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Endocrine-disrupting compounds (EDCs) are a broad class of chemicals present in many residential prod-
ucts that can disrupt hormone signaling and cause health problems in humans. Multigenerational cohorts,
like the Michigan polybrominated biphenyl registry, are ideal for studying the effects of intergenerational
exposure. Registry participants report hormone-related health problems, particularly in those exposed
before puberty or those in the second generation exposed through placental transfer or breastfeeding.
However, more research is needed to determine how EDCs cause health problems and the mechanisms
underlying intergenerational exposure. Utilizing existing data in this registry, along with genetic and epi-
genetic approaches, could provide insight to how EDCs cause human disease and help to determine the
risk to exposed populations and future generations.
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Endocrine-disrupting compounds (EDCs) are a broad class of chemicals that can disrupt hormone signaling by
interfering with steroidogenesis, receptor binding or hormone homeostasis. They are ubiquitous in the environment,
found in many industrial and residential settings, and can even be found in seemingly innocuous substances, like
household dust [1]. However, the health effects of EDCs are not fully known. Adding to the need to research the
effects of EDC exposure, EDC-associated health effects are observed in the children of those exposed, suggesting
an intergenerational transmission of health risk [2–5].

The Michigan polybrominated biphenyl (PBB) registry is a unique, multigenerational cohort of individuals
exposed to high levels of a single type of EDC, which may provide insight into the effects of EDCs on humans.
Registrants were exposed to PBB during an agricultural accident in the 1970s, and they and their children have
been followed for the past 40 years. Many individuals still have detectable levels of PBB in their blood. This review
will focus on the potential mechanisms through which PBB exposure may lead to intergenerational health risks,
drawing on the background of the contamination incident, the existing studies on the known health effects and
existing genetic and epigenetic studies from other types of EDCs.

The Michigan incident
Flame retardants have been used in electronic appliances, textiles, plastics and polyurethane foams since the increase
in fire safety legislation in the 1960s, with one of the most common flame retardants being PBB. From 1970 to
1976 alone, 13.3 million pounds of PBBs were produced in the USA. Over 88% of all PBBs were produced by
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Velsicol’s Michigan Chemical Company as FireMaster BP-6 and FireMaster FF-1 [6]. In May 1973, a shipment of
FireMaster FF-1 was mistakenly shipped to Farm Bureau Services feed mill instead of NutriMaster (magnesium
oxide), a nutritional supplement for livestock feed. Both substances were produced by the Michigan Chemical
Company, both were fine white powders, and both were stored in plain bags with black lettering [7]. It is not known
how much FireMaster FF-1 was sent to the Farm Bureau, but the estimates range from 500 to 1000 pounds [8].

In July 1973, the Farm Bureau mixed the FireMaster FF-1 into their animal feed, and during that fall, contami-
nated animal feed with high levels of PBBs (4000–13,500 ppm) was shipped to farms around Michigan [7,8]. The
contaminated feed was no longer on the market by December 1973, but animals were fed with it until May 1974,
when PBB was identified as the cause of the toxic effects seen in the farm animals [7,8]. Additionally, lower levels
of contamination still occurred from several sources. Mill machinery still contained PBB residues and continued
to contaminate new animal feed. One mill alone contaminated over 3000 pounds of feed in this manner. Feed
swapping between mills and recycling contaminated animals products for new animal feed added to the number
of mills and animals that were contaminated [8]. This caused a lower level of contamination, but it continued until
the mills were cleaned a year later [7,8].

After the introduction of feed contaminated with high concentrations of PBB at dairy farms across Michigan,
cows’ feed consumption decreased by 50%, followed by a decrease in milk production. Cows also had difficulties
reproducing and calving, had abnormal hoof growths, hyperkeratosis and hematomas. Abscesses were found on the
dead cows’ livers and other organs, as were intra-abdominal adhesions [9,10]. Cattle were underweight, had fibroids
in their lungs, enlarged thymus glands and lesions and lymphocyte infiltration in their livers and kidneys. The
bulls had a reduced number or complete lack of mature spermatozoa and atrophied testes. Furthermore, the small
intestine showed lymphocyte infiltration, which may explain the decreased feed consumption [10].

With the cause of the health problems in the livestock finally identified as the contaminated feed, efforts focused
on stopping the contamination from spreading. The US FDA regulated that PBB levels must be less than 1 ppm
in dairy products intended for human consumption. The Michigan Department of Agriculture identified and
quarantined contaminated farms. Although the quarantine started with dairy farms, other livestock had to be
quarantined because of the cross contamination at the Farm Bureau mills. Over 30,000 cattle, 2000 pigs, 400 sheep
and 2 million chickens had to be destroyed and buried in state-approved burial sites [7].

Given the toxic effects observed in exposed animals, human exposure to PBBs was a concern. It was determined
that approximately 6.5 million people in Michigan had some PBB exposure, with higher exposures among those who
lived on quarantined farms or worked at the Michigan Chemical Company [7,8,11]. In the mid-1970s, approximately
5000 individuals consented to participate in a study of the long-term effects of PBBs on humans (Figure 1). Many
of the registrants’ children have since been enrolled [8].

Biochemistry of PBBs
PBBs are a class of chemicals characterized by two phenyl rings with bromine substitutions. The number and
positions of the bromine substitutions yield 209 different configurations of PBB, called congeners. The chemical
properties and biological activity of PBB depend on the degree and position of the substitution [6]. The commercial
product in the Michigan incident was FireMaster FF-1, which consisted of another existing technical mixture of
PBBs (FireMaster BP-6) and 2% calcium silicate – an anticaking agent [7]. Twenty-two different congeners of
PBBs have been detected in FireMaster BP-6, with the most common congeners being PBB-153 (2,2′,4,4′,5,5′-
hexabromobiphenyl; over 50%) and PBB-180 (2,2′,3,4,4′,5,5′-heptabromobiphenyl) [6,7].

Effects of PBBs in animal models
Studies showed that pregnant cattle fed 25,000 mg (∼3250 ppm) of FireMaster BP-6 a day ate less food, became
emaciated, had diarrhea, had excessive salivation and miscarried. Much like the cows on the contaminated farms,
exposed cattle also had depressed heart and respiratory rates, and died after about 1–2 months of exposure [12]. Cows
that were fed 100 mg/day (∼13 ppm) of PBBs had lacrimation, hyperkeratosis, alopecia, elevated lymphocytes,
decreased milk production and lesions of the kidneys, liver and skin [13]. Male calves who were exposed had
degeneration in the epithelial lining of their seminiferous tubules [13]. Further studies in 60 dairy cattle showed that
PBBs were absorbed in the GI tract and could be detected in the bloodstream mere hours after ingestion. PBBs
are concentrated in lipid-rich tissue, with adipose tissue in the cows fed 1125 g of PBB having a concentration of
1836 ppm, versus 267 ppm in the liver and 53.3 ppm in blood plasma. Calves born to exposed cows were also
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Figure 1. Timeline of the Michigan incident.

exposed through placental transfer and nursing and had PBB concentrations with similar tissue distribution as
those exposed through eating contaminated feed [13,14].

Because many chickens became sick after eating cross-contaminated animal feed during the initial event in
Michigan, the effect of PBBs on chickens was studied. Chickens starved rather than eat a diet high in PBBs and
had a reduced feed intake when fed a diet that had low concentrations of PBBs. Once exposed, the PBB levels in
their adipose tissue remained unchanged over the 2-month study. Exposed chickens had reduced egg production
(66% decrease) and those eggs had reduced hatchability, although, part of that could be due to the reduction in
food intake [15].

Research was also done in traditional animal models. Much like the exposed cows, rats and their pups who were
fed high levels of PBBs (200 ppm) weighed 15% less and had delayed growth compared with controls [16]. Pregnant
rats fed PBBs had detectable concentrations of PBBs in their brain, heart, lung, liver, small intestine, placenta,
uterus, kidneys, skin, mammary tissues and fat, with the fat and mammary tissues having the highest concentrations
of PBB (965 and 500 ppm, respectively) [16,17]. Rat pups who were nursed by PBB-exposed rats had higher PBB
levels than did the rat pups who were only exposed in utero (68.6–149.7 vs 1.6–5.4 ppm), suggesting that, while
PBBs do cross the placental barrier and expose the fetus, nursing was a significant mechanism of intergenerational
exposure [17].

PBB-exposed rats and their offspring (exposed either in utero or through breastfeeding) have larger livers for their
bodyweight (12.4 vs 10.3 g), and the offspring weighed less (10 vs 14 g at 6 postbirth) compared with control rates.
Additionally, 64% of the offspring of PBB-exposed rats did not have detectable vaginal opening by day 46, versus
100% of the offspring of control rats [18,19]. Rat pups who were exposed, both prenatally and perinatally, and then
weaned onto a PBB-free diet still show residual effects from PBB exposure 10 months later. Specifically, the liver
was larger and had larger vacuoles, a response that is seen with exposure to other hepatotoxicants. This increased
vacuolation was most prominent soon after exposure. The livers of exposed rat pups also had retained bile, slight
necrosis and cellular swelling [20].

Besides the overt physical changes, rats exposed to PBBs have altered enzyme activity compared with control
rats. They showed increased microsomal enzyme activity in both the liver and kidneys [20,21]. Both pregnant
rats and their offspring had a tenfold increase in AHH activity and threefold increase in EH activity in their
livers. The rats had increased AHH activity in their kidneys and mammary glands and decreased EH activity in
their mammary glands [16,21], as well as increased activity of cytochrome P-450 and its associated enzymes [22].
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AHH activates cytochrome P-450, which is important for the synthesis of steroid hormones and fat molecules,
and EH and cytochrome P-450 both play a role in the metabolism of xenobiotic and toxic compounds. AHH
activity was higher (237.48 vs 118.88 U/mg/min) when the rats were exposed to PBBs than when they were
exposed to polychlorinated biphenyl (PCB), another EDC, suggesting that PBBs had more of an effect on the
liver and kidneys [16]. The authors mentioned that exposure to dioxin, a well-known lipophilic carcinogen and
environmental pollutant, caused a similar increase in EH activity, but in the rats’ lung and skin tissue, suggesting
that PBB, like PCB, could be dioxin-like [21]. Offspring of rats exposed to 100 ppm diet metabolized the anesthetic,
pentobarbital, more quickly (duration was only 1% that of controls) and had 57% less vitamin A in their livers,
suggesting that PBB exposure can affect the metabolism of naturally occurring compounds and xenobiotics for
an extended period [19,20]. Further, the different congeners of PBB induce different responses in rat livers. One
congener tested had no effect on liver enzymes, two others, including the second most common congener in both
FireMaster mixtures, PBB-180, had a strictly phenobarbital-type induction on liver enzymes, and another congener
had a mixed (both 3-methylcholanthrene- and a phenobarbital-type) induction on liver enzymes, indicating that
different congeners will induce different series of enzymes [23,24]. Therefore, the specific congener composition of
the PBB mixture will determine the effects for humans and animals.

PBB exposure also affected hormone homeostasis. Rats who were directly fed low levels of PBBs had decreased
levels of serum T4 and T3. These hormone levels in exposed rats had a smaller increase than control rats when
administered a dose of thyroid-stimulating hormone [25]. Rats who were exposed to PBBs had increased metabolism
in the liver of both progesterone (to 16α- and 6β-hydroxyprogestrone) and testosterone (to 7α- and 6β- hydrox-
ytestosterone) as measured using high-performance liquid chromatography followed by gas chromatography-mass
spectrometry [19,26,27]. Additionally, PBB exposure reduced the metabolism of testosterone to dihydrotestosterone
and dihydroandrosterone [27]. This suggests that PBB induces multiple steroid enzymes and that the fertility and
developmental problems in exposed animals could be caused by this altered steroid hormone metabolism. Even
the F2 generation showed effects of PBB exposure, such as rapid metabolism of progesterone and pentobarbital,
indicating that intergenerational transmission of PBB carries health risks [19].

Studies were also conducted in nonhuman primates. Seven rhesus monkeys were fed 0.3 ppm PBB over 6 months
to simulate the estimated exposure levels in Michigan. All of the animals lost an average of 7.4% of their body
weight over the course of the experiment, despite being fed the same amount, indicating that PBB exposure altered
nutritional absorption and that the weight loss seen in the farm animals in Michigan was not caused solely by a
decrease in food intake. They also reported sterile abscesses (abscesses not caused by bacteria), increased menstrual
cycle length (31 vs 28 days) that was associated with a longer, flatter progesterone peak and excessive implantation
bleeding (12–16 days) and miscarriages. Live offspring were smaller and gained weight slower through 3 months
compared with unexposed controls. Monkeys fed 25 ppm PBB had inflamed stomachs as well as enlarged liver
cells [28]. Further studies in CV-1 cell lines (derived from African green monkey kidney cells) also demonstrated
PBB’s effect on hormone receptors. PBBs suppressed thyroid hormone receptor-mediated transcription (45% of
TRβ1 and 65% of TRα1), which in turn, suppressed thyroid hormone induced dendrite branching. Based on these
results, PBBs could not only impair hormonal balance, but could also impair neuronal development in developing
fetuses, and potentially have lifelong consequences [29].

As a whole, the studies in farm animals and animal models indicate that PBBs can cause harm. Exposed animals
had thyroid, liver and reproductive problems, as well as altered hormone metabolism, and their offspring were
also exposed and had developmental problems (Table 1). To determine whether the exposure levels necessary for
animals to develop symptoms are comparable with exposure levels reported in humans, the doses can be converted
to estimated human equivalents using ratios developed by the Agency for Toxic Substances and Disease Registry
based on the average weights of the animals and humans (Figure 2) [30]. However, comparing human equivalents
of the animal exposures and human exposures must be done cautiously, because exposure levels in animals were
measured in studies as the levels of PBB added to food, whereas the exposure levels reported in humans are measured
as the levels currently circulating in the blood. PBB concentration would be expected to be higher in food than
the eventual concentration in blood after it had been absorbed through the gut and stored in adipose tissue. The
converted animal exposure values would be more comparable to levels of PBB in food consumed by humans.

Effects of PBBs in humans
A cohort of approximately 5000 exposed individuals from Michigan was established soon after the contamination
incident and has been used in many studies evaluating the effects that PBBs. The first studies with this cohort
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Table 1. Polybrominated biphenyl levels required for health problems in animal models.
Cattle Chickens Rats Nonhuman primates

Death 25,000 mg/day
(262,879 ppm)

Depressed heart rate 25,000 mg/day
(262,879 ppm)

Depressed respiratory rate 25,000 mg/day
(262,879 ppm)

Perinatal death 100 ppm†

(3210 ppm†)

Miscarriage (hatchability) 25,000 mg/day
(262,879 ppm)

45 ppm
(1155 ppm)

0.3 ppm
(17 ppm)

Decreased fertility 45 ppm
(1155 ppm)

Decreased milk production 100 mg/day
(1051 ppm)

Male genitourinary conditions 100 mg/day
(1051 ppm)

Delayed reproductive development 100 ppm†

(3210 ppm†)

Thyroid problems 5 ppm
(160 ppm)

Weight loss (emaciation) 25,000 mg/day
(262,879 ppm)

125 ppm
(3210 ppm)

200 ppm
(6420 ppm)

0.3 ppm
(17 ppm)

Delayed growth 200 ppm
(6420 ppm)

Enzyme induction 100 ppm†

(3210 ppm†)

Alteration of anesthesia metabolism 10 ppm
(320 ppm)

Alteration of steroid metabolism 100 ppm†

(3210 ppm†)

Liver problems 100 mg/day
(1051 ppm)

10 ppm
(320 ppm)

25 ppm
(1452 ppm)

Stomach inflammation 25 ppm
(1452 ppm)

Skin problems 100 mg/day
(1051 ppm)

0.3 ppm
(17 ppm)

Diarrhea 25,000 mg/day
(262,879 ppm)

Excessive salivation 25,000 mg/day
(262,879 ppm)

The level of PBBs fed to various animal models and the health problems that they developed from the exposure. Exposure levels have been converted to the equivalent human
exposure levels using accepted conversion equations.
†Effect seen in offspring of mothers exposed to this level of PBBs.
Data taken from [30].
PBB: Polybrominated biphenyl.

began in the late 1970s. On a questionnaire asking about the incidence of health problems, ranging from acne to
heart disease, the parents of 292 children who were exposed to PBBs reported a higher prevalence of symptoms in
their children than parents of unexposed children from Wisconsin. However, when serum PBB levels were analyzed
in these children, it was discovered that the highest number of symptoms were reported in the children who had
the lowest serum PBB levels, and that the only complaint that had a positive association with PBB levels was acne
in 10–11 year olds [31]. A later study done in both adults and children from the quarantined and nonquarantined
farms, as well as the Michigan Chemical Company workers, showed no increase in symptoms in the children from
the farms compared with control children in Wisconsin. However, the study did show that adults exposed to PBBs
have reported significantly more alopecia, halogen acne, skin peeling and scaling, erythema, itching, increased finger
nail growth and increased sweating. It is unclear why adults would experience skin problems when exposed to PBBs
and children would not, especially since the children and farmers were both exposed in the same manner [32].
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Non-Human
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Cows:
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– Death
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– Excessive
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Non-human
primates:
– Skin problems
– Stomach
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Chickens:
– Weight loss

Figure 2. Effects of PBBs on animal models standardized by human equivalent dose.

People in Michigan were concerned with the persistence of PBBs in their bodies. As discussed above, the
lipophilic properties PBBs make it likely to persist in humans for years. A study done in 406 women from the
cohort determined that the PBB elimination rates in each person were modified by a variety of factors. Higher
BMI at enrollment was associated with a slower rate of elimination, and smoking was associated with a faster
rate of elimination. The elimination rate was significantly faster if a woman had been pregnant and breastfeeding
between serum measurements versus if she had just been pregnant (a decrease of 0.007 ppb PBB/year if pregnant
and breastfeeding vs an increase of 0.008 ppb PBB/year if just pregnant), although there was not a significant
difference compared with women who had never been pregnant. This was surprising given that breastfeeding
in animals was shown to be a major elimination route for PBBs but could be due to the mobilization of PBBs
from adipose tissue to the bloodstream during physiological changes like pregnancy [33]. Using elimination rates
based on these factors, the biological half-life for PBBs in humans was calculated to be between 13 and 29 years,
depending on the person’s BMI and their initial PBB exposure level [34]. Women who were exposed as children
had faster rates of PBB elimination, although that may be related to children having higher PBB serum initially
and then undergoing a growth spurt. Additionally, 12% of the women surveyed showed an increase in PBB serum
levels, which remains largely unexplained, unless those subjects somehow had continued exposure even after the
contamination clean-up or there was a measurement error [35]. All of these studies were limited because height
and weight were only collected at enrollment, not throughout, so any changes in serum PBB levels due to weight
changes or growth spurts in children were lost. Furthermore, these studies used only women, making it impossible
to assess sex-specific elimination rates and most of the women only had their PBB levels measured twice, making
accurate elimination curves difficult.

Even with current measurements of PBB exposure, studies of thyroid problems gave conflicting results. Initial
reports in 35 chemical plant workers showed that 11% were diagnosed with hypothyroidism and that they had
significantly higher levels of thyrotropin, a hormone that regulates the production of other thyroid hormones.
However, serum PBB levels were never measured and PBB exposure was assumed based on their employment
by the chemical factory, thus the increased prevalence of thyroid problems was unable to be associated with an
increased PBB exposure [36]. These results were disputed by a short report in 51 chemical workers, who had an
average PBB level of 12.82 ppm, which is substantially more than the average exposure in Michigan. None of
these workers reported hypothyroidism or thyroid enlargement, but the report was not explicit with its methods,
making it difficult to determine why these two studies conflicted [37]. Further studies in 200 men and women tried
to correlate reported thyroid problems with PBB exposure, but again there was no difference in thyroid disease
incidence with levels of PBB exposure [38]. These studies may not have had sufficient sample sizes given the large
interpersonal variations in thyroid hormone levels. In the most recent study of 753 individuals from the Michigan
PBB registry, it was found that 18% of participants (and 25% of women) had thyroid disease, with women exposed
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to higher levels of PBB having increased odds of developing thyroid disease (odds ratio [OR]: 1.12 for any thyroid
disease; OR: 2.13 for hypothyroidism). In participants that did not report thyroid disease, there was no association
between thyroid hormone levels and PBB exposure levels [39].

A study of cancer risk in individuals exposed to higher levels of PBBs found that, for lymphomas and digestive
system cancers, which were grouped to include liver, stomach, esophagus and pancreas, the OR for lymphomas
for individuals in the highest exposure group (>50 ppb) versus the lowest exposure group (<3 ppb) was 48.9. For
digestive cancers, the OR between exposure groups was 22.9, suggesting that PBB exposure does increase the risk for
certain types of cancer [40]. Other studies found that there was an increased risk of breast cancer in people exposed
to higher levels of PBB, but it did not reach statistical significance [41,42]. Recently, PBBs have been reclassified from
a possible (Group 2B) to a probable (Group 2A) human carcinogen by the International Agency for Research on
Cancer.

Given that animal studies had shown reproductive delay in rats exposed to PBBs, research was done to determine
whether there was an increased incidence of reproductive disorders. Studies conducted to date have not identified
an association between PBB exposure and incidence of endometriosis [43] or risk of spontaneous abortion [44]. PBB
exposure was also not associated with a risk of an abnormal pap test result [45]. However, these studies were all
conducted in individuals that were directly exposed to PBBs.

Importantly, the effects of PBBs are not limited to those originally exposed, because PBBs are transmitted to the
children of exposed mothers. As in the animal models, PBBs in humans can be passed through the placenta and
through breast milk. Umbilical cord blood serum was found to have about a third the PBB concentration of the
maternal blood serum, but breast milk was found to have 100-times the concentration of PBBs [46,47]. Additionally,
infants breastfed by exposed mothers for 6 months were six-times more likely to have detectable levels of PBBs in
their blood than babies who were born to exposed mothers but not breastfed [47]. Thus, there is substantial evidence
of intergenerational transmission of PBBs and that infants born to exposed mothers are exposed during critical
developmental periods.

Research then assessed the health effects in the second generation. One study reported a higher percentage of boys
born to the exposed cohort (54.2%), though this difference was not statistically significant [48]. Another study found
no significant association between either infant birth weight or gestational age and maternal PBB exposure [49].
However, a further study in this cohort did report that babies born to mothers exposed to high levels of PBBs had
higher birth weight (an increase of 16 g per 10 ppb exposure in the mother), but only if the mothers were exposed
before puberty [50]. This was further confirmed by offspring of mothers with even lower PBB exposure (blood
serum above 1 ppb) having three-times the odds of having lower Apgar scores, but again, only if the mothers were
exposed to prior to the start of puberty (age of exposure was <10 years old) [51]. Thus, more nuanced approaches
to how PBBs affect exposed individuals and their offspring need to be implemented, and the dosage, duration and
time point of the exposure need to be considered.

Because the Michigan PBB registry has been tracking the exposed cohort for over 40 years now, it has also been
possible to study the effects of PBB exposure on adults who were exposed in utero and through breastfeeding. Men
born to highly exposed mothers were three-times as likely to report any genitourinary condition, like hernias or
hydroceles (OR: 3.1) [52]. Women born to highly exposed mothers had an earlier age of menarche and an earlier age
at pubic hair development (11.6 vs 12.7 years old). While there was no change in the timing of breast development
(as measured by the Tanner Stage criteria) in this same study, this may be due to the difficulty of the girls assessing
their own breast development based on pictures [53]. The daughters of highly exposed mothers had a higher OR
for spontaneous abortions (OR: 4.08), although they did not have any trouble with conceiving children [54]. Taken
together, this suggests that there may be certain windows of vulnerability during human development, making
children of exposed parents more susceptible to adverse health outcomes from the endocrine-disrupting action of
PBBs. While the individuals who were directly exposed in the 1970s report a variety of health problems ranging
from skin problems to cancer, their children report more reproductive and developmental conditions (Figure 3).

Epigenetic effects of PBB exposure
While great progress has been made over the past 40 years to determine the health effects of PBB exposure, there
are still many research questions that remain unanswered. It is unclear at this time why some of the symptoms
and conditions reported more frequently by the individuals in the Michigan cohort do not seem to depend on
the concentration of PBBs in their blood, although the difficulty in calculating the appropriate target organ’s dose
of PBB may contribute to this problem. Additionally, while children of exposed individuals might have more
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Alopecia

Symptoms reported

Sweating

Cancer

Before
1973

Legend

Association

Not examined

No association

After
1973

Lower age of menarche

Male genitourinary conditions

Offspring with higher birth weight

Offspring with lower Apgar score

Spontaneous abortion

Thyroid problems

Skin problems

Finger nail growth

Figure 3. Summary of significant findings in Michigan polybrominated biphenyl registry.

reproductive problems than their parents did due to developmental windows of vulnerability, this hypothesis is not
fully tested, and it is not known which effects are sensitive to particular developmental periods. Furthermore, the
mechanism by which PBB exposure causes health problems is not fully understood.

Changes in epigenetic marks have been linked to the development of many diseases, including those reported by
the people in the Michigan PBB registry. Disorders associated with changes in epigenetic marks include many types
of cancers, neurological problems, autoimmune disease and reproductive problems [55–57]. If PBB does influence
epigenetic regulation of genes, that could provide a mechanism to explain the increased number of health problems
experienced by the people in Michigan.

Currently, no research examining epigenetic differences associated with PBB exposure has been reported, either
in animal models or in humans. Therefore, hypotheses on how PBB could affect the epigenome have to rely
on studies in other EDCs. Because PBBs have a chemical structure that is similar to PCBs and polybrominated
diphenyl ethers (PBDEs), PBBs are most comparable with these molecules. Additionally, exposure to PCBs and
PBDEs are associated with many of the same health problems as exposure to PBBs, such as increased risk for
reproductive problems, issues with steroid hormone metabolism and thyroid problems [58–71]. Because PBBs, PCBs
and PBDEs share the same adverse health outcomes and are structurally similar, studies on how PCBs and PBDEs
affect epigenetic marks are currently the best tool to understanding how PBBs affect the epigenome.

Research in EDCs show global changes in DNA methylation, histone methylation, gene expression and cellular
function. Both human and mouse cell lines that were exposed to micromolar quantities (∼0.6 ppm) of PBDEs and
PCBs showed significant decreases in global DNA methylation levels and increases in adipocyte differentiation,
potentially explaining the epidemiological studies linking exposure to these EDCs to increased obesity in adult-
hood [72]. Additionally, in a human vascular endothelial cell line exposed to 0.3 to 3 nM of PCBs (∼0.09–0.9 ppb),
exposure activated demethylation of histone H3 lysine 9 (H3K9), which then caused 140–200% increase in expres-
sion of inflammatory genes (vs controls) [73]. Studies with bisphenol A (BPA), another EDC, showed that breast
epithelial cell lines that were exposed to BPA had increased activation of the estrogen signaling pathway, which
then led to the suppression of 170 different genes and increased levels of DNA methylation across the genome. The
author suggested that the epigenetic changes and increased estrogen activity could explain why exposure to BPA
increases the risk of breast cancer development [74]. Another study reported that EDCs induce estrogen signaling
pathways, both through the estrogen receptor’s transcription factor activity and through the estrogen receptor’s
activation of other signaling pathways. Additionally, this study found that EDCs activate the PI3K/AKT pathway,
which results in the inactivation of EZH2, a histone methyltransferase. EDCs can also bind the members of the
nuclear hormone receptor superfamily, and thus activate the MAPK signaling pathway, which can influence cell
growth, apoptosis, differentiation and motility, potentially explaining why exposure to EDCs during early devel-
opmental windows disrupts organogenesis and reduces fecundity and sperm motility [75]. Taken together, EDCs
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can directly change the epigenetic state of a cell, the transcriptional profile of a cell and that cell’s function, which
could lead to the health problems seen in exposed populations.

In one of the first studies investigating persistent organic pollutants and DNA methylation in humans, PCB
exposure was associated with global DNA hypomethylation in a cohort of 71 highly exposed individuals from
Greenland [76]. Another study in 86 Koreans with population-level exposure to PCBs also found global DNA
hypomethylation with increasing exposure level [77]. In a study of 524 elderly people in Sweden, however, increasing
PCB exposure was associated with global DNA hypermethylation [78]. While it is not clear why in some populations
EDC exposure is associated with DNA hypermethylation and in others it is associated with DNA hypomethylation,
these conflicting results may be due to the different studies using different methods to estimate global DNA
methylation levels, differences in the populations, differences in the dose of the exposure or differences in the
timing of exposure. Therefore, while exposure to EDCs appears to associate with differences in global DNA
methylation, more studies are needed to determine the precise relationship. Additionally, because these global
DNA methylation studies only examine methylation in repetitive, gene-poor regions of the genome, genome-wide
studies looking at differences in methylation level at CpGs near genes are needed, as well as studies evaluating
epigenetics as a mediator between exposure and the health outcomes reported by exposed humans.

PCBs have been shown to bind to nuclear receptors and change gene expression, and to associate with differences
in DNA methylation levels in human populations that have been exposed. Presumably, PBBs can also bind to
nuclear receptors on DNA and drive gene expression, that gene expression may be associated with differences in
the epigenetic marks and in cellular function. These differences would be more pronounced with higher exposure
levels [69].

From the animal and human studies, PBBs pass through the placental barrier and are present in breast milk
– exposing children born to exposed mothers and leading to health problems in offspring that were not seen
in the exposed parents [46,47,51–54]. Altered gene regulation and expression early in development could explain
why the children of those exposed have more health problems than their parents. Precise epigenetic patterns are
vitally important during embryonic development because the specific timing of gene activation and repression
determines cell differentiation and organogenesis. Additionally, because epigenetic marks need to change, and to
change precisely, for an embryo to develop, these marks may be particularly susceptible to disturbances. Disruption
of epigenetic signals by PBBs crossing the placenta could cause improper development or permanently altered
marks that would cause life-long problems [79]. A study done with placentas from the National Children’s Study
found that PBDEs and PCBs increased DNA methylation in the placenta at imprinted loci. PCB exposure was also
negatively associated with H19 expression, which is important for proper regulation fetal growth [80]. Children who
were exposed early in development would be more susceptible to epigenetic alterations due to their epigenetic marks
changing and their cell lineages still being determined. This could then lead to an increased risk of developmental
and chronic diseases throughout life. Furthermore, while it has not been demonstrated in a human population
exposed to EDCs, there have been a report in animal models exposed to EDCs of epigenetic marks escaping
mammalian reprogramming events that happen early in development. In this study, the epigenetic marks that
associated with environmental exposure were said to be transmitted to offspring even when the offspring was not
exposed to the chemical itself [81]. If this is the case, then the children of exposed men would also be at risk, as well
as the children of exposed women.

Genetics of PBB exposure
Another way there could be an intergenerational pattern of adverse health effects following chemical exposure
would be through families being exposed to both similar environments and transmitting genetic material from
parent to child. The health effects following PBB exposure will most likely depend on the genetic architecture of
the population and individual exposed. Two people could be exposed to the same chemical, at the same level, in
the same manner, at the same age and have different health outcomes due to genetic variation. For example, one
study found that the length of the CAG repeat in exon 1 of AR, which varies in the population and the alters
the transcriptional activity of AR, mediated the reproductive outcomes associated with exposure to PCB. Men
with fewer than 20 CAG repeats who were exposed to PCB above the median exposure level had a 42% decrease
in sperm count and a 35% decrease in sperm concentration. Moreover, the authors found that if they did not
account for the number of CAG repeats that no association was found between sperm concentration or count and
PCB exposure level [82]. Another study found that both the CAG and the GGN repeat length polymorphisms in
exon 1 of the AR gene modified the association between EDCs and the proportion of Y bearing sperm, and this
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association was more pronounced if the men also had a common SNP (rs2292596) in AHRR that made it less
able to repress AHR [83]. Common variants that mediate the stability of the AHR gene and the repressing function
of the AHRR gene also mediate the association between EDCs, including PCBs, and reproductive function [84].
Differences in genes related to steroid-hormone and xenobiotic pathways may explain why many health outcomes
only associate with exposure to EDCs in some populations, and the difficulty that studies have in finding an
association between the exposure dose and health outcomes [85,86]. Therefore, the difficulty in associating health
outcomes to exposure levels in the Michigan PBB cohort may be resolved by accounting for variation in genetic
structure. Additionally, genetic variation can impact epigenetic variation and disease susceptibility. For example,
methylation quantitative trait loci are genetic variants where the genotype at that locus results in differing patterns
of DNA methylation [87]. Methylation quantitative trait loci are associated with the development and progression
of many human diseases [88,89]. Therefore, some individuals may be more likely to experience epigenetic alterations
following EDC exposure. Understanding genetic susceptibility will aid in identifying health risks in parents and
their children exposed to EDCs.

Future perspective
The Michigan PBB registry is an active cohort and the community is involved in investigating their continuing
health risks. Despite the predominant exposure having occurred over 40 years ago, PBBs are highly lipophilic and
bioaccumulative, meaning that exposure and its consequences to the population continues long after the resolution
of the initial contamination event [7]. PBBs are able to pass through the placental barrier and are present in breast
milk and are thus able to expose future generations. Therefore, people are still at risk from PBB exposure.

While studies in animal models are highly informative for guiding epidemiological investigations, it is difficult
to translate knowledge from early studies of animal models to humans because of the differences in quantifying
PBB exposure between the two experimental designs. Specifically, most PBB studies in animals report the amount
of PBB added to the animal’s diet instead of measuring PBB levels in blood and other tissues assayed in humans.
Animal studies also rarely assess exposure levels in the offspring of exposed animals. As PBB exposure remains an
active public health issue in Michigan, additional studies of animal models exposed to PBBs will provide more
precise information regarding the effects of PBB exposure and additional insight into the mechanisms underlying
intergeneration transmission of health consequences from exposure.

To enable a better understanding of the health risks to those exposed and subsequent generations, epigenetic
and genetic data should be collected in longitudinal cohorts like the Michigan PBB registry. The addition of these
datasets to well-studied epidemiological cohorts will allow future studies to better investigate the effects of EDCs on
human health. Identification of genes whose function differ in response to PBB exposure will increase understanding
of how PBB contributes to health problems. Because the Michigan PBB registry has been followed for 40 years
and is adding subsequent generations of those originally exposed, investigating epigenetic and genetic associations
will lead to a greater understanding of the biological mechanisms behind the intergenerational transmission of
exposure-related health effects and help to determine the health risks for future generations. Results from this
cohort can be used to help guide studies on other types of EDCs and exposures and to determine if there is a safe
exposure level to EDCs for humans.

Executive summary

• Endocrine-disrupting compounds (EDCs) are a growing concern for the modern world, and multigenerational
cohorts are needed to study it further.

• The Michigan polybrominated biphenyl registry is a multigenerational cohort who were exposed to an EDC 40
years ago during an agricultural accident and have been followed since.

• Existing studies in this cohort show an intergenerational transmission of exposure-related health problems.

• Genetic and epigenetic studies of health problems in the Michigan polybrominated biphenyl registry may lead to
a greater understanding of the mechanisms behind intergenerational transmission of EDCs and the risk to future
generations.
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