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Simple Summary: The prognostic impact of plasma protein biomarkers in breast cancer patients
treated with neoadjuvant chemotherapy (NCT) was evaluated using a proteomics approach. Three
biomarkers were identified among differentially expressed proteins. The plasma concentration of
APOC3 was higher in the pathological complete response (pCR) group, whereas MBL2, ENG, and
P4HB were upregulated in the non-pCR group. Univariate survival analysis was performed to
identify protein biomarkers that could classify patients into low- and high-risk groups. The results
showed that MBL2 and P4HB were statistically significantly associated with disease-free survival
(log-rank test p < 0.05); P4HB was statistically significantly associated with overall survival (log-rank
test p < 0.05), whereas MBL2 was statistically significantly associated with distant metastasis-free
survival (log-rank test p < 0.05). The results demonstrated that protein markers from non-invasive
liquid biopsy sampling correlate with pCR and survival in breast cancer patients receiving NCT.
Further investigation of these protein markers may help clarify their role in predicting prognosis and
thus their therapeutic potential for preventing metastasis.

Abstract: The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant
chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled
with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins
were identified as potential biomarkers, and their correlation with clinicopathological variables and
survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were
HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median
follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential
biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma
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concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB
were higher in the non-pCR group. Proteins statistically significantly associated with survival and
capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival,
P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate
analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10–44.31). The results
demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in
breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in
predicting prognosis and thus their therapeutic potential for the prevention of recurrence.

Keywords: liquid biopsy; breast cancer; neoadjuvant chemotherapy; proteome; LC-MS/MS

1. Introduction

Neoadjuvant chemotherapy (NCT) provides several benefits for locally advanced
breast cancer (BC) patients. Down-staging of tumors may increase the probability of breast
conservation with better cosmesis [1–3]. Additionally, it allows in vivo monitoring of
the response of tumors to therapy, which could be helpful for predicting pathological
responses [4–9]. Tumors that respond well to a given therapy show better outcomes, and
pathological complete response (pCR) is a surrogate factor for survival in the neoadjuvant
setting [10–12]. However, the value of pCR for predicting prognosis in different subtypes
of BC, especially in estrogen receptor (ER)-positive and HER2-negative tumors, is under
debate. Because of substantial inconsistencies between clinical, radiological, and pathologic
responses [13], extensive clinical/laboratory research has focused on achieving a more
accurate prediction of the treatment response.

The Oncotype DX® test provides genomic-based personalized information that enables
the design of individualized treatments for patients with ER-positive primary BC [14]. The
assay provides information on clinicopathological variables and has been validated for
use in predicting the response to chemotherapy in ER-positive and HER2-negative BC.
However, the assay requires a surgical specimen (formalin-fixed paraffin-embedded (FFPE)
>10 × 10 µm) and two to three weeks of processing time, with costs higher than USD 4000.
In addition, its indication is limited to the ER-positive and HER2-negative subtype. Plasma
cancer biomarkers can provide useful information relevant to the diagnosis of several
malignancies. In BC, several serum tumor biomarkers have been proposed, including the
MUC-1 antigen (CA 15-3), the onco-fetal protein carcinoembryonic antigen (CEA), the
oncoprotein HER-2/neu, and the cytokeratin tissue polypeptide specific antigen (TPS).
However, because of their low sensitivity and specificity, the clinical utility of these serum
markers is limited [15–18]. Compared with tissue biopsy, a quick and easy ‘liquid biopsy’
provides a less invasive and simpler method to assess tumor response through simple
blood collection [19,20]. Circulating tumor cells (CTCs), which are detected by liquid
biopsy, serve as a prognostic factor in metastatic BC, where a high CTC level is associated
with poor prognosis [21,22]. However, analysis of CTCs in non-metastatic tumors has
shown conflicting results [23–27], including in BC patients treated with NCT [28–31].

In translational research, proteomic-based BC research uses clinical samples such as
plasma and tissues, to improve BC care through screening, early or companion diagnostics
studies, predicting prognosis, subtyping, predicting metastasis and therapeutic responses,
and discovering new drug targets [32–37]. Some protein signatures associated with the re-
sponse to NCT were identified using FFPE tissues. PYCR1 and ALDH18A1 were identified
by comparing the proteome of tissue before and after NCT with that of normal tissue [38].
The combination of four proteins, RAC2, RAB6A, BIEA, and IPYR, showed the best per-
formance for predicting recurrence after NCT in triple-negative BC (TNBC) patients [39].
CD45 was identified as a predictor of pCR to neoadjuvant HER2-targeted therapy using
the spatial proteomics approach [40]. The VEGF inhibition response predictor score, which
is derived using nine-protein signatures, predicts the response to bevacizumab NCT in
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HER2-negative BC [41]. Analysis of blood samples identified differentially expressed
proteins related to the pathological criteria for predicting patient responses to NCT [42–46],
and blood exosomes [47] have been analyzed using proteomic approaches to predict the
response to NCT.

Recent proteomic-centric multiomics studies analyzed BC clinical samples to classify
BC into subtypes using protein and phosphorylated protein information, which led to the
identification of novel subtypes such as basal-like and luminal B tumors by infiltration of
immunological components [48]. Mass spectrometry-based proteomics that include analy-
sis of post-translational modifications such as phosphorylation or acetylation, combined
with next-generation DNA and RNA sequencing profiles, may provide a more compre-
hensive description of breast tumors [49–51]. Proteogenomic approaches highlight the
potential of proteomics for clinical research in cancer through the identification of targetable
signaling pathways and more precise curation of the biological signatures of tumor hetero-
geneity. Specifically, different genetic backgrounds may affect the inhibitory relationship
between target kinases and tumor suppressors by post-translational modification.

Reliable biomarkers related to treatment response and survival in BC patients receiving
NCT are currently lacking, and comorbidities are important for chemotherapy indication
and regimen selection [52]. Proteome analysis may provide more reliable and direct
information that can be used for monitoring the treatment response and for selecting
specific treatment agents. Additionally, plasma proteome analysis can overcome the
limitations of current biomarkers and tools by providing faster processing times (<2 days)
and by using small samples (40 µL plasma). The aim of the present study was to identify
potential biomarkers for predicting the response to therapy and for predicting recurrence by
performing whole proteome analyses of the plasma of BC patients undergoing neoadjuvant
systemic therapy.

2. Materials and Methods
2.1. Study Participants and Surveillance

Inclusion criteria for the baseline database of the prospective cohort were, (1) women
aged >20 years, (2) pathologically diagnosed primary invasive breast cancer, (3) no distant
metastasis at time of diagnosis (no de novo stage IV disease), (4) had undergone preop-
erative systemic treatment with curative intent, and (5) had agreed and signed consent.
All patients had 4 mL blood drawn at time of diagnosis before chemotherapy. Among
the 60 initial consecutively enrolled patients treated with NCT at Asan Medical Center
in Seoul, Korea, between February 2014 and April 2017, 51 were eligible for final anal-
ysis with sufficient protein extracted for analysis. All patients’ survival outcomes were
updated, including loco-regional recurrences, distant metastasis and death information.
The study was approved by the Institutional Review Board (IRB) of Asan Medical Center
(Seoul, Korea; IRB-e no. 2013-1048), and was performed in compliance with the REMARK
criteria [53]. Written informed consent was obtained from all participants. All experiments
were performed in accordance with the relevant guidelines and regulations.

All patients of the study received standard treatment, and regular surveillance was
performed. The initial diagnostic and follow-up work-up included mammography, breast
ultrasound imaging, magnetic resonance imaging, chest X-rays, blood sampling, and
clinical examination. ER and progesterone receptor expression were evaluated based on the
Allred score [54]. HER2 status was considered negative if the immunohistochemistry score
was 1+, or if the score was 2+ and the result of fluorescence or silver in situ hybridization
for HER2 amplification was negative [55]. Clinical and histopathological staging was based
on the 7th edition of the Cancer Staging Manual of the American Joint Committee on
Cancer [56]. The clinical treatment response was evaluated by both physical examination
and imaging assessments at each treatment timeline (baseline, after the first treatment,
and after completing the course of NCT). Tumor response was assessed by the Response
Evaluation Criteria In Solid Tumors (RECIST 1.1) [57,58].
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2.2. Sample Preparation

For the proteomic analyses, 51 clinical plasma samples were prepared for LC-MS
analysis. Plasma samples were loaded onto a MARS14 column (100 × 4.6 mm; Agilent
Technology, Palo Alto, CA, USA) on a Shimadzu binary HPLC system (20A Prominence;
Shimadzu, Tokyo, Japan) in order to deplete 14 highly abundant proteins; the unbound
fraction was lyophilized with a cold trap (CentriVap Cold Traps; Labconco, Kansas City,
MO, USA). Dried samples were resuspended in 400 µL of 5% SDS in 50 mM TEAB
(pH 7.55), and dithiothreitol was added to a final concentration of 20 mM for 10 min
at 95 ◦C to reduce disulfide bonds. Reduced samples were then incubated with 40 mM
iodoacetamide for 30 min at room temperature in the dark. By a 10-fold dilution of
12% phosphoric acid, acidified samples were loaded onto S-Trap mini columns (ProtiFi,
Farmingdale, NY, USA; Cat. No: CO2-mini-80). We treated suspension-trapping (S-trap)
proteolysis according to the manufacturer’s protocol, followed by the addition of 10 µg
Lys-C/trypsin mixture and incubation for 16 h at 37 ◦C [59]. The eluted peptide mixture
was lyophilized using a cold trap and stored at −80 ◦C until use.

2.3. Nano-LC-ESI-MS/MS Analysis

The LC system was an Dionex UltiMate 3000 RSLCnano system (Thermo Fisher
Scientific, Waltham, MA, USA). Mobile phase A was 0.1% formic acid and 5% DMSO in
water and mobile phase B was 0.1% formic acid, 5% DMSO and 80% acetonitrile in water.
Samples were reconstituted with 25 µL of mobile phase A, injected with a full sample loop
injection of 5 µL into a C18 Pepmap trap column (20 × 100 µm i.d., 5 µm, 100 Å; Thermo
Fisher Scientific), and separated in Acclaim™ Pepmap 100 C18 column (500 × 75 µm i.d.,
3 µm, 100 Å; Thermo Fisher Scientific) over 200 min (250 nL/min) at 50 ◦C. The column
was priory equilibrated with 95% mobile phase A and 5% mobile phase B. A gradient of
5–40% B for 150 min, 40–95% for 2 min, 95% for 23 min, 95–5% B for 10 min, and 5% B for
15 min were applied. The LC system was coupled to a Q Exactive plus mass spectrometer
(Thermo Fisher Scientific) with a nano-ESI source. The instrument was operated in the data-
dependent mode. One scan cycle included one MS1 scan at a resolution of 70,000 at m/z
400 followed by 20 MS2 scans in higher energy collisional dissociation mode to fragment
the 20 most abundant precursor ions identified in the MS1 spectrum. The target value
for MS1 by Orbitrap was 3 × 106 with a maximum injection time of 100 ms. The ion
target value for MS2 was set to 1 × 106 with a maximum injection time of 50 ms and a
resolution of 17,500 at m/z 400. The dynamic exclusion was enabled with the following
settings: repeat count = 1 and exclusion duration = 20 s. All MS data were deposited in the
Proteomics Identification Database (PRIDE) archive under PXD028251 [60].

2.4. Protein Identification by Database Search

Individual raw files acquired MS analysis and were retrieved against the reviewed Hu-
man Uniprot-SwissProt protein database (released on May 2017) [61] using the SEQUEST-
HT on Proteome Discoverer (Version 2.2, Thermo Fisher Scientific). Search parameters used
were as follows: 10-ppm tolerance for precursor ion mass and 0.02 Da for fragmentation
mass. Trypsin peptides tolerate up to two false cleavages. Carbamidomethylation of cys-
teines was set as fixed modification and N-terminal acetylation and methionine oxidation
were set as variable modifications. The false discovery rate (FDR) was calculated using the
target-decoy search strategy, and the peptides within 1% of the FDR were selected using
the post-processing semi-supervised learning tool Percolator [62] based on the SEQUEST
result. Label-free quantitation (LFQ) of proteins was calculated using the precursor ion
peak intensity for unique and razor peptides of each protein and excluded peptides with
methionine oxidation.

2.5. Differential Data Analysis by Normalization and Filling Missing Data

The normalization method by endogenous normalization proteins, which is mainly
used in LFQ, was performed [63,64]. In this study, four proteins (C6, HPX, KNG1, and
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SERPINC1) were selected by NormFinder software [65] because the difference between
the pCR and non-pCR group was the smallest. Since the quantitative values of the four
proteins depend on the characteristics of the plasma sample, they were scaled by dividing
the median values of the corresponding proteins in all samples. After that, the geometric
mean of the adjusted ratio values of the four proteins for each sample is calculated, and
this is defined as the normalization scaling factor (NSF) for that sample. The normalized
quantitative values of the remaining proteins except for the four proteins were derived by
dividing the raw protein quantitative values in each sample by the NSF. The details of this
method are described in previous studies [66–68].

Proteins were selected based on >80% of quantified proteins in all samples, and
the missing data were filled by the local least squared imputation method, calculating
through correlation with 100% quantified proteins at the raw abundance [69]. After that,
normalization was performed.

2.6. Statistical Clinical Model Generation Based on Feature Selection

Feature selection was performed to identify the optimal subset from four proteins
[apolipoprotein C3 (APOC3), endoglin (ENG), mannose-binding lectin 2 (MBL2), and
prolyl 4-hydrolase beta (P4HB)] to classify patients into two NCT response groups using
a random forest (RF)-based backward elimination process [70]. This process consisted
of the following two steps: first, 10,000 decision trees containing four variables were
randomly generated, and area under the curve (AUC) values were calculated. The AUC
values were used to determine the optimal number of proteins using out-of-bag error
estimation, yielding a value of three. Second, 50 iterations and three-fold cross-validation
were performed using the three selected variables to calculate the predictive importance of
each variable included in the model. Three proteins (>0.5 probability of selection) were
selected. Data preprocessing, including centering and scaling, were performed before
model building. The training and validation sets were divided into thirds using whole data.
In the training set, a linear kernel support vector machine (SVM) model [71] with optimized
cost parameters was generated by three-fold cross-validation with three repeats. The RF
model [72] was optimized with a mtry parameter by three repeats of three-fold cross-
validation with 10,000 trees and nodeSize = 5. Machine learning (ML) model prediction
values were obtained in the validation set (without the training set samples), and ROC
analysis was performed. This process was performed by randomly changing sets 100 times.

2.7. Mining Public Microarray Data

Microarray gene expression data (series accession number: GSE22513 [73–75] and
GSE22093 [76,77]) were downloaded from the Gene Expression Omnibus database [78].
The GEO2R interactive web tool was used to extract three identifiers that matched the three
selected genes according to the platform record and their expression values. When there
were two or more probes for one gene, the median value was estimated.

2.8. Statistical Methods

Survival analyses were performed including DFS, DMFS, and OS. DFS was defined
as the time from the date of enrollment into the study to the first date of any type of
recurrence. DMFS and overall survival (OS) were defined as the time elapsed between
the date of enrollment into the study and the date of distant metastasis or the date of
death from any cause, respectively. Statistical analysis was performed using IBM SPSS
Statistics Version 26. The univariate Kaplan–Meier method was used to estimate survival
probabilities. Multivariate Cox proportional hazards regression analyses were performed
for each proteome using the following clinical parameters: patient age at diagnosis; clinical
tumor stage; nodal status; hormone receptor (HR) status; and HER2 status. A p-value of
<0.05 was considered to be statistically significant.

Proteome data evaluation was performed by statistical language R 3.6.0 and RStudio
1.1.456 with the several packages that contained ggplot2 for displaying violin and volcano
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plots, mixOmics for PLA-DA [79], RVAideMemoire for calculating VIP scores, stats for
applying the t-test, pcaMethods for missing data imputation, survival for survival analysis,
survminer for determining cutoff values by maximally selected rank statistics (minimal
proportion of observations per group: 20%), and GEOquery for downloading GEO sets.

3. Results
3.1. Baseline Characteristics

The patient characteristics of each subgroup and the NCT regimen of the patients are
summarized in Table 1 (detailed in Supplementary Table S1). Twenty-eight patients (47.5%)
were HR+/HER2-, five patients (8.5%) were HR+/HER2+, six patients (10.2%) were HER2+,
and 20 patients (33.9%) had TNBC. The mean age was 59 years (range, 32–66 years; median
age, 46 years). Thirty-eight patients (74.5%) were lymph node-positive. TNBC patients had
a significantly higher tumor nuclear grade (Grade 3, 57.1%). Forty-seven patients (92.2%)
underwent chemotherapy with an anthracycline-based regimen. According to RECIST
criteria [57], 49 patients (96.1%) demonstrated a partial or complete response (PR or CR),
two patients (3.9%) showed progressive disease, and none showed stable disease. Twenty-
six of the 51 patients underwent breast-conserving surgery followed by radiation therapy
(100.0%, 26/26), and 25 had a mastectomy. Of those 25 patients, 20 (80.0%) patients with
tumor stage ≥3 or nodal stage ≥2 selectively received radiation therapy. All HR-positive
patients received hormonal therapy after surgery. Fifteen patients (29.4%, 15/51) achieved
pCR. The pCR rate was significantly higher in HER2+ or triple-negative tumors (HER2+,
40%, 2/5; HR+/HER2+, 60%, 3/5; and triple-negative, 38.1%, 8/21) than in HR+/HER2-
patients (10.0%, 2/20), consistent with previous studies [12,80].

Table 1. Patient characteristics and the NCT regimen.

Variables HR+/HER2-
(n = 20)

HR+/HER2+
(n = 5)

HER2+
(n = 5)

Triple-Negative
(n = 21) p

Age at diagnosis (range) 32–58 41–66 45–59 35–53 0.463
≤40 18 (90.0%) 3 (60.0%) 4 (80.0%) 17 (81.0%)
>40 2 (10.0%) 2 (40.0%) 1 (20.0%) 4 (19.0%)

Clinical T stage 0.206
T1 0 (0%) 0 (0%) 0 (0%) 0 (0%)
T2 11 (55.0%) 2 (40.0%) 5 (100%) 15 (71.4%)
T3 8 (40.0%) 2 (40.0%) 0 (0%) 6 (28.6%)
T4 1 (5.0%) 1 (20.0%) 0 (0%) 0 (0%)

Lymph node status 0.473
Negative 6 (30.0%) 0 (0%) 2 (40.0%) 5 (23.8%)
Positive 14 (70.0%) 5 (100%) 3 (60.0%) 16 (76.2%)

Nuclear grade 0.001
G1 and G2 19 (95.0%) 5 (100%) 4 (80.0%) 9 (42.9%)

G3 1 (5.0%) 0 (0%) 1 (20.0%) 12 (57.1%)
Tumor response (RECIST) 0.295

CR 3 (15.0%) 1 (20.0%) 0 (0%) 7 (33.3%)
PR 17 (85.0%) 4 (80.0%) 5 (100%) 12 (57.2%)
SD 0 (0%) 0 (0%) 0 (0%) 0 (0%)

PD 0 (0%) 0 (0%) 0 (0%) 2 (9.5%)
Type of Surgery (adjuvant RT) 0.419

BCS (26/26) 8 (40.0%) 4 (80.0%) 3 (60.0%)) 11 (52.4%)
Mastectomy (20/25) 12 (60.0%) 1 (20.0%) 2 (40.0%) 10 (47.6%)

Pathological response 0.047
pCR 2 (10.0%) 3 (60.0%) 2 (40.0%) 8 (38.1%)

non-pCR 18 (90.0%) 2 (40.0%) 3 (60.0%) 13 (61.9%)

NCT regimen

Anthracycline based (AC#4, AC#4 > D#4, FEC#4 > D#4) 47 (92.2%)
NCT02032277 * (Veliparib/Placebo + Carboplatin/Placebo + Paclitaxel) 4 (7.8%)

AC: adriamycin and cyclophosphamide, BCS: breast conserving surgery, CR: complete response, D: docetaxel, FEC: fluorouracil, epirubicin,
and cyclophosphamide, N/A: not applicable, NCT: neoadjuvant chemotherapy, pCR: pathological complete response, PD: progressive
disease, PR: partial response, RECIST: Response Evaluation Criteria in Solid Tumors, SD: stable disease. * The results of the trial have not
yet been reported.
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3.2. Proteome Results from Clinical Plasma Samples by LC-MS/MS

A workflow was established for biomarker identification in BC patients with or with-
out pCR after NCT (Figure 1A). To identify prognostic marker candidates for pCR, clinical
plasma samples were collected from 51 BC patients, including 15 with and 36 without pCR
after NCT. Depleted plasma samples from the 51 study participants were used to analyze
constitutive proteins via single LC-MS/MS runs, which led to the identification of 594 pro-
teins. Among them, 548 proteins were quantified in one or more samples using a label-free
quantification method. Among these, four relatively stable abundant proteins (C6, HPX,
KNG1, and SERPINC1) were used to normalize the raw abundance of the other candidates,
which were quantified in at least 80% of the samples [81] (Supplementary Figure S1A and
Supplementary Table S2). Before normalization, missing values were imputed [82]. After
normalization, 254 common proteins out of 305 proteins showed a significant positive
correlation with the plasma concentrations of the published Plasma Proteome Database [83]
(ρ = 0.657; Pearson’s correlation coefficient, permutation p < 0.001; Figure S1B). Partial least
squares-discriminant analysis (PLS-DA) indicated that the pCR and non-pCR groups were
separated into two components, component 1 (6%) and component 2 (17%) (Figure 1B). VIP
score-ordered contributions are shown in Figure 1C. The top 26 proteins had VIP scores
>1.5. Statistical analysis was performed to identify pCR prediction marker candidates. Four
signature proteins annotated by molecular functional terms and processes were selected
for building the clinical model. Finally, three biomarkers were selected and used in the
survival analysis, including recurrence, death, and metastasis events.
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Figure 1. Analysis workflow and partial least-squares discriminant analysis (PLS-DA) of plasma proteomes in 51 breast
cancer (BC) patients. (A) The analysis method is shown at the top, the number of proteins is shown in the middle, and
the meaning of the step is shown at the bottom. PLS-DA score plot (B) and top26 variable importance in projection (VIP)
score (>1.5) plot derived from PLS-DA analysis (C) in 15 patients with pathological complete response (pCR; green) after
neoadjuvant therapy and 36 patients with non-pCR (red).
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3.3. Differentially Abundant Plasma Proteins between pCR and Non-pCR BC Patients

Statistical analysis was performed using the Student’s t-test to identify differen-
tially abundant plasma proteins (DAPs) between the two groups. A volcano plot was
drawn to represent log2 fold-changes against negative log10 p-values. We identified a
single upregulated protein in the pCR group and three proteins in the non-pCR group
(p < 0.05 and |fold-change| > 2; Figure 2A and Supplementary Table S3). We examined
whether the abundance of the four proteins was related to the subtypes as confounding
factors. Each protein was stratified by pCR status, and the quantitative differences accord-
ing to subtype (HER2 and HR positive or negative) were statistically analyzed (p > 0.05;
Supplementary Figure S2). The results confirmed that the subtype did not affect the four
proteins as a confounding factor.
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Functional annotation of the proteins was performed using Enrichr [84]. Significant
differences between the two groups were identified using WikiPathways (Figure 2B). P4HB
and ENG were involved in the “VEGFA-VEGFR2 signaling pathway”. ENG was also
involved in “transforming growth factor beta binding” and “hypothesized pathways in
pathogenesis of cardiovascular disease”. P4HB was also associated with “type I collagen
synthesis in the context of osteogenesis imperfecta”. MBL2 was related to “complement
system”, “Ebola virus pathway on host”, and “regulation of toll-like receptor signaling
pathway”. APOC3 was linked to “PPAR signaling pathway”, “composition of lipid par-
ticles”, and “statin inhibition of cholesterol production”. In addition, we focused on the
TNBC subtype, which shows the greatest long-term clinical benefit from pCR in BC [85].
Statistical analysis was performed as described above by dividing patients into pCR and
non-pCR groups only in the TNBC subtype (Supplementary Figure S3). In all BC patients,
one highly abundant protein, MBL2, was identified in the non-pCR group, and three highly
abundant proteins, DCD, KNG1-2, and TLN1, were identified in the non-pCR group. Two
highly abundant proteins, ALCAM and MAN1A1, were identified in the pCR group.

3.4. Multivariate Analysis for Predicting pCR Outcome

Multivariate analysis was performed using ML classifiers based on random forest
(RF) [72] and SVM [71] to improve the predictive performance for distinguishing pCR
from non-pCR patients. First, feature selection was performed with the four significant
proteins by AUC-based RF backward elimination [70] according to a probability of selection
>0.5 (Table 2) and independently performed 305 proteins as input (Supplementary Table
S4). The RF and SVM models were built with three proteins (MBL2, ENG, and P4HB).
To avoid overfitting, threefold cross-validation was performed three times to generate
10,000 decision trees from the RF model, and a linear SVM model was applied. To confirm
the robustness of the ML models, the sample was randomly trisected 100 times, and
the model was then built with 2/3 of the sample and validated with 1/3 of the sample.
Evaluation of the performance of the classifiers showed that the median AUC values for
SVM and RF were 0.861 (95% CI: 0.845–0.873) and 0.861 (95% CI: 0.830–0.867), respectively
(Figure 3).

Table 2. Selected feature proteins by AUC-based RF backward elimination.

Uniprot
Accession No. Gene Name Importance Prob. Select * Selection Univariate AUC

P11226 MBL2 6.105 0.96 Y 0.807
P17813 ENG 5.556 0.85 Y 0.739
P07237 P4HB 3.522 0.58 Y 0.722
P02656 APOC3 NA NA N 0.654

* Probability of selection for each variable.

The three plasma biomarkers were also expressed in tissues of BC patients. The mRNA
expression levels of five proteins obtained from BC tissues by fine needle aspiration prior
to NCT were analyzed. The data were obtained from two publicly available GEO datasets
(GSE22513 [73–75] and GSE22093 [76,77]). ML models were built as described above. In
GSE22513, the median AUC values for SVM and RF were 0.631 (95% CI: 0.613–0.643) and
0.646 (95% CI: 0.633–0.669), respectively. In GSE22093, the median AUC values for SVM
and RF were 0.709 (95% CI: 0.684–0.713) and 0.658 (95% CI: 0.645–0.666), respectively.
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Figure 3. ROC curves of SVM and RF classifiers for three selected proteins (ENG, MBL2, and P4HB). Capability of the two
classifiers in a set of 51 samples, 15 from patients with pCR and 36 from patients with non-pCR. (A) ROC curves of SVM
classifiers generated through 100 repeats of threefold cross-validation steps. (B) ROC curves of SVM classifiers generated
through 100 repeats of threefold cross-validation steps. ROC curves were obtained by plotting the 25th, 50th, and 75th
quantiles of the sensitivities for each value of 1-specificity. (B) Violin plots of 100 area under the curve (AUC) values in the
SVM model. (C) ROC curves of RF classifiers generated through 100 repeats of threefold cross-validation steps. ROC curves
were obtained by plotting the 25th, 50th, and 75th quantiles of the sensitivities for each value of 1-specificity. (D) Violin
plots of 100 AUC values in the RF model.

3.5. Survival Analysis

During a median follow-up of 52.0 months, 15 relapses (29.4%) and eight deaths
(15.7%) were observed. To determine the correlation of single plasma proteins with long-
term clinical indicators such as DFS, OS, and DMFS, we performed univariate survival
analysis for the three proteins in the model (MBL2, ENG, and P4HB), and the remaining
302 proteins were quantified. The Kaplan–Meier method was used to select the cutoff
values based on the maximally selected rank statistics. At first, pCR was statistically a
better prognostic factor than non-PCR for DFS, OS, and DMFS (log-rank test p < 0.05).
MBL2 and P4HB for DFS, P4HB for OS, and MBL2 for DMFS were statistically significant
in dividing patients into low-risk and high-risk groups (log-rank test p < 0.05; Figure 4,
Supplementary Figure S4A,B). Among the remaining 302 proteins quantified, the prognosis
with respect to the three survival results in the two patient groups was separated by a
threshold of protein quantification values: 84 proteins for DFS, 46 proteins for OS, and
96 proteins for DMFS were statistically significant for classifying patients into high-risk
and low-risk groups (log-rank test p < 0.05; Supplementary Table S5). We also analyzed the
prognosis of patients according to Miller-Payne grades in the patients with partial response,
but couldn’t find a significant correlation (Figure S5). In the multivariate Cox analysis of
survival with following factors: patient age at diagnosis; clinical tumor stage; nodal status;
hormone receptor (HR) status; and HER2 status, no factor showed significant correlation.
However, in DMFS analysis with proteins, MBL2 was identified as the only consistent risk
factor (HR: 9.65, 95% CI: 2.10–44.31, p = 0.004; Table 3). In other survival analyses including
DFS and OS, none of the proteins demonstrated a significant correlation. All three protein
(MBL2, ENG, P4HB) levels were significantly increased as the pathological stages elevated
(Supplementary Table S6).
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Figure 4. Kaplan–Meier plots of pathological complete response (pCR) and three proteins, MBL2,
ENG, and P4HB. (A) Categorization of patients into pCR and non—pCR risk groups (pCR,
n = 15, 6.7%; non-pCR, n = 36, 38.9%; p = 2.59 × 10−2). Classification of patients into risk groups
according to (B) MBL2 abundance: low abundance group (n = 34, 17.6%) and high abundance group
(n = 17, 52.9%), p = 4.21 × 10−3; (C) ENG abundance: low abundance group (n = 12, 8.3%) and high
abundance group (n = 39, 35.9%), p = 7.34 × 10−2; and (D) P4HB abundance: low abundance group
(n = 36, 6.7%) and high abundance group (n = 15, 38.9%), p = 2.44 × 10−2. Statistical significance was
determined using the log-rank test. p-values < 0.05 are displayed in bold.

Table 3. Multivariate Cox analysis of DMFS including the MBL2 proteome.

DMFS

Multivariate HR (95% CI) p

Patient age (>40 vs. ≤40) 1.30 (0.33–5.06) 0.709
Tumor size (≤5 cm vs. >5 cm) 2.55 (0.56–11.65) 0.226

Node negative vs. positive * 2.1 × 105 0.963
HR positive vs. negative 2.95 (0.63–13.88) 0.172

HER2 negative vs. positive 0.61 (0.07–5.44) 0.660
MBL2 abundance (low vs. high) 9.65 (2.10–44.31) 0.004

Patients were divided into two risk groups according to MBL2 abundance: low abundance group (n = 34, 17.6%)
and high abundance group (n = 17, 52.9%); HR, hormone receptor. * No events in the node negative group.

4. Discussion

Despite considerable advances in our understanding of BC biology, the design of
therapeutic approaches is dependent on and guided by molecular profiling that categorizes
tumors according to HR and HER2 status [86]. Despite the improvement of treatment
strategies related to HR and HER2 status, recent emerging global trends show increased BC
mortality rates [87], which are attributed to treatment resistance and highly proliferative
BC variants within these subtypes [88]. Thus, the identification of novel markers that can
detect resistance and prognosis is an important issue.

The pCR can be a potential surrogate marker with a prognostic value for predict-
ing survival in the HER2-positive and triple-negative subtypes [11,89–91]. In these sub-
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types, patients who achieve pCR have a better prognosis than those who fail to achieve
pCR [10–12]. Thus, predicting tumor response before or during NCT is important for
evaluating patients’ prognosis. However, in luminal subtype BC, reliable factors associated
with tumor response and prognosis are relatively rare.

In luminal subtype BC, a genomic assay based on tissue biopsy samples such as
the Oncotype DX® provides information on clinicopathological factors and is a powerful
precision medicine tool for cancer patients. However, its application is limited to the
HR-positive and HER2-negative BC subtypes [14]. Moreover, the assay requires a relatively
large specimen and is limited by high costs and long processing times.

Another strategy to obtain information for tumor assessment is a ‘liquid biopsy’.
Compared with tissue biopsy, a quick and easy ‘liquid biopsy’ allows for a less invasive
and simpler assessment of tumor response through simple blood collection [19]. Plasma
cancer biomarkers and the number of circulating cancer cells provide useful information
that is relevant to cancer diagnosis. CTCs are potential biomarkers of prognosis after
treatment [24,26,92,93]. Although studies show that CTC detection is a potential prog-
nostic factor in metastatic BC [21,22,94,95], its clinical value and prognostic impact in
non-metastatic BC patients, especially those treated with NCT, are under debate with
conflicting results [23,92,96,97].

Proteomics is the analysis method that is similar to CTC analysis and also another
form of “non-invasive analysis” as liquid biopsy. Proteomic profiles derived from liquid
biopsy samples can provide more direct profiling of diseases. Thus, proteomics is expected
to yield promising results for the early diagnosis of cancer and for evaluating the efficacy of
antitumor therapy. Current clinical proteomics methods for cancer management are focused
on biomarker discovery and validation [98]. Because proteins function through specific
pathways rather than individually, anti-cancer strategies can be designed by targeting the
biomarker that affects specific pathways related to cancer development [99,100].

In the present study, we analyzed the plasma proteomes of locally advanced BC
patients receiving NCT. We used a biomarker discovery workflow system to identify candi-
date protein biomarkers of tumor response and prognosis in BC patients using LC-MS/MS
and three proteins were selected for validation. These proteins were used to generate
models that independently predicted the risk of recurrence regardless of tumor subtype.
The three protein markers were P4HB, ENG, and MBL2. P4HB is a protein disulfide-
isomerase that is one of the core genes in the beta subunit of prolyl 4-hydroxylase [101].
P4HB is related to the carcinogenesis and development of multiple tumors. P4HB is highly
expressed in colon cancer, and knockdown of P4HB promotes cancer cell apoptosis [102].
In liver cancer, knockdown of P4HB inhibits the migration and invasion of HepG2/ADR
cells, as demonstrated by culturing HepG2 cells (a human hepatocellular carcinoma cell
line) in the presence of increasing concentrations of adriamycin [103]. P4HB is also highly
expressed in renal clear cell carcinoma and significantly related to poor OS [104]. These
findings indicate that P4HB may serve as a potential molecular marker for the diagnosis
and treatment of cancer. We demonstrated that low serum P4HB level is significantly
associated with better DFS and OS, which is consistent with the findings reported by
Yang et al. [105]. The study demonstrated that downregulation of P4HB represses the
promoting effects of overexpressed COL10A1 on the proliferation, migration, and invasion
of BC cells and, conversely, upregulation of P4HB promotes BC cell proliferation and
clone-forming ability, as well as increasing BC cell migration and invasion [105].

ENG (also known as CD105) is a receptor for transforming growth factor β that is
expressed at high levels on the cell surface of tumor blood vessels and tumor stromal com-
ponents [106]. ENG shows affinity for “newly forming” angiogenic endothelium, whereas
CD34 and CD31 react not only with angiogenic vessels, but also with the endothelium of
normal vessels; ENG is thus superior to CD34 and CD31 for the evaluation of tumor angio-
genesis [107]. Elevated expression of ENG is often observed in the actively proliferating
endothelium [108,109]. There is a significant correlation between markers of cell prolifera-
tion such as Ki-67 and cyclin-A [108]. Thus, ENG is a potential marker of tumor-associated
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angiogenesis and prognosis [109]. Li et al. showed that plasma ENG levels are elevated in
BC patients at risk of metastasis, and ENG overexpression is significantly correlated with
metastatic disease, suggesting the value of ENG for predicting metastasis [110]. Kumar
et al. demonstrated that the reactivity of ENG in blood vessels of BC tissues correlates with
a poor prognosis [111]. Although the results did not reach statistical significance, we also
observed that patients with high ENG levels had poor survival rates.

MBL2 is an activator of the lectin pathway and a crucial component of the innate
immune system, and inflammatory reactions are critical for tumor progression and can
promote human carcinogenesis [112,113]. MBL can inhibit tumor progression via the
complement system and through MBL-dependent cell-mediated cytotoxicity [114–116].
However, recent studies show controversial results. Holm et al. showed that high
plasma levels of MBL2 are a marker of poor survival in colorectal cancer patients [117].
Yitting et al. reported that the MBL complement activation pathway is activated in patients
with colorectal cancer compared with healthy controls; however, MBL pathway deficiency
rates are similar between patients and healthy controls [118]. Additionally, local expression
of MBL2 genes is higher in women with ovarian cancer than in controls [119]. In this study,
plasma MBL2 levels were higher in the non-pCR group, and high plasma MBL2 levels
were associated with poor survival (DFS and DMFS). Taken together, these results suggest
that MBL2 can have a protective effect against tumors, as well as a tumorigenic effect.

The present study had several limitations. First, the sample size was small, which
limits the statistical power. To overcome any possible overfitting issue associated with
the small sample size, cross-validation was used for model development. In addition,
the validation study included additional plasma samples collected under IRB. Second,
because the study sample was heterogeneous regarding the distribution of tumor subtypes,
representing the general BC population is difficult. However, considering the prevalence
of each subtype of BC, the present results are valuable for discovering prognosis-related
protein signatures. Third, although tumor-derived proteomes are present at high concen-
trations in the blood of cancer patients, abundant proteins can be derived from cellular
sources other than the tumor, which is the major limitation of “liquid biopsy”. In terms of
homeostasis, the plasma proteome can reflect differences in the immune or inflammatory
status of patients, which may affect the response to chemotherapy. The plasma proteome is
thus a critical indicator of the chemotherapy response.

Despite the limitations listed above, the findings of this study show that certain pro-
teomes are associated with chemotherapy response and prognosis in patients receiving NCT.

5. Conclusions

This study demonstrated that proteins from non-invasive liquid biopsy sampling corre-
late with pCR and survival in BC patients receiving NCT. Among them, potential druggable
targets were identified. Plasma protein analyses identified differentially expressed proteins
between groups with distant metastasis, independently from the achievement of pCR.
Quantitative protein analyses by liquid biopsy may provide a means to predict response
and recurrence with minimal amounts of sample, at a lower cost, and with faster times.
Further investigation of these proteomes may reveal their role in predicting prognosis,
which could serve as a novel therapeutic strategy.

Supplementary Materials: The following materials are available online at https://www.mdpi.
com/article/10.3390/cancers13246267/s1. Figure S1: (A) Boxplots of normalized plasma protein
abundances in the 51 samples (15 BC patients with pathological complete response (pCR) after
neoadjuvant therapy and 36 patients with non-pCR) measured by LC-MS analysis. (B) Scatterplot of
254 plasma proteins between log2 plasma concentration in the Plasma Proteome Database (bottom)
and normalized log2 abundance (Pearson correlation coefficient (ρ): 0.657 and p-value: 9.9 × 10−5).
Figure S2: (A) Boxplot of four proteins (MBL2, ENG, P4HB, and APOC3) in groups according to pCR
and HER2 presence (B). Boxplot of four proteins (MBL2, ENG, P4HB, and APOC3) in groups divided
by pCR and hormone receptor presence. Figure S3: Volcano plots are depicted with the fold-change
of each protein abundance; the p-value was calculated by performing a t-test. In the triple-negative
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BC (TNBC) subtype (n = 21), the averages of the plasma proteomic abundance data in the pCR group
(n = 8) were compared with the averages of the data for the non-pCR group (n = 13) with TNBC.
The red circle shows four plasma proteins showing significant increases in the non-pCR group. The
green circle shows two plasma proteins with significant decreases in the non-pCR group. Gray
circles are plasma proteins with no statistical significance. Figure S4: Kaplan–Meier plots of pCR in
relation to three proteins (MBL2, ENG, and P4HB) against overall survival (A) and distant metastasis-
free survival (B). Figure S5: Kaplan-Meier plots of Miller–Payne grades in disease-free survival
(A), distant meta-free survival (B), and overall survival (C). Statistical significance was determined
using the log-rank test. p-values < 0.05 are displayed in bold. Table S1. Demographic and clinical
characteristics of the 51 breast cancer patients with or without pCR. Table S2. Normalized abundance
of 305 plasma proteins in 51 breast patients with or without pCR. Table S3. Results of volcano plot
analysis between the pCR group and the non-pCR group. Table S4. Selected feature proteins by
AUC-based RF backward elimination with 305 proteins as input. Table S5. Univariate survival
analysis of recurrence, metastasis, and death. Table S6. Association between three biomarkers with
clinical and pathological stage.
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