MD, USA) and the per-
centage of cerebral infarct volume to total brain volume 
calculated.

Slice preparation 
Nine rats were randomly selected from each group at 24 
hours after injury. Rats underwent a thoracotomy under 
intraperitoneal anesthesia, and then cardiac perfusion with 
normal saline until the liquid became clear. Rat brains were 

fixed in 200 mL of 4% paraformaldehyde solution for in-
ternal fixation. Next, brains were removed and immersed 
in 4% paraformaldehyde solution for 24 hours for external 
fixation, and then sunk in sucrose solution gradients of 10%, 
20% and 30%. Brain slices were cut into 30-μm-thick coro-
nal slices using a microtome (Thermo Scientific, Inc., New 
York, NY, USA).

TdT-mediated dUTP nick-end labeling (TUNEL) staining
Slices were immersed in 0.85% sodium chloride for 5 minutes, 
washed in PBS for 5 minutes, immersed in 4% paraformalde-
hyde solution for 15 minutes, and then washed in PBS twice 
for 5 minutes each. Subsequently, slices were incubated in 
protease K for 15 minutes, washed in PBS for 5 minutes, fixed 
in 4% paraformaldehyde for 5 minutes, and again washed in 
PBS for 5 minutes (TUNEL Kit; Promega Co., Madison, WI, 
USA). Slices were incubated in equilibration buffer for 10 
minutes at room temperature. For labeling, slices were incu-
bated in terminal deoxynucleotidyl transferase (TdT) reaction 
mix for 60 minutes at 37°C, and immersed in 2 × SSC for 15 
minutes to terminate the reaction. Next, slices were washed 
in PBS three times for 5 minutes each, and incubated in 
streptavidin horseradish peroxidase for 30 minutes followed 
by three PBS washes. Slices were developed using DAB, which 
was incubated for 10 minutes, and then repeatedly washed 
in deionized water and sealed. TdT was used instead of de-
ionized water for negative controls. Brown stained apoptotic 
cells were observed using an inverted fluorescence microscope 
(Olympus, Tokyo, Japan). Optical density of apoptotic cells 
was calculated from five randomly selected views at the isch-
emic penumbra using Image-Pro Plus v 6.0 software.

Immunohistochemistry
After washing in PBS, slices were incubated in 3% hydrogen 
peroxide solution for 10 minutes followed by B cell lym-
phoma/leukemia 2 (Bcl-2) and cysteinyl aspartate-specific 
proteinase-3 (caspase-3) rabbit anti-rat polyclonal antibod-
ies (Bioworld Technology, Inc., Louis Park, MN, USA) at 4°C 
overnight. Next, slices were rinsed with PBS three times for 
2 minutes each, and incubated in biotin labeled goat an-
ti-rabbit secondary antibody (Beijing Sequoia Jinqiao Bio-
logical Technology Co., Ltd., Beijing, China) for 15 minutes 
at 37°C, followed by washing in PBS three times for 2 min-
utes each. Finally, slices were developed using DAB (Beijing 
Sequoia Jinqiao Biological Technology Co., Ltd.) and then 
sealed. Negative control antibody was treated with PBS. 
Brown stained positive cells were observed using an invert-
ed fluorescence microscope (Olympus). Optical density of 
Bcl-2-and caspase-3-immunoreactive cells was calculated 
from five randomly selected views at the ischemic penum-
bra using Image-Pro Plus v 6.0 software.

Statistical analysis
Data were analyzed using GraphPad Prism software (Graph-
Pad Software, Inc., La Jolla, CA, USA) and are expressed 
as the mean ± SD. Groups differences were analyzed using 
one-way analysis of variance and if a significant difference 
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Figure 1 Apelin-13 reduced infarct volume in a middle cerebral artery 
occlusion rat model after 2 hours of ischemia and 24 hours of 
reperfusion, as detected by 2,3,5-triphenyl-2H-tetrazolium chloride 
(TTC) staining.
(A) Representative coronal brain sections of sham, cerebral I/R, and Ape-
lin-13 treatment groups. Brain tissue in the sham group showed uniform 
red color with no infarction. The infarct volume in the Apelin-13 treatment 
group was reduced compared with the cerebral I/R group. (B) Percentage 
of cerebral infarct volume to total brain volume. *P < 0.01, vs. sham group; 
#P < 0.05, vs. cerebral I/R group (one-way analysis of variance followed by 
the least significance difference test). Data are expressed as the mean ± SD 
(n = 3 for each group). I/R: Ischemia/reperfusion. 

Figure 2 Apelin-13 reduced apoptosis in the ischemic penumbra 
region in a middle cerebral artery occlusion rat model after 2 hours 
of ischemia and 24 hours of reperfusion, as detected by TdT-
mediated dUTP nick-end labeling (TUNEL) staining. 
(A) Representative photomicrographs of apoptotic cells with TUNEL  
in sham, cerebral I/R, and Apelin-13 treatment groups (fluorescence 
microscope, × 400, scale bars: 50 μm). Arrows indicate TUNEL positive 
cells. (B) Optical density values were used to calculate apoptotic cell 
number. *P < 0.01, vs. sham group; #P < 0.05, vs. cerebral I/R group 
(one-way analysis of variance followed by the least significance differ-
ence test). Data are expressed as the mean ± SD (n = 3 for each group). 
I/R: Ischemia/reperfusion.
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was detected, followed by the least significance difference 
test. P < 0.05 was considered significantly different.

Results
Apelin-13 reduced infarct volume in MCAO rats
In the Apelin-13 treatment group, infarct volume in brain 
tissue was reduced compared with the cerebral I/R group 
(Figure 1), demonstrating that Apelin-13 attenuates isch-
emic injury (P < 0.05; Figure 1B) and has a neuroprotective 

effect against cerebral I/R injury. 

Apelin-13 reduced apoptosis in MCAO rats 
There were few apoptotic cells in the sham group, which 
increased significantly in the cerebral I/R group (P < 0.01). 
The number of apoptotic cells decreased in the Apelin-13 
treatment group compared with the cerebral I/R group (P < 
0.05; Figure 2), showing that Apelin-13 treatment reduces 
apoptotic cell death after cerebral I/R injury. 

Figure 3 Bcl-2 immunoreactivity at the ischemic penumbra region in 
a middle cerebral artery occlusion rat model after Apelin-13 
treatment, as detected by immunohistochemical staining. 
(A) Representative photomicrographs of Bcl-2-immunoreactive cells in 
sham, cerebral I/R, and Apelin-13 treatment groups (fluorescence micro-
scope, × 400, scale bars: 50 μm). Arrows indicate Bcl-2 positive cells. (B) 
Optical density values were used to calculate Bcl-2 immunoreactivity. 
*P < 0.01, vs. sham group; #P < 0.05, vs. cerebral I/R group (one-way 
analysis of variance followed by the least significance difference test). 
Data are expressed as the mean ± SD (n = 3 for each group). I/R: Isch-
emia/reperfusion.

Figure 4 Caspase-3 immunoreactivity in the ischemic penumbra 
region in a middle cerebral artery occlusion rat model after Aplin-13 
treatment, as detected by immunohistochemical staining. 
(A) Representative photomicrog raphs of caspase-3-immunoreactive 
cells in sham, cerebral I/R, and Apelin-13 treatment groups (fluores-
cence microscope, × 400, scale bars: 50 μm). Arrows indicate caspase-3 
immunoreactive cells. (B) Optical density values were used to calculate 
caspase-3 immunoreactivity. *P < 0.01, vs. sham group; #P < 0.05, vs. 
cerebral I/R group (one-way analysis of variance followed by the least 
significance difference test). Data are expressed as the mean ± SD (n = 
3 for each group). I/R: Ischemia/reperfusion.

A

B

Sham                 Cerebral I/R          

Sham                                                                Cerebral I/R                                                     Apelin-13 treatment    

B
cl

-2
 im

m
un

or
ea

ct
iv

ity
 

(o
pt

ic
al

 d
en

si
ty

)

200

150

100

50

0

*

#

50 μm50 μm50 μm

Apelin-13 
treatment

A

B

Sham                  Cerebral I/R       

 C
as

pa
se

-3
 im

m
un

or
ea

ct
iv

ity
(o

pt
ic

al
 d

en
si

ty
)

*

**

Sham                                                                  Cerebral I/R                                                    Apelin-13 treatment    

50 μm 50 μm 50 μm

250

200

150

100

50

0

*

 #

Apelin-13 
treatment



770

Yan XG, et al. / Neural Regeneration Research. 2015;10(5):766-771.

Apelin-13 increased Bcl-2 immunoreactivity at the 
ischemic penumbra in MCAO rats 
Bcl-2 immunoreactivity was minimal in the sham group, but 
increased in the cerebral I/R group compared with controls 
(P < 0.01). In addition, Bcl-2 immunoreactivity increased in 
the Apelin-13 treatment group compared with the cerebral 
I/R group (P < 0.05; Figure 3), showing that Apelin-13 has 
protective effects against cerebral I/R injury by increasing 
immunoreactivity of anti-apoptotic factors. 

Apelin-13 decreased caspase-3 immunoreactivity at the 
ischemic penumbra in MCAO rats
Caspase-3 immunoreactivity was weak in the sham group, 
but relatively high in the cerebral I/R group (P < 0.01). 
Caspase-3 immunoreactivity was decreased in the Apelin-13 
treatment group compared with the cerebral I/R group (P < 
0.05; Figure 4), indicating that Apelin-13 has protective ef-
fects on cerebral I/R injury by inhibiting immunoreactivity 
of pro-apoptotic factors. 

Discussion
In ischemic stroke, the cerebral artery is obstructed abso-
lutely or relatively by thrombosis, resulting in injury to the 
corresponding brain tissue by ischemia and hypoxia (Sun et 
al., 2014; Zheng et al., 2014). Rapid restoration of blood flow 
to the brain is the most effective means of relieving ischemic 
hypoxic injury, but inevitably causes reperfusion injury 
(Pan et al., 2013; Shen et al., 2013). With a stroke, the infarct 
caused by cerebral I/R injury is divided into two regions. At 
the center of the infarct region, nerve cells die rapidly and 
the infarction injury is irreversible. However, there is an isch-
emic penumbra around the infarct area (Hughes et al., 2010; 
Du et al., 2014), where neuronal injury is mainly apoptotic 
and neurons are in a state of electrical failure. Nevertheless, 
ischemic neuronal apoptosis can be delayed and is reversible, 
which provides an opportunity for treatment of ischemic 
stroke using drugs that can reduce neuronal damage and ce-
rebral infarct volume. Thus, effectively preventing neuronal 
apoptosis within the ischemic penumbra region may relieve 
brain injury and improve a patients’ quality of life.

In the central nervous system, apoptosis-related genes 
include anti-apoptotic and pro-apoptotic genes, with Bcl-2 
and caspase-3 the main factors associated with cell apop-
tosis (Liu et al., 2014). Bcl-2 was first discovered at a chro-
mosomal translocation, t(14, 18) that associated with B cell 
lymphoma. In 1988, Vaux (1988) found that Bcl-2 inhibits 
apoptosis and prolongs cell survival. The Bcl-2 gene is reg-
ulated by programmed cell death to extend cell lifespan, 
and is therefore directly related to cell apoptosis. Bcl-2 has 
a direct inhibitory effect on cell apoptosis and operates at 
all stages of the cell cycle. Numerous studies have shown 
that Bcl-2 upregulation reduces cerebral ischemia in animal 
models (Okazaki et al., 2008; Xing et al., 2008), indicating 
that Bcl-2 acts as a neuroprotective factor, and can inhibit 
neuronal damage caused by ischemia and hypoxia (Zhang 
et al., 2006). We found increased Bcl-2 immunoreactivity in 
the I/R group compared with the sham group, suggesting 

that Bcl-2 expression is increased by a self-protective mech-
anism during the process of cerebral I/R injury. Additional-
ly, Bcl-2 immunoreactivity was significantly increased in the 
Apelin-13 treatment group compared with the cerebral I/
R group, indicating that Apelin-13 increases expression of 
this anti-apoptotic protein and thus inhibits cell apoptosis. 
The caspase family is a group of proteases with cysteine 
restriction enzyme sites. Cascade activation of caspase pro-
teases is the main operational mode of cellular apoptosis. 
Previous studies have demonstrated that caspase family 
members are mostly involved in neuronal apoptosis (Yuan 
et al., 1993; Nicholson et al., 1997). In addition, caspase-3 
is the key protease and operator of cell apoptosis (Salvesen, 
2002; Shi, 2004), which plays an important regulatory role 
in biological processes such as cell differentiation, adhesion, 
and neural development (Nakamoto et al., 2005; Puga et 
al, 2008; D’ Amelio et al., 2010). Caspase-3 is known as the 
death protein and most closely associated with cell apopto-
sis (Prabhakar et al., 2003; Meloni et al., 2011). Moreover, 
caspase-3 induces apoptosis after ischemic brain injury 
(Ayyash et al., 2012), and caspase inhibitors reduce cerebral 
I/R injury in animal models (Fink et al., 1998). We found 
increased number of caspase-3 positive cells in the cerebral 
I/R group compared with the sham group, with expression 
mainly located in the ischemic infarct region, suggesting 
that caspase-3 is activated during apoptosis caused by ce-
rebral I/R injury and also promotes apoptosis. Caspase-3 
immunoreactivity in the Apelin-13 treatment group was 
reduced compared with the cerebral I/R group, indicating 
that Apelin-13 inhibits caspase-3 immunoreactivity during 
cerebral I/R injury and plays an important anti-apoptotic 
role.

Our findings show that intracerebroventricular injection of 
Apelin-13 effectively reduces cerebral I/R injury in rats and 
inhibits apoptosis of neuronal cells, thereby exerting a neuro-
protective effect. The protective mechanism of intracerebro-
ventricular injection of Apelin-13 inhibits immunoreactivity 
of pro-apoptotic factors and promotes immunoreactivity 
of anti-apoptotic factors, thereby reducing apoptosis. Our 
research adds more theoretical basis to development of new 
drug treatments for Apelin and its receptor, and may provide 
greater drug choice for patients with ischemic stroke. 
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