RSC Advances

PAPER

Check for updates

Cite this: RSC Adv., 2020, 10, 29320

Received 25th June 2020 Accepted 31st July 2020

DOI: 10.1039/d0ra05570k

rsc.li/rsc-advances

1. Introduction

Boron exhibits strong propensity to form multicentre-twoelectron bonds (mc-2e bonds) in both polyhedral molecules and bulk allotropes due to its prototypical electron-deficiency.1-4 Joint photoelectron (PE) spectroscopy experimental and firstprinciples theory investigations in the past two decades have unveiled a rich landscape for $B_n^{-/0}$ boron nanoclusters from planar or quasi-planar structures (n = 3-38, 41-42) to cage-like borospherenes (n = 39, 40).³⁻⁷ Cage-like $D_{2d} B_{40}^{-/0}$ are the first borospherenes discovered in 2014,⁵ while C_3/C_2 B_{39}^- are the first axially chiral borospherenes confirmed in experiments as the global minima (GM) of the B_n^- monoanions.⁶ These discoveries mark the onset of borospherene chemistry parallel to fullerene chemistry. The borospherene family has been systematically expanded by our group at first-principles theory levels to the cage-like B_n^q series in different charge states (n =36–42, q = n–40) which all possess twelve delocalized π bonds on the surface and follow the universal $\sigma + \pi$ double delocalization bonding pattern.⁵⁻¹⁰ Sea-shell-like $C_2 \operatorname{B}_{28}^{-/0}$ and $C_s \operatorname{B}_{29}^{-/0}$ were later observed as minor isomers of the monoanions in PES experiments^{11,12} and sea-shell-like $C_{s} B_{29}^{+}$, $C_{2} B_{31}^{+}$, $C_{2} B_{32}$, $C_{2} B_{34}$, $C_2 \operatorname{B_{35}}^+$, and cage-like $C_s \operatorname{B_{39}}^+$ have also been predicted recently in theory.13-16

From inverse sandwich $Ta_2B_7^+$ and Ta_2B_8 to spherical trihedral $Ta_3B_{12}^-$: prediction of the smallest metallo-borospherene[†]

Yu Zhang, Xiao-Yun Zhao, Miao Yan and Si-Dian Li 💷 *

Transition-metal-doped boron nanoclusters exhibit interesting structures and bonding. Inspired by the experimentally discovered inverse sandwich D_{6h} Ta₂B₆ and spherical trihedral D_{3h} La₃B₁₈⁻ and based on extensive first-principles theory calculations, we predict herein the structural transition from perfect dimetal-doped inverse sandwich D_{7h} Ta₂B₇⁺ (1) and D_{8h} Ta₂B₈ (2) to tri-metal-doped spherical trihedral D_{3h} La₃B₁₂⁻ (3). As the smallest metallo-borospherene reported to date, Ta₃B₁₂⁻ (3) contains three octa-coordinate Ta atoms as integral parts of the cage surface coordinated in three equivalent η^8 -B₈ rings which share two eclipsed equilateral B₃ triangles on the top and bottom interconnected by three B₂ units on the waist. Detailed orbital and bonding analyses indicate that both Ta₂B₇⁺ (1) and Ta₂B₈ (2) possess $\sigma + \pi$ dual aromaticity, while Ta₃B₁₂⁻ (3) is $\sigma + \pi + \delta$ triply aromatic in nature. The IR, Raman, and UV-vis or photoelectron spectra of the concerned species are computationally simulated to facilitate their future spectroscopic characterizations.

Transition-metal (TM)-doping induces dramatic structural changes and leads to earlier planar \rightarrow tubular \rightarrow spherical structural transitions in boron clusters due to effective TM-B coordination interactions, as evidenced by the experimentally observed pyramidal C_{8v} Ta©B₈^{-,17} C_s Ta©B₉^{-,18} and perfect planar D_{10h} Ta $\mathbb{O}B_{10}^{-}$ which has the highest coordination number of CN = 10 in planar species¹⁹ and the theoretically predicted half-sandwich TaB12^{-.20} A family of transition-metalcentred double-ring tubular boron complexes in staggered motifs were recently observed in experiments, including D_{8d} $Co@B_{16}^{-,21}D_{9d}Rh@B_{18}^{-,22} and C_s Ta@B_{20}^{-,23} with C_s Ta@B_{20}^{-}$ $(B_2 - [Ta@B_{18}]^-)$ behaving like a tubular molecular rotor at 900 K facilitated by prototypical multicentre fluxional bonds (FBs) which form and break constantly.24 A series of perfect di-metaldoped inverse sandwich complexes have also been observed in PE experiments, including D_{6h} Ta₂B₆^{-/0}, ²⁵ D_{8h} La₂B₈, and D_{8h} Pr₂B₈.²⁶ Our group recently reported the smallest core-shell-like tubular molecular rotor C_{2h} La₂[B₂@B₁₈] which contains a B₂ core rotating inside a B₁₈ tube almost freely.²⁷ The first experimentally observed tri-metal-doped inverse triple-decker C_{2v} La₃B₁₄⁻ exhibits a tilted La-B₈-La-B₈-La triple-decker structure with two conjoined n8-B8 rings sharing a B-B unit on one edge.28 With increasing cluster size, the first perfect spherical trihedral metallo-borospherenes $D_{3h} \operatorname{Ln_3B_{18}}^-$ (Ln = La, Tb) were very recently discovered in a joint PE experimental and firstprinciples theory investigation.²⁹ These metallo-borospherenes represent a new class of unusual geometry with tunable magnetic or catalytic properties, with three deca-coordinate Ln centres as integral parts of the cage surface coordinated in three equivalent η^{10} -B₁₀ decagons which share two eclipsed

C) BY-NC

Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China. E-mail: lisidian@sxu.edu.cn

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra05570k

triangular B₆ units interconnected by three B₂ units. Metalloborospherenes were previously proposed in theory for MB₄₀ (M = Be, Mg) and Ni_nB₄₀ (n = 1-4) which contain heptacoordinate metal centres on the cage surface of B₄₀, with the corresponding metallo-borophenes with hepta-coordinate metal centres as precursors.^{30,31} However, it remains unknown at current stage what is the possible smallest size of metalloborospherenes and if such coordination-stabilized metalloborospherenes can be characterized in experiments.

Based on extensive first-principles theory calculations, we predict in this work the possibility of the perfect di-TM-doped inverse sandwich D_{7h} Ta₂B₇⁺ (1) and D_{8h} Ta₂B₈ (2) and, more importantly, the smallest tri-TM-doped cage-like metalloborospherene D_{3h} Ta₃B₁₂⁻ (3) which contains three octa-coordinate Ta centres as integral parts of the cage surface coordinated in three equivalent η^{8} -B₈ octagons that share two equilateral B₃ triangles interconnected by three B₂ units. Detailed analyses indicate that both Ta₂B₇⁺ (1) and Ta₂B₈ (2) are $\sigma + \pi$ dually aromatic in nature, while Ta₃B₁₂⁻ (3) is the first transition-metal-doped boron complex reported to date with $\sigma + \pi + \delta$ triple aromaticity.

2. Theoretical procedure

Extensive global minimum (GM) searches were performed on $Ta_2B_7^+$, Ta_2B_8 , and $Ta_3B_{12}^-$ using the Tsinghua Global Minimum (TGMin) package^{32,33} based on a constraint Basin-Hopping algorithm,34 with more than 2000 singlet or triplet stationary points explored for each cluster at PBE/DZVP level.35 Low-lying isomers were then fully optimized at the PBE0 (36) level with the 6-311+G* basis set37 for B and Stuttgart relativistic small-core pseudopotential^{38,39} for Ta using the Gaussian 16 program suite,40 with vibrational frequencies checked to make sure that all isomers reported are true minima. The 15 lowestlying isomers were subsequently fully re-optimized at both PBE0 and BP86 (ref. 41 and 42) levels with the basis sets of augcc-pVTZ for B43,44 and Stuttgart+2f1g for Ta. Relative energies for the four lowest-lying isomers were further refined using the more accurate coupled cluster method with triple excitations CCSD(T)⁴⁵⁻⁴⁷ implemented in Gaussian 16 with the same basis sets. Natural bonding orbital (NBO) analyses were performed using the NBO 6.0 program⁴⁸ and detailed bonding analyses carried out utilizing the adaptive natural density partitioning (AdNDP) approach.49,50 Molecular dynamics (MD) simulations were performed on $Ta_2B_7^+(1)$, $Ta_2B_8(2)$, and $Ta_3B_{12}^-(3)$ for 30 ps using the CP2K software suite at different temperatures.⁵¹ The anisotropy of the current-induced density (ACID) analysis⁵² was realized using the ACID code, with the ring-current maps generated using POV-Ray 3.7.53 The iso-chemical shielding surfaces (ICSSs)54,55 were generated with the Multiwfn 3.7 code.56 The UV-vis and PES spectra were simulated using the time-dependent TD-DFT-PBE0 approach.57

3. Results and discussions

3.1 Structures and stabilities

We start from $Ta_2B_7^+$, the smallest di-metal-doped Ta-B complex concerned in this work. Extensive GM searches

indicate that inverse sandwich D_{7h} Ta₂B₇⁺ (**1**, ¹A₁) is the deeplying GM of the monocation which lies 1.58 eV lower than the second lowest-lying isomer C_{2v} Ta₂B₇⁺ (¹A₁) at CCSD(T) level (Fig. S1[†]), with the large HOMO–LUMO gap of $\Delta E_{gap} = 3.77$ eV at PBE0. The monocation contains a perfect B7 ring sandwiched between two Ta atoms along the C_7 molecular axis at the two ends (similar to the experimentally observed inverse sandwich D_{6h} Ta₂B₆ which has a perfect B₆ ring sandwiched between two Ta atoms²⁴), with the B–B bond length of $r_{B-B} = 1.54$ Å, Ta–B distance of $r_{\text{Ta-B}} = 2.28$ Å, and Ta–Ta distance of $r_{\text{Ta-Ta}} = 2.86$ Å (which is obviously larger than the proposed Ta-Ta single bond length of 2.46 Å⁵⁸). With one more B atom added in, the perfect inverse sandwich D_{8h} Ta₂B₈ (2, ¹A_{1g}) is achieved which is the deep-lying GM of the neutral lying 0.62 eV lower in energy than the second lowest-lying isomer C_s Ta₂B₈ (¹A') at CCSD(T) (Fig. S2[†]). It encompasses a perfect B₈ ring sandwiched between two Ta atoms along the C_8 molecular axis at the two ends, with the HOMO–LUMO gap of $\Delta E_{gap} = 2.15$ eV at PBE0. With a B₈ octagon as the ligand, the Ta-Ta distance in Ta_2B_8 (2) is effectively shortened to $r_{\text{Ta-Ta}} = 2.52$ Å which is close to the proposed average Ta-Ta single bond length.58 The highly stable inverse sandwich $Ta_2B_7^+(1)$ and $Ta_2B_8(2)$ may serve as building blocks to form tri-metal-doped Ta-B complexes, similar to the situation in the experimentally observed triple-decker C_{2v} La₃B₁₄⁻ (28) and spherical trihedral D_{3h} La₃B₁₈⁻.²⁹

Following the direction, we obtained the lowest-lying C_{2v} $Ta_{3}B_{10}^{+}({}^{1}A_{1})$ for $Ta_{3}B_{10}^{+}$, $C_{s}Ta_{3}B_{11}^{-}({}^{1}A')$ for $Ta_{3}B_{11}^{-}$, and C_{s} $Ta_{3}B_{11}^{-}$ (²A') for $Ta_{3}B_{11}^{-}$ which all possess incomplete spherical-trihedral structures with one edge broken (Fig. S3[†]). The smallest perfect spherical trihedron was achieved at D_{3h} $Ta_{3}B_{12}^{-}(3, {}^{1}A_{1})$ which, as the GM of the monoanion, lies 0.24 eV lower than the second lowest-lying $C_{2v} \operatorname{Ta_3B_{12}}^{-}({}^{1}A_{1})$ and 1.06 eV lower than the third lowest-lying $C_8 \operatorname{Ta}_3 B_{12}^{-}$ (¹A') (which both belong to metallo-borospherenes) at the most reliable CCSD(T) level (Fig. S4[†]). As shown in Fig. 1, $Ta_3B_{12}^{-}$ (3) contains three equivalent octa-coordinate Ta centres as integral parts of the cage surface coordinated in three equivalent η^8 -B₈ rings which share two eclipsed equilateral B3 triangles at the top and bottom interconnected by three B2 units on the waist. It has the calculated B–B bond lengths of $r_{B-B} = 1.58-1.74$ Å, Ta–B coordination distances of $r_{Ta-B} = 2.26-2.27$ Å, and elongated Ta–Ta distances

Fig. 1 Optimized structures of D_{7h} Ta₂B₇⁺ (1), D_{8h} Ta₂B₈ (2), and D_{3h} Ta₃B₁₂⁻ (3) at PBE0//B/aug-cc-pVTZ/Ta/Stuttgart+2f1g level, with bond lengths indicated in Å.

of $r_{\text{Ta-Ta}} = 3.04$ Å, respectively, with the large HOMO(e'')-LOMO(e') gap of $\Delta E_{gap} = 2.50$ eV at PBE0 which is comparable with the corresponding value of 2.70 eV calculated for the experimentally observed $D_{3h} \operatorname{La}_{3} \operatorname{B}_{18}^{-}$ (29) at the same theoretical level. $Ta_3B_{12}^{-}$ (3) can be constructed from Ta_2B_8 (2) by adding one B_4 edge (B-B-B-B') perpendicular to the B_8 ring in the front and one Ta atom coordinated to the newly formed B₈ ring, forming three interconnected Ta₂B₈ inverse sandwiches around the C_3 main molecular axis (Fig. 1). In comparison with $D_{3h} Ln_3 B_{18}^{-}$ (Ln = La, Tb) which possess a perfect cage-like D_{3h} B_{18} ligand with three equivalent η^{10} - B_{10} decagons sharing two eclipsed B₆ triangles at the top and bottom interconnected by three B_2 units on the waist,²⁹ Ta₃B₁₂⁻ (3) has a perfect cage-like D_{3h} B₁₂ ligand with three equivalent η^8 -B₈ octagons sharing two eclipsed B₃ triangles at the top and bottom interconnected by three B_2 units on the waist. $Ta_3B_{12}^{-}(3)$ has the same symmetry (D_{3h}) as $Ln_3B_{18}^{-}$, but smaller in size with six less B atoms in the ligand. Such a structural change can be understood based on the fact that Ta ([Xe]5d³6s²) has a smaller atomic radius (1.46 Å) than that (1.83 Å) of La ([Xe]5d¹6s²),⁵⁹ but possesses two more 5d valence electrons than the latter. The Ta centres appear to have the right atomic radii and electronic configurations to match the D_{3h} B₁₂ ligand both electronically and geometrically. $Ta_{3}B_{12}^{-}$ (3) is therefore the smallest metallo-borospherene reported to date. Perfect spherical trihedral D_{3h} Nb₃B₁₂⁻ and D_{3h} $V_3B_{12}^{-}$ also appear to be true minima of the systems at both PBE0 and BP86 levels (Fig. S5[†]), with the HOMO-LUMO gaps of $\Delta E_{\text{gap}} = 2.59$ and 2.67 eV at PBE0, respectively.

Extensive MD simulations (Fig. S6[†]) indicate that $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3) are dynamically stable at 1200 K, 700 K, and 1200 K, with the small calculated average root-mean-square-deviations of RMSD = 0.11, 0.10, and 0.11 Å and maximum bond length deviations of MAXD = 0.27, 0.24, and 0.29 Å, respectively. No high-lying isomers were observed during the MD simulation. Ta–B complexes with larger HOMO–LUMO energy gaps appear to be dynamically more stable than the ones with narrower energy gaps.

3.2 Natural orbital and bonding analyses

The high stabilities of these high-symmetry complexes originate from their unique electronic structures and bonding patterns. Detailed natural bonding orbital (NBO) analyses show that the Ta centres in $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3) possess the electronic configurations of Ta [Xe]6s^{0.21}5d^{3.46}, Ta [Xe] $6s^{0.22}5d^{3.64}$, and Ta [Xe] $6s^{0.24}5d^{3.72}$, natural atomic charges of $q_{\text{Ta}} = +1.34|e|, +1.12|e|$ and +1.01|e|, and total Wiberg bond indexes of $\ensuremath{\mathsf{WBI}_{Ta}}\xspace =$ 4.85, 4.80, and 5.07, respectively, indicating that each Ta centre in these complexes donates its 6s² electrons almost completely to the B_n ligand (n = 7, 8, 12), while, in return, accepts roughly one electron in its partially filled 5d orbitals from the B_n ligands via $p \rightarrow d$ back-donations. The formations of effective Ta-B coordination interactions in 1-3 are strongly supported by the calculated Ta-B bond orders of $WBI_{Ta-B} = 0.59, 0.40, and 0.50-0.53$ (Ta-B interactions within TaB7 or TaB8 pyramids) which appear to be systematically higher than the typical Cr-C coordination bond orders of WBI_{Cr-C} = 0.34 in D_{6h} Cr(C₆H₆)₂. As mentioned above, a Ta centre in Ta₃B₁₂⁻ (3) has the total bond order of WBI_{Ta} = 5.07 which is also obviously higher than the corresponding value of WBI_{Cr} = 4.12 calculated for Cr in D_{6h} Cr(C₆H₆)₂.

Detailed AdNDP bonding analyses unveil both the localized and delocalized bonds of the concerned systems. As shown in Fig. 2a, Ta_2B_8 (2) possesses 8 2c-2e B-B σ bonds on the periphery of the η^8 -B₈ ligand with the occupation numbers of ON = 1.82|e| and 1 2c-2e Ta-Ta σ bond between the two Ta centres with ON = 2.00|e| in the first row. The remaining 16 valence electrons form 8 totally delocalized 10c-2e coordination bonds between the η^8 -B₈ ligand and two Ta coordination centres with ON = 2.00|e|, including 3 10c-2e σ bonds in the second row, 3 10c-2e π bonds in the third row, and 2 10c-2e (p-d) δ bonding interactions in the fourth row. Both the

Fig. 2 AdNDP bonding patterns of (a) D_{8h} Ta₂B₈ (2) and (b) D_{3h} Ta₃B₁₂⁻ (3), with the occupation numbers (ON) indicated.

delocalized 6e σ -system and delocalized 6e π -system match the 4n + 2 aromatic rule (n = 1) and together they render $\sigma + \pi$ dual aromaticity to Ta₂B₈ (2). Similarly, both the experimentally observed D_{6h} Ta₂B₆ (ref. 25) and D_{7h} Ta₂B₇⁺ (1) are $\sigma + \pi$ doubly aromatic in nature, as clearly indicated in their canonical molecular orbitals (CMOs) depicted in Fig. S7.†

The AdNDP bonding pattern of spherical trihedral Ta₃B₁₂⁻ (3) (Fig. 2b) exhibits certain similarity with that of the inverse sandwich Ta_2B_8 (2), but it is more complex and intriguing. $Ta_{3}B_{12}^{-}(3)$ possesses 9 localized 2c-2e σ B-B bonds in the three B₂ units and between the B₂ units and the six apexes of the two B_3 triangles and 2 equivalent 3c-2e σ bonds on the two B_3 triangles at the top and bottom in the first row and 6 equivalent $3c-2e B_2$ -Ta σ bonds between the three Ta atoms and the two B_3 triangles at the top and bottom in the second row. The remaining 18 valence electrons form 9 delocalized 9c-2e bonds evenly distributed on three equivalent C2v TaB8 octagonal pyramids (which are similar to the experimentally observed C_{8v} TaB_8^- octagonal pyramid¹⁷) around the C_3 main molecular axis, including 3 equivalent 9c-2e $B_8(\sigma)$ -Ta(d_{π}) bonds in the third row, 3 equivalent 9c-2e $B_8(\pi)$ -Ta(d_{σ}) bonds in the fourth row, and 3 equivalent $B_8(\pi)$ -Ta(d_{δ}) bonds in the fifth row. Each Ta&B₈ octagonal pyramid thus possesses 1 9c-2e $B_8(\sigma)$ -Ta(d_{π}) bond, 1 9c-2e $B_8(\pi)$ -Ta(d_{σ}) bond, and 1 $B_8(\pi)$ -Ta(d_{δ}) bond. Overall, the $Ta_3 \& B_{12}^{-}$ (3) spherical trihedron has 3 equivalent $(d-p)\sigma$ bonds, 3 equivalent $(d-p)\pi$ bonds, and 3 equivalent $(d-p)\pi$ p) bonds evenly distributed on three equivalent Ta&B₈ octagonal pyramids around the C_3 molecular axis, forming one delocalized 6e σ -system, one delocalized 6e π -system, and one delocalized 6e δ -system on the cage surface each matching the 4n + 2 rule (n = 1) independently. Such a delocalized bonding pattern renders $\sigma + \pi + \delta$ triple aromaticity to the smallest metallo-borospherene of $Ta_3B_{12}^{-}(3)$ which is a highly stable D_{3h} spherical trihedron with 18 delocalized electrons evenly distributed on the cage surface.60

The aromatic nature of $Ta_2B_7^+(1)$, $Ta_2B_8(2)$, and $Ta_3B_{12}^-(3)$ is further evidenced by their calculated nucleus-independent chemical shift (NICS) values of NICS = -110.5, -101.9, and -86.6 ppm at the geometrical centres, respectively. Based on the calculated NICS-ZZ components, Fig. 3 plots their isochemical-shielding surfaces54,55 with Z-axis parallel to the designated C7, C8, or C2 molecular axes to illuminate the chemical shielding around the TaB₇ or TaB₈ pyramids in these complexes. Obviously, the space inside the spherical trihedron surrounded by the delocalized $Ta-B_n$ coordination bonds in horizontal direction or within about 1.0 Å above the Ta centres in vertical direction belong to chemical shielding regions (highlighted in yellow) with negative NICS-ZZ values, indicating that the aromatic contribution mainly comes from Ta(5d)-B(2p)coordination interactions between the Ta centres and B_n ligands around them (n = 7 or 8), while the chemical deshielding areas (highlighted in green) with positive NICS values are located outside the B_n ring in horizontal direction. The ICSSs of these complexes appear to be analogous to that of the prototypical aromatic benzene.54-56

Fig. S8† depicts the corresponding ring current maps of $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3). Consistent magnetic

Fig. 3 Calculated iso-chemical shielding surfaces (ICSSs) of (a) $Ta_2B_7^+$ (1), (b) Ta_2B_8 (2), and (c) $Ta_3B_{12}^-$ (3), with the corresponding NICS-ZZ components indicated. The C_7 axis of $Ta_2B_7^+$ (1), C_8 axis of Ta_2B_8 (2), and C_2 axis of $Ta_3B_{12}^-$ (3) are designated as *z* axis in vertical direction to compare the shielding effects around the TaB_n pyramids (n = 7, 8). Yellow regions stand for chemical shielding areas, while green areas represent chemical de-shielding areas.

responses occur in 1, 2, and 3 in an external magnetic field in the vertical direction parallel to the assigned molecular axes, irrespective of the electron type, similar to the situations in both benzene^{52,53} and double-ring tubular B_{20} (61) which are known to possess typical planar or tubular aromaticity. Such diatropic ring currents well support the aromatic nature of these Tadoped boron complexes.

3.3 Simulated IR, Raman, and PE spectra of $Ta_3B_{12}^{-}(3)$

We computationally simulate the IR, Raman, and UV-vis or PES spectra of $Ta_2B_7^+$ (1), Ta_2B_8 (2), and $Ta_3B_{12}^-$ (3) at PBE0 level to facilitate their future spectral characterizations. PE measurements and infrared photodissociation (IR-PD) spectra in combination with first-principles theory calculations have proven to be powerful approaches in characterizing novel clusters in gas phases.^{3-7,17-28,62} As shown in Fig. 4, the highsymmetry $Ta_3B_{12}^{-}$ (3) exhibits relatively simple IR and Raman spectral patterns, with the major IR active peaks at 507 (e'), 559 (e'), 668 (a_2'') , and 881 (e') cm⁻¹ (Fig. 4a) and main Raman spectral features at 209 (a'_1), 881 (e'), 998 (e"), and 1201 (a'_1) cm⁻¹ (Fig. 4b), respectively. The first Raman active symmetrical vibrational mode (a'_1) at 209 cm⁻¹ corresponds to typical "radial breathing mode" (RBM) of the metalloborospherene which may be used to characterize the hollow structures of single-walled boron nanoclusters in experiments.63

The calculated PE spectrum of $Ta_3B_{12}^{-}$ (3) in Fig. 4c exhibits major spectral features at 2.95 (²E''), 3.17 (²A'_1), 3.66 (²A'_2), 3.98 (²E'), 4.17 (²A'_1), 5.32 (²E'), 5.68 (²E'), and 5.98 (²A'_2), respectively, corresponding to vertical electronic transitions from the ground state of the anion (¹A'_1) to the excited states of the neutral at the ground-state geometry of the anion. The open-shell neutral Ta_3B_{12} has a slightly distorted C_{2v} Ta_3B_{12} (²A₂) ground-state structure due to Jahn–Teller effect, with the calculated electron affinity of EA = 2.87 eV. The simulated IR, Raman, and UVvis spectra of $Ta_2B_7^+$ (1) and Ta_2B_8 (2) are depicted in Fig. S9.†

Fig. 4 Simulated (a) IR, (b) Raman, and (c) PES spectra of D_{3h} Ta₃B₁₂⁻ (3) at PBE0//B/aug-cc-pVTZ/Ta/Stuttgart+2f1g level.

4. Conclusions

Extensive first-principles theory calculations performed in this work indicate a structural transition from perfect inverse sandwich D_{7h} Ta₂B₇⁺ (1) and D_{8h} Ta₂B₈ (2) to the smallest metallo-borospherene D_{3h} Ta₃B₁₂⁻ (3). As the first transitionmetal-doped boron complex reported to date with $\sigma + \pi + \delta$ triple aromaticity, Ta₃B₁₂⁻ (3) possesses three octa-coordinate Ta centres as integral parts of the cage surface coordinated in three equivalent η^{8} -B₈ octagons. The results obtained in this work suggest that a large family of coordination-stabilized multi-TM-doped TM_mB_n metallo-borospherenes with tunable magnetic and electronic properties may exist in experiments in which the transition metal dopants and B_n ligands match both geometrically and electronically.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li).

Notes and references

- 1 W. N. Lipscomb, Science, 1977, 196, 1047.
- 2 F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, *Advanced Inorganic Chemistry*, Wiley, New York, 6th edn, 1999.
- 3 L. S. Wang, Int. Rev. Phys. Chem., 2016, 35, 69.

- 4 T. Jian, X. N. Chen, S. D. Li, A. I. Boldyrev, J. Li and L. S. Wang, *Chem. Soc. Rev.*, 2019, **48**, 3550.
- 5 H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li and L. S. Wang, *Nat. Chem.*, 2014, 6, 727.
- 6 Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, *ACS Nano*, 2015, **9**, 754.
- 7 Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li,
 C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai and S. D. Li,
 Angew. Chem., Int. Ed., 2015, 54, 8160.
- 8 Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, Y. W. Mu, G. M. Ren, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2016, **18**, 11610.
- 9 W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2016, 18, 9922.
- 10 Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai and S. D. Li, *Phys. Chem. Chem. Phys.*, 2016, **18**, 14186.
- 11 Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li and L. S. Wang, *J. Chem. Phys.*, 2016, **144**, 064307.
- 12 H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li and L. S. Wang, *Phys. Chem. Chem. Phys.*, 2016, **18**, 29147.
- 13 L. Pei, H. R. Li, M. Yan, Q. Chen, Y. W. Mu, H. G. Lu, Y. B. Wu and S. D. Li, *Phys. Chem. Chem. Phys.*, 2018, **20**, 15330.
- 14 L. Pei, M. Yan, X. Y. Zhao, Y. W. Mu, H. G. Lu, Y. B. Wu and S. D. Li, *RSC Adv.*, 2020, **10**, 10129.
- 15 H. Liu, Q. Chen, H. R. Li, X. Y. Zhao, X. X. Tian, Y. W. Mu, H. G. Lu and S. D. Li, *Phys. Chem. Chem. Phys.*, 2018, 20, 15344.
- 16 X. Y. Zhao, Q. Chen, H. R. Li, Y. W. Mu, H. G. Lu and S. D. Li, *Phys. Chem. Chem. Phys.*, 2017, **19**, 10998.
- 17 W. L. Li, A. S. Ivanov, J. Federič, C. Romanescu, I. Černušák,
 A. I. Boldyrev and L. S. Wang, *J. Chem. Phys.*, 2013, 139, 104312.
- 18 C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev and L. S. Wang, J. Chem. Phys., 2013, 138, 134315.
- 19 T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang and A. I. Boldyrev, *Angew. Chem., Int. Ed.*, 2012, **51**, 2101.
- 20 B. L. Chen, W. G. Sun, X. Y. Kuang, C. Lu, X. X. Xia, H. X. Shi and G. Maroulis, *Inorg. Chem.*, 2018, 57, 343.
- 21 I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev and L. S. Wang, *Nat. Commun.*, 2015, **6**, 8654.
- 22 T. Jian, W. L. Li, X. Chen, T. T. Chen, G. V. Lopez, J. Li and L. S. Wang, *Chem. Sci.*, 2016, 7, 7020.
- 23 W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li and L. S. Wang, *Chem. Commun.*, 2017, 53, 1587.
- 24 M. Yan, H. R. Li, X. Y. Zhao, X. Q. Lu, Y. W. Mu, H. G. Lu and S. D. Li, *J. Comput. Chem.*, 2019, 40, 966.
- 25 W. L. Li, L. Xie, T. Jian, C. Romanescu, X. Huang and L. S. Wang, *Angew. Chem.*, 2014, **126**, 1312.
- 26 W. L. Li, T. T. Chen, D. H. Xing, X. Chen, J. Li and L. S. Wang, *Proc. Natl. Acad. Sci. U. S. A.*, 2018, **115**, E6972.

- 27 X. Q. Lu, Q. Chen, X. X. Tian, Y. W. Mu, H. G. Lu and S. D. Li, *Nanoscale*, 2019, **11**, 21311.
- 28 T. T. Chen, W. L. Li, W. J. Chen, J. Li and L. S. Wang, *Chem. Commun.*, 2019, **55**, 7864.
- 29 T. T. Chen, W. L. Li, W. J. Chen, X. H. Yu, X. R. Dong, J. Li and L. S. Wang, *Nat. Commun.*, 2020, **11**, 2766.
- 30 H. Bai, Q. Chen, H. J. Zhai and S. D. Li, *Angew. Chem., Int. Ed.*, 2015, **54**, 941.
- 31 H. R. Li, X. X. Tian, X. M. Luo, M. Yan, Y. W. Mu, H. G. Lu and S. D. Li, *Sci. Rep.*, 2017, 7, 5701.
- 32 Y. F. Zhao, X. Chen and J. Li, Nano Res., 2017, 10, 3407.
- 33 X. Chen, Y. F. Zhao, L. S. Wang and J. Li, *Comput. Theor. Chem.*, 2017, **1107**, 57.
- 34 D. J. Wales and J. P. Doye, J. Phys. Chem. A, 1997, 101, 5111.
- 35 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 36 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
- 37 D. Feller, J. Comput. Chem., 1996, 17, 1571.
- 38 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123.
- 39 J. M. L. Martin and A. Sundermann, *J. Chem. Phys.*, 2001, **114**, 3408.
- 40 M. J. Frisch, et al., Gaussian 16, Revision A.03, Gaussian Inc., Wallingford, CT, 2016.
- 41 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
- 42 J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, 33, 8822.
- 43 T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007.
- 44 R. A. Kendall, T. H. Dunning Jr and R. J. Harrison, *J. Chem. Phys.*, 1992, **96**, 6796.
- 45 J. Čížek, Adv. Chem. Phys., 1969, 14, 35.
- 46 G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
- 47 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, 157, 479.

- 48 P. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, *NBO 6.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
- 49 D. Y. Zubarev and A. I. Boldyrev, *Phys. Chem. Chem. Phys.*, 2008, **10**, 5207.
- 50 N. V. Tkachenko and A. I. Boldyrev, *Phys. Chem. Chem. Phys.*, 2019, **21**, 9590.
- 51 J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, 167, 103.
- 52 D. Geuenich, K. Hess, F. Köhler and R. Herges, *Chem. Rev.*, 2005, **105**, 3758.
- 53 Povray, Persistence of vision raytracer, POV-Ray 3.7, http://www.povray.org/.
- 54 S. Klod and E. Kleinpeter, *J. Chem. Soc., Perkin Trans.* 2, 2001, 2, 1893.
- 55 E. Kleinpeter, S. Klod and A. Koch, *J. Mol. Struct.*, 2007, **811**, 45.
- 56 T. Lu and F. W. Chen, J. Comput. Chem., 2012, 33, 580.
- 57 R. Bauernschmitt and R. Ahlrichs, *Chem. Phys. Lett.*, 1996, 256, 454.
- 58 P. Pyykkö and M. Atsumi, Chem.-Eur. J., 2009, 15, 186.
- 59 J. A. Dean, *Lange's Hand book of Chemistry*, McGraw-Hill Book Co., 1999, Table 4.6.
- 60 A. Tlahuice-Flores and A. Muñoz-Castro, Int. J. Quantum Chem., 2019, 119, e25756.
- 61 M. P. Johansson, J. Phys. Chem. C, 2009, 113, 524.
- 62 G. J. Wang, M. F. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schlöder and S. Riedel, *Nature*, 2014, **514**, 475.
- 63 D. Ciuparu, R. F. Klie, Y. Zhu and A. L. Pfefferle, *J. Phys. Chem. B*, 2004, **108**, 3967.