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Abstract

Background

The mobility of birds across or between continents exposes them to numerous vectors that

have the potential to transmit pathogens and spread them into new regions. A combination

of rich species diversity of birds along with the small amount of molecular studies in Iran

makes observing the blood parasite distribution in wild avian populations indispensable for

further estimation and administration of blood parasites.

Methodology/Principal findings

In order to evaluate the infection rate and molecular context of avian blood parasites, bird

samples were collected (passerine = 316 and non-passerine = 14) in eight provinces of

northern Iran between June to September 2015 and 2016. All bird samples were examined

for haematoprotozoan infections by morphological screening using light microscope and

mtDNA cytb gene amplification. A total of 115 birds were positive for blood parasites by

molecular approach (34.84% overall infection). The infection rate of Haemoproteus, Plas-

modium, and Leucocytozoon were 33.03%, 1.21%, and 0.6%, respectively. Sequences

analysis has detected 43 lineages in Iranian birds’ hosts. Lineages were attributed to three

genera Haemoproteus (n = 37), Plasmodium (n = 4), and Leucocytozoon (n = 2), of which

23 lineages fully matched previously recorded sequences in GenBank and MalAvi data reci-

procities. Five lineages of ACDUM1, ACDUM2, PARUS1, PYERY01, and SISKIN1 were

detected in multiple hosts’ species from dissimilar families. In Bayesian tree, all sequences

were clustered in three main monophyletic clades as Haemoproteus, Plasmodium, and Leu-

cocytozoon genera.

Conclusions/Significance

As the first study outlining the molecular detection of hematozoa of passerines from Iran,

the current study has recorded 20 new lineages for three genera of Haemoproteus, Plasmo-

dium, and Leucocytozoon. Additional investigations into these taxa in the avifauna for the
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other parts of Iran may provide extra information on blood parasites, hosts relationships and

distribution patterns.

Introduction

The avian apicomplexan species of PlasmodiumMarchiafava et Celli 1885, Leucocytozoon
Berestneff 1904 andHaemoproteus Kruse 1980 with an extensive range of vectors are the most

frequently and worldwide distributed genera of blood parasites [1]. These protozoan taxa para-

sitize the vast majority of vertebrate hosts including birds, mammals, and reptiles [2]. These

vector-borne pathogens, by enforcing significant ecological and evolutionary pressures on

their hosts, are responsible for avian extinction and population decrease through the negative

potential imapact on their fitness [3–8]. Although, hematozoa were taken into account as

benign organisms with low pathogenicity in the wild, it has been established that critical infec-

tion by haemosporidians may lead to death, anemia, inflammation and other physiopathologi-

cal conditions [3,9,10]. Birds with a high ability of movement may be exposed by numerous

vectors which may elevate the potential risk of pathogen transmission by new lineages around

the world [11]. Various haematophagous arthropods comprising mosquitoes (Culicidae), bit-

ing midges (Ceratopogonidae), Louse Flies (Hippoboscidae), and Black Flies (Simuliidae) are

regarded as the main vectors of avian blood parasites [12]. Preceding studies have illustrated

various infection rates between 0–100 percent in bird species around the world, based upon

sampling area and detection procedures [13–16]. Previous morphological studies have pro-

posed that the species ofHaemoproteus are seemingly more host-specific than Plasmodium.

The similar evolutionary history of a parasite species and its own host has been considered as

the host-specifity [17]. Inversely, the presence of one species on different avian hosts has been

mentioned as the host-shifts, which may cause the virulence alteration [18]. However, the level

of vertebrate host specificity for most blood parasites’ species remains unknown [19].

To date, the literature has reported Haemoproteus spp. infection in various Iranian birds

such as aquatic birds [20], passerines [21–23], and domestic birds [24,25]. Several studies have

also listed the infection of avian species with Plasmodium spp. [26,27]. Furthermore, several

species of birds have been reported as the infected hosts by Leucocytozoon spp. within the

country [28]. The aforesaid studies were performed on morphological detection of avian blood

parasites while this study is an investigation on the molecular detection of blood parasites of

passerin from this region.

The current avian checklist has recorded more than 548 birds’ species from Iran, of which

approximately 235 species belong to the passerines [29]. Due to the rich species diversity of birds

and the very restricted number of molecular studies in this region, observing the blood parasites

distribution in wild populations seems indispensable for further estimation and administration

of blood parasites surveillance and control. In the present study, we amplified a 479 base pair

(bp) fragment of mitochondrial gene cytb in haemosporidians’ genera from 72 individuals in

Iran (i) to screen hematozoan parasites within Iranian birds, (ii) to assess whether birds within

Iranian territories contain lineages previously not recorded from other regions, and (iii) to what

degree a single host and/or host species may be infected by multiple parasite lineages.

Materials and methods

Ethical statement

This study was carried out in strict accordance with the recommendations in the guide for the

care and use of animals for scientific purposes of the Ferdowsi University of Mashhad, Iran
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The protocol was approved by the committee on the Ethics of Animal Experiments of Fer-

dowsi University of Mashhad (protocol number: IR.MUM.FUM.REC.1397.035). Furthermore,

all field works were approved by the Department of the Environment, which provided the

authority and permission for sample collection from each location in this study (No: 93/

61478). All birds were released after blood samples were collected, and all efforts were made to

minimize their suffering.

Collection of samples and microscopic examination

Blood samples were collected from wild birds (passerine = 316, and non-passerine = 14) in

eight provinces form Iran comprising Razavi Khorasan, North Khorasan, Semnan, Golestan,

Mazandaran, Gilan, Zanjan, and Ardabil between June to September 2015 and 2016. Birds

were captured using mist nets and within minutes of capture, approximately 50–100 μl of

whole blood was drawn from a brachial vein by insulin needles and was preserved into

Queens’s buffer [30]. Two or three blood smears of each host were prepared in the field and

fixed with absolute methanol. They were then stained with Giemsa and screened for infection

of the above mentioned three genera. All smears were inspected using an Olympus BH2 light

microscope provided with an Olympus DP7 digital camera and imaging software DP-SOFT,

for 10–15 minutes at low magnification (× 400), and then at least 100 fields were examined

under high magnification (× 1,000) with immersion oil [2].

Extraction of genomic DNA, PCR, and sequencing

DNA extraction was performed on 330 blood samples using PrimePrep Genomic DNA Isola-

tion Kit for blood” (GENETBIO Inc. Daejeon, South Korea) following manufacturer guide-

lines. All of the extracted DNA specimens were used for detection of parasite infection using—

nested PCR approach. PCR amplifications were accomplished in 25μl volumes and included

50ng/μl of total genomic DNA, 1.5 mM MgCl2, PCR buffer 1X, 1.25 mM of each dNTPs, 0.6

mM of each primer, and 0.5 units of Taq DNA polymerase. The cycling programs for 25 and

35 cycles for outer and inner reactions with primers HaemFNI/HaemR3, HaemF/HaemR2,

and HaemFL/HaemR2L were run for the parasites discovery using temperature profiles [5,31].

To determine the positive or negative samples, 2.5 μl of the final PCR product was run on 1%

agarose gel. All reactions were performed along with negative (double-distilled H2O) and posi-

tive controls (infected specimens determined by microscopy screening) to evaluate the validity

of the PCR and control for any other contaminations. Sequencing was performed by Macro-

gene Co. (Seoul, South Korea).

Phylogenetic analysis

The acquired sequences of 479 base pairs of cytb gene were edited, aligned and collated in a

sequence identity matrix using BioEdit [32] and MAFFT online version [33]. All unique line-

ages were identified using theNational Center for Biotechnology Information (NCBI) Nucleo-

tide BLAST search [34]. When comparing against the recorded dataset, sequences with one or

more nucleotide substitutions were identified as new lineages according to the MalAvi Public

Database [35]. Subsequently all sequences of the amplified lineages were deposited in both

MalAvi database http://mbio-serv4.mbioekol.lu.se/avianmalaria [35] and GenBank (Accession

numbers MG976505-MG976576). The sequence divergence between the different lineages was

calculated with the use of a Kimura 2-parameter distance matrix, implemented in the program

MEGA6.0 [36]. Phylogenetic relationships were estimated using Bayesian inference imple-

mented in the program MrBayes v3.2 [37] using the sequence evolution model acquired from

MODELTEST v3.7 [38]. MCMC analysis was run for 10,000,000 generations and sampled
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every 1,000 generations. At the end of the analysis, the burn-in period to 50% was set where

the chains reached stationary status to calculate the posterior probabilities. The phylogenetic

tree was constructed using FigTree v1.3.1 [39]. A resultant Bayesian analysis tree showed line-

ages situated within three main genera with bootstrap support of each cluster in addition to

previously published lineages for similar hosts species around the world (Fig 1).

Results

Hosts sampling

In order to detect haemosporidian parasites, 330 birds were examined. Among well-sampled

hosts (i.e. > 5) individuals were captured per species. The inspected population consisted of

316 individuals belonging to 37 species, 31 genera and 16 families of passerine and 14 individ-

uals belonging to five species, five genera and five families of non-passerine birds. Family Pas-

seridae was the most frequently captured group (28.79%) and Passer domesticus was the most

captured host species. The highest percentage of collected samples was recorded in Razavi

Khorasan province (27.27%) and the lowest percentage in Semnan (1.81%) province (Table 1).

Fig 1. Bayesian phylogenetic tree of blood parasites of mitochondrial DNA cytb lineages attained from infected

Iranian birds and MalAvi sequences. Posterior probability values (>0.8) are given. Provinces of sampling are

abbreviated by Ardabil (A), Zanjan (Z), Semnan (E), North Khorasan (S), Razavi Khorasan (R), Golestan (G),

Mazandaran (M) and Gilan (K). Schematic images of birds were retrieved from www.HBW.com.

https://doi.org/10.1371/journal.pone.0206638.g001
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Table 1. The identified lineages of blood parasites are illustrated for each host species, host family and location of sampling. The frequency of infected hosts forHae-
moproteus, Plasmodium, and Leucocytozoon using PCR detection of blood parasites from Iran is shown in bracket.

Host family Host species Movements Host frequency Haemoproteus Plasmodium Leucocytozoon
Acrocephalidae Acrocephalus dumetorum W R 13 ACDUM1 (1)1

ACDUM2 (6)1

ACDUM3 (1)

0 0

A.melanopogone R 5 ARW1 (1) 0 0

A. stentoreus B 14 ACSTE1 (3)

BRW1(3)

GRW03 (3)

0 0

Iduna pallida B 24 HIP2 (4)

IDPAL01 (1) ¥

HIP4 (2)

LULU1 (3)

0 0

Hippolais polyglotta B 1 HIICT1 (1) 0 0

Aegithalidae Aegithalos caudatus R 8 ACDUM2 (1)1

AEGCAU05 (1) ¥
0 0

Alaudidae Galerida cristata R 1 0 0 0

Alcedinidae� Alcedo atthis B W P 6 ALCATT01 (1) ¥ 0 0

Emberizidae Emberiza buchanani B 1 EMBUC01 (1) ¥ 0 EMBUC02 (1) ¥

Granativora bruniceps B 16 GRBRU01 (1) ¥

GRBRU02 (3) ¥
0 0

G.melanocephala B P 15 GRMEL02 (2) ¥

GRMEL01 (4) ¥
0 0

Fringillidae Carduelis carduelis R 4 SISKIN01 (2)1 0 0

Erythrina erythrina P 1 0 0 0

Fringilla coelebs P W 5 CCF6 (1) 0 0

Linaria cannabina W R 14 PYERY01 (2) 1 0 0

Serinus pusillus R 1 0 0 0

Hirundinidae Hirundo rupestris B 2 0 0 0

H. rustica B P 7 HIRUS17 (1) ¥ 0 0

Laniidae Lanius minor B 1 0 0 0

Meropidae� Merops apiaster B P 1 0 0 0

Motacillidae Motacilla alba R W 4 YWT3 (1) MOALB03 (1) ¥ 0

Muscicapidae Ficedula hypoleuca P 1 0 0 0

F. semitorquata P B 4 FISEM02 (1) ¥

FISEM01 (1) ¥
0 0

Irania gutturalis B 1 0 0 0

Luscinia megarhynchos B 1 0 0 0

Oenanthe oenanthe P B 8 OEOEN01 (1) ¥ 0 0

Saxicola torquata B 2 0 0 0

Passeridae Passer domesticus R 48 PADOM05 (27)

PADOM32 (1) ¥

PAHIS2 (1)

GRW04 (1) 0

P.montanus R 36 PYERY01 (1) 1 0 0

Petronia petronia B W R 7 PETPET02 (1) ¥

PETPET01 (1) ¥
0 0

Paridae Cyanistes caeruleus B 12 0 0 CYACAE06 (1) ¥

Parus major R 26 PARUS1 (2) 1 0 0

Phylloscopidae Phylloscopus trochilus P 2 ACDUM1 (1)1 0 0

Seicercus nitidus P W B 1 0 ORW1(1) 0

S. trochiloides P 1 0 0 0

(Continued)

Molecular detection of avian blood parasites in Iran

PLOS ONE | https://doi.org/10.1371/journal.pone.0206638 November 9, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0206638


Microscopic inspection

To confirm the presence of blood parasites, 720 blood smears from all captured birds were

examined. Due to the hemolysis of RBCs and reduced quality, a total of 37 slides were dis-

carded from this study. Whole PCR positive specimens were matched with the morphological

identification of parasite genera. A total of 23 bird species were identified to be harbored by

Haemoproteus, and three and one species were infected by Plasmodium and Leucocytozoon,

respectively.

Haematoprotozoan molecular detection and infection rate

All collected blood samples were examined for haematoprotozoan infection and 115 individu-

als were positive for blood parasite genera using molecular approach (34.84% overall infec-

tion). Only one sample of Emberiza buchanani was co-infected with two genera of

Haemoproteus and Leucocytozoon. The infection rates forHaemoproteus, Plasmodium and

Leucocytozoon were 33.03%, 1.21% and 0.6% respectively (Table 1). Of the 43 avian species

included in this study, 29 species (27 passerines and two non-passerines) harbored blood para-

sites. The bird species of Iduna pallida with fourHaemoproteus lineages were the most fre-

quently infected hosts by different parasites (Table 1).

Lineages diversity

Based on morphological examination, repetitive PCR-positive samples of similar hosts in the

same sampling localities were not sequenced. A total of 72 amplified samples by the nested

PCR reactions were sequenced. Double peak sequences (co-infected) and poor-quality samples

on the electropherograms were omitted from this study. Molecular identification of blood par-

asites using mtDNA cytb sequences detected 43 lineages of the collected bird samples from

Iran. Lineages were attributed to the genera ofHaemoproteus (n = 37), Plasmodium (n = 4),

and Leucocytozoon (n = 2). Of these lineages, 20 were new, consisting of at least one base-pair

difference from the lineages stored in MalAvi database (Table 1). Inspection of the found line-

ages revealed that only fiveHaemoproteus lineages (ACDUM1, ACDUM2, PARUS1,

PYERY01, and SISKIN1) were infecting multiple hosts’ species (11.62%). Of which, three line-

ages were detected from different localities and PARUS1 was found in the same location of

both hosts. Additionally, the lineages ACDUM1, ACDUM2, ACDUM3, ARW1, ACSTE1,

Table 1. (Continued)

Host family Host species Movements Host frequency Haemoproteus Plasmodium Leucocytozoon
Sittidae Sitta tephronata R 4 PARUS1 (1) 1

SITTEP01 (1) ¥
0 0

Sylviidae Curruca communis P B 2 0 0 0

Curruca curruca P 2 CUCUR01 (1) ¥ 0 0

Sturnidae Sturnus vulgaris P W 5 LAMPUR01 (4) 0 0

Turdidae Turdus merula B W R P 15 TURDUS2 (6) SYAT5 (1) 0

Upupidae � Upupa epops P B 1 0 0 0

Scolopacidae � Actitis hypoleucos P B W 1 0 0 0

Picidae � Dendrocopos syriacus R 5 SISKIN01 (1)1 0 0

Total 330 109 (33.03) 4 (1.21) 2 (0.6)

Non-passerine families (�), the frequent lineages in more than one species host (1), and new lineages (¥) are specified.

The movement status of birds in Iran are shortened as P: passengers, B: breeding in summer, W: wintering, and R: resident.

https://doi.org/10.1371/journal.pone.0206638.t001
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BRW1, GRW03, HIP2, HIP4, LULU1, HIICT1, SISKIN01, CCF6, PYERY01, YWT3,

PADOM05, PAHIS2, PARUS1, LAMPUR01, TURDUS2, GRW04, ORW1, and SYAT5 were

100 percent identical to the reported lineages in BLAST analyses (Table 1). The molecular

approach could identify seven lineages of AEGCAU05, ALCATT01, CCF6, HIRUS17, YWT3,

SYAT5, and EMBUC02 which were not recognized by the morphological method due to the

presence of trophozoite or young gametocyte stages in prepared slides.

Haemoproteus, Plasmodium, and Leucocytozoon novel lineages

The acquired results showed that 27 of the studied bird species were infected withHaemopro-
teus lineages of which 92.59% belonged to passerine hosts.Haemoproteus was the predominate

genus in comparison with Plasmodium and Leucocytozoon. In this study, 17 new lineages of

GRBRU01, CUCUR01, EMBUC01, FISEM01, FISEM02, GRMEL01, GRBRU02, HIRUS17,

GRMEL02, PETPET01, OEOEN01, PETPET02, IDPAL01, SITTEP01, AEGCAU05,

PADOM32, and ALCATT01 were detected from this region. Additionally, four avian species

were infected with Plasmodium lineages, all of them being observed in passerines. MOALB03

was the only new lineage found in the collected samples. Moreover, in two infected hosts,

novel Leucocytozoon lineages of CYACAE06 and EMBUC02 were observed in the passerine

hosts (Table 1).

Molecular phylogenetic analysis

The phylogenetic relationship of avian parasite genera was affirmed via attained Bayesian tree

in three main clades using amplified sequences (n = 72) and retrieved MalAvi sequences

(n = 95) are shown in Fig 1. For each genus, robust posterior probability (>0.8) supported for

the main clades encompassed lineages collected from avian species in Iran. The largest number

of lineages belonged toHaemoproteus with sub-clades not well supported for all lineages. The

haemosporidians genera ofHaemoproteus and Plasmodium appeared as sister groups and the

Leucocytozoon clade was placed as the basal group. AllHaemoproteus lineages were situated in

one clade except for TURDUS2 (Haemoproteus minutus), HLW1, WW1, and COLL2 which

was placed in a sister group.

Discussion

As a study outlining the molecular detection of hematozoa of wild birds, the current study has

recorded new lineages for three genera ofHaemoproteus, Plasmodium, and Leucocytozoon
from Iran. PCR-based molecular procedures for recognition of avian blood parasites provide a

distinct chance to confirm numerous theories about their evolution, function, and specificity

[31]. The relatively high frequency of newly identified lineages necessitates further studies in

the Middle East region. In this study, results showed a total of 20 novel lineages and 23 previ-

ously recorded lineages within bird hosts from Iran (Table 1). Such findings will generate a

database of host distribution and geographical range of hematozoan parasites [35]. Of the 72

amplified sequences of haemosporidians in this study, 53.48 percent of lineages have been

identified by preceding studies around the world including ACDUM1, ACDUM2, ACDUM3,

ARW1, ACSTE1, BRW1, GRW03, HIP2, HIP4, LULU1, HIICT1, SISKIN01, CCF6, YWT3,

PADOM05, PAHIS2, PYERY01, PARUS1, LAMPUR01, TURDUS2, SYAT5, ORW1, and

GRW04 (Table 2). Our results showed the new geographical locations of bird hosts for these

listed lineages. In regards to the MalAvi database, 11 of the identified lineages were associated

with pre-discovered morphospecies, Haemoproteus belopolskyi (ARW1 and HIICT), H. pas-
toris (LAMPUR01), H. balmorali)LULU1),H. Passeris (PADOM05),H.majoris (PARUS1), H.

tartakovskyi (SISKIN01), H.minutus (TURDUS2), H.motacillae (YWT3), Plasmodium
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Table 2. Detailed information about detected lineages, their previously identified hosts, new host records from Iran, related near lineages, and major hosts in some

sampling locations is given.

Detected

lineages

Previously identified hosts Published locality New hosts/

location from Iran

Related near

lineage

Major host/ location

ACDUM1 Acrocephalus dumetorum Lithuania [41] Acrocephalus
dumetorum/ S

Phylloscopus
trochilus/ E

- -

ACDUM2 Hippolais polyglotta
Acrocephalus Agricola

Spain, French, Germany

[43]

Bulgaria, Russia, Caucasia

[44]

Acrocephalus
dumetorum/ R S

Aegithalos
caudatus/ M

- -

ACDUM3 Acrocephalus dumetorum India [45] Acrocephalus
dumetorum/ S

- -

AEGCAU05 ¥ - - Aegithalos
caudatus/ M

SISKIN01 Loxia curvirostra/ Lithuanaia and Russia [41,46],

Carduelis spinus/ Lithuania, Russia and Alaska

[41,46], Carpodacus mexicanus/ New York,

California [47,48], Passer domesticus/ California

[49], Carpodacus erythrinus/ Czech Republic

[50], Carduelis flammea/ Alaska [51].

ALCATT01¥ - - Alcedo atthis/ M

ARW1 (H.

belopolskyi)
Acrocephalus baeticatus Nigeria [52] Acrocephalus

melanopogon/ Z

- -

ACSTE1 Acrocephalus stentoreus
Acrocephalus arundinaceus

Lithuania [41]

Romania, Bulgaria [53]

Acrocephalus
stentoreus/ R

- -

BRW1 Acrocephalus griseldis Kenya [5] Acrocephalus
stentoreus/ R

- -

CYACAE06 ¥ - - Cyanistes
caeruleus/M

PARUS84 Cyanistes caeruleus/ Portugal [54]

CUCUR01 ¥ - - Curruca curruca/ S CWT04 Acrocephalus palustris/ Russia [19]

EMBUC01 ¥ - - Emberiza
buchanani/ Z

EMSPO01 Emberiza spodocephala/ Russia [46]

EMBUC02 ¥ - - Emberiza
buchanani/ Z

ROFI6 Carpodacus erythrinus/ Czech Republic [55],

Carduelis flammea/ Alaska [51]

FISEM01 ¥ - - Ficedula
semitorquata/ R

ESTMEL01 Estrilda melanotis/ Tanzania [55]

FISEM02 ¥ - - Ficedula
semitorquata/ Z

FOUMAD01 Foudia madagascariensis/Madagascar [55]

GRBRU01 ¥ - - Granativora
bruniceps / G

ALARV03 Alauda arvensis/ Italy [56]

GRBRU02 ¥ - - Granativora
bruniceps / S

PADOM22 Passer domesticus/ Spain [49]

GRMEL01 ¥ - - Granativora
melanocephala/ Z

JUHYE03 Junco hyemalis/ Alaska [51]

GRMEL02 ¥ - - Granativora
melanocephala/ Z

PAGRI04 Passer griseus/ Kenya [55]

GRW03 Acrocephalus arundinaceus Kenya [5], Bulgaria [41,53] Acrocephalus
stentoreus/ K R

- -

HIP2 Hippolais pallida
Hippolais caligata

Nigeria [52]

Russia [46]

Iduna pallida/ Z - -

HIP4 Hippolais pallida Nigeria [52] Iduna pallida/ S - -
HIRUS17 ¥ Hirundo rustica/ R PAGRI01 Passer griseus/ Nigeria (Bensch & Ottosson

unpubl) refrenced by MalAvi [35]

LULU1 (H.

balmorali)
Luscinia luscinia Russia [57] Iduna pallida/ S - -

(Continued)
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Table 2. (Continued)

Detected

lineages

Previously identified hosts Published locality New hosts/

location from Iran

Related near

lineage

Major host/ location

HIICT1 (H.

belopolskyi)
Hippolais icterina
Hippolais polyglotta
Saxicola rubetra
Sylvia borin
Acrocephalus agricola

French [43], Russia [58]

Germany [43]

Nigeria [41]

Nigeria [41]

Bulgaria [53]

Hippolais
polyglotta/ Z

- -

IDPAL01 ¥ - - Iduna pallida/ G RW2 Acrocephalus scirpaceus/ Nigeria [52],

Acrocephalus arundinaceus/ Sweden [59], Iduna
opaca/ Morocco [54]

OEOEN01 ¥ - - Oenanthe
oenanthe/ E

PAMEL01 Passer melanurus, Passer diffuses, Hirundo
abyssinica/ Africa [55]

PETPET01 ¥ - - Petronia petronia/
S

PAGRI04 Passer griseus/ Kenya [55]

PETPET02 ¥ - - Petronia petronia/
Z

ROFI1 Fringilla coelebs/ Russia [19], Carduelis chloris,
Carpodacus erythrinus / Sweden [41]

PADOM32 ¥ - - Passer domesticus/
G

VILWE3 Ploceus cucullatus/ Nigeria, Ploceus nigerrimus,
Ploceus velatus/ Gabon and Nigeria [41]

SITTEP01 ¥ - - Sitta tephronata/ Z SITEUR01 Sitta europaea/ Morocco [54]

MOALB03 ¥ - - Motacilla alba/ M. GEOTRI02 Geothlypis trichas [7], Passerina amoena/
America [48].

SISKIN01 (H.

tartakovskyi)
Carduelis flammea, Carduelis
spinus

Alaska [51] Carduelis carduelis/
S-R

Dendrocopos
syriacus/ Z

- -

CCF6 Fringilla coelebs
Cyanistes caeruleus

Russia [60], Bulgaria [61],

Sweden [41], Morocco,

Portuguese, Azerbaijan,

Armenia [60]

Morocco, Portuguese

[54,60]

Fringilla coelebs/ R - -

YWT3 (H.

motacillae)
Motacilla flava Spain [43] Motacilla alba/ E - -

PADOM05 (H.

passeris)
Passer moabiticus
P. domesticus
Sylvia borin

Palestine [62]

French, Turkey, Russia,

Spain [49,63]

Spain [64]

Passer domesticus/
Z-A-S-R-G-K

- -

PAHIS2 Passer hispaniolensis Morocco [54] Passer domesticus/
R

- -

PYERY01 Pyrrhula erythaca
Pyrrhula pyrrhula,
Carpodacus erythrinus,
Serinus striolatus

California [65]

Russia [46]

Linaria cannabina/
A

Passer montanus/ R

- -

PARUS1 (H.

majoris)
Parus major
Panurus biarmicus, Hippolais
icterina, Ficedula hypole, Sitta
europaea, Emberiza
schoeniclus

Russia [19]

Sweden [41]

Parus major & Sitta
tephronata/ S

- -

LAMPUR01

(H. pastoris)
Lamprotornis purpureiceps
Sturnus roseus
S. vulgaris

Gabon [66]

Bulgaria [67]

Bulgaria [67]

Sturnus vulgaris/ S - -

TURDUS2 (H.

minutus)
Turdus philomelos
T.merula

Sweden [52]

Sweden [40,41]

Turdus merula/ S - -

SYAT05 (P.

vaughani)
Sylvia atricapilla
Turdus merula

Italy [41]

French, new Zealand [68]

Turdus merula/ S - -

(Continued)
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relictum (GRW04), and P. vaughani (SYAT5). Classification of parasites at species level and

species delimitation in avian malaria parasites is very difficult, particularly inHaemoproteus,
as a threshold of inter- and intra-species variation has not been set by the use of molecular

markers [40]. This may explain the reason why most published articles in this field have

focused on lineages instead of species level. There are more than 3132 identified unique line-

ages for avian malaria and the closely related genera from 1561 host species in MalAvi as of

August 2018 [35].

The new amplified sequences of this study are illustrated in the phylogenetic tree with the

nearest lineages obtained from BLAST analysis and prevoiusly reported lineages of similar

hosts (Fig 1). All sequences were clustered in three main monophyletic clades asHaemopro-
teus, Plasmodium, and Leucocytozoon lineages. Two new lineages of Leucocytozoon are clus-

tered as sister groups in two sub-clades of clade A. Likewise, the Plasmodium lineages in clade

C are grouped as the sister taxa ofHaemoproteus lineages in clade D.

Nucleotide distinctiveness collation with previously recorded sequences confirmed the rela-

tive shift ofHaemoproteus lineages among birds found in Iran. Five shared lineages of

ACDUM1, ACDUM2, PARUS1, PYERY01, and SISKIN1 were detected in different hosts

from dissimilar families. ACDUM1 were observed in Acrocephalus dumetorum from North

Khorasan and Phylloscopus trochilus from Semnan. ACDUM2 were collected in both Acroce-
phalus dumetorum from Razavi Khorasan & North Khorasan and Aegithalos caudatus form

Mazandaran. Both infected hosts of PARUS1 (Parus major& Sitta tephronata) were recorded

from North Khorasan. The species Passer montanus from Razavi Khorasan & Linaria canna-
bina from Ardabil were infected by PYERY01. Lineage of SISKIN1 were found in Carduelis
carduelis from Razavi Khorasan and North Khorasan and non-passerine species of Dendroco-
pos syriacus from Zanjan province. Altogether these common lineages belong toHaemoproteus
spp. (Table 2). Recent studies on blood parasites have recorded numerous lineages listed in

Table 2 with detailed information about sampling locality in comparison with collected sam-

ples as new distribution and hosts from Iran. There is increasing evidence that haemospori-

dian infections in non-competent hosts result in abortive development of the parasites before

they reach the stage of infectious gametocytes. As such DNA may leak into the blood, it is pos-

sible that the host range across bird taxa is an overestimation of parasite distribution within

their competant hosts. Thus, microscopic examination of blood films remains a gold comple-

mentary method in the field of haemosporidian parasite studies [41].

Moreover, considering that most of the investigated birds do not inhabited and have

entered Iran through migration routes, detection of more than half of the common previously

identified lineages from another part of the world could be a reason for this (Table 1). Iranian

Table 2. (Continued)

Detected

lineages

Previously identified hosts Published locality New hosts/

location from Iran

Related near

lineage

Major host/ location

ORW1 Acrocephalus orientalis
Phylloscopus trochilus
Ph. trochiloides

Japan [5]

England [5]

Russia, Caucasia [69]

Seicercus nitidus/ S - -

GRW04 (P.

relictum)

Acrocephalus arundinaceus
Passer domesticus

Nigeria [52]

America, Bermuda, India

[7]

Passer domesticus/
R

- -

Provinces of sampling are abbreviated by A (Ardabil), Zanjan (Z), Semnan (E), North Khorasan (S), Razavi Khorasan (R), Golestan (G), Mazandaran (M), and Gilan

(K).

New lineage are specified by (¥).

https://doi.org/10.1371/journal.pone.0206638.t002
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avifauna is influenced by three birds’ migration routes, consisting of Central Asian Flyway,

West Asian/East African Flyway, and Black sea/Mediterranean Flyway. Of the examined birds,

the species of Acrocephalus dumetorum, A.melanopogone, Aegithalos caudatus, Galerida cris-
tata, Carduelis carduelis, Linaria cannabina, Serinus pusillus,Motacilla alba, Ficedula hypo-
leuca, Passer domesticus, P.montanus, Petronia petronia, Parus major, Sitta tephronata, Turdus
merula, and Dendrocopos syriacusi are resident in Iran while the rest are passengers, wintering

or breeding in the summer [42].

Due to the lower divergence rate in malarial parasites rather than vertebrates, very close lin-

eages can be found in different hosts of various families [6]. For instance, SISKIN1 and AEG-

CAU05 with 0.4% genetic variation were detected in two hosts of Fringillidae and Aegithalidae

with high genetic differences. Species ofHaemoproteus are often considered to be specific to

birds within a family or subfamily [70,71]. However, there is experimental evidence which

shows the successful transmission of the hemoproteids between birds belonging to different

families/sub-families of the same order. It remains unclear how often such host shifts occur in

wildlife. Fallon et al. (2003, 2005) provided the first molecular evidence that the same lineages

ofHaemoproteus spp. are present in birds belonging to different families of Passeriformes

[72,73]. Szymanski and Lovette (2005) showed thatHaemoproteus lineages recovered from

two or more host individuals were found in at least two host families. This data indicates that

someHaemoproteus spp. lineages exhibit a low degree of host specificity [8].

Haemosporidians as the most recurrent blood parasites, showed the comparatively high

infection rate of 34.83% in the present study. In another investigation, the reported infection

rate of avian hosts around the world were 29.5% in China [74], 12% in tropical regions of

Costa Rica [75], 33% in Philippines [76], 35% in neotropical areas in Brazil [77], 40% in central

Africa [6], and 50% in India [78].Haemoproteus was the most affluent in comparison with

other genera from the northern part of Iran which was in accordance with preceding studies

[13,74,76]. In recent studies, the lowest recorded overall prevalence ofHaemoproteus, Plasmo-
dium, and Leucocytozoon was 3.1% and eight new lineages were found in South American

waterfowls (from Peru and Argentina) [15]. The relatively medium prevalence of haemospori-

dians in the collected samples from Peninsular Malaysia was 30.3% andHaemoproteus were

the predominant genus in comparison with Plasmodium. Moreover, 10 new lineages ofHae-
moproteus spp. and three new lineages of Plasmodium spp. were reported by molecular tech-

nique using cytb gene [16]. Very high overall infection prevalence of 83.6% was registered for

two sympatric sand hill crane populations seized in Texas [79]. Likewise, another investigation

on captive birds from a Brazilian megalopolis, have reported the overall prevalence 97.6% of

the genus Plasmodium and 2.4% ofHaemoproteus and 14 new lineages of Plasmodium spp.

and two lineages ofHaemoproteus spp. were detected using mitochondrial gene of cytb [80].

This amount of difference may be related to the lower pathogenicity in regard to Plasmodium.

Infected birds can rarely be captured by mist net due to their lessened mobility and activity

and also due to the variation in vector abundance [1]. Additionally, several factors such as tem-

poral and spatial influence, gender, age, immunological system, distinctive study approaches

and various collected taxa may influence the prevalence rate in hematozoan parasites

[15,16,81]. As the collection of samples for potential vectors in this study were performed near

aquatic localities and rivers, the infection rate by Plasmodium and Leucocytozoon parasites

were recorded as very low in contrast withHaemoproteus sampled throughout Iran, which

may be attributed to the lack of available vectors in these regions.

The molecular and morphological techniques are complementary to each other. In our

study a molecular approach was successful in the identification of seven lineages AEGCAU05,

ALCATT01, CCF6, HIRUS17, YWT3, SYAT5, and EMBUC02 which failed to be identified

through inspection of prepared slides from birds with a low level of infection [82]. Findings of
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similar studies also demonstrated the effectiveness of more sensitive PCR-based methods in

comparison with the morphological detection of apicomplexan blood parasites [19,78]. More-

over, other investigations have demonstrated an equal efficiency of both methods of blood par-

asite discovery [16].

In this study, our results demonstrated that Iran as a corridor in birds migratory routes

may be influenced to have the high risk of exposure to new parasites. Thereupon, previously

common identified lineages may be detected in new hosts in unchecked regions (e.g. more

than 50% of our detected lineages). As the molecular study for detection of birds hematozoa

from Iran, 20 novel lineages for three genera ofHaemoproteus, Plasmodium, and Leucocyto-
zoon were reported from this region and about 12% of lineages of were observed in multiple

species from different families of birds. Additional investigations into these taxa in the avi-

fauna for other parts of Iran may attain further data on the detection of new lineages, and pur-

sue the relationship and distribution pattern between blood parasites and hosts.
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58. Valkiūnas G, Palinauskas V, Križanauskienė A, BernotienėR, KazlauskienėR, Iezhova TA (2013) Fur-

ther observations on in vitro hybridization of hemosporidian parasites: patterns of ookinete development

in Haemoproteus spp. The Journal of parasitology 99: 124–136. https://doi.org/10.1645/GE-3226.1

PMID: 22924917

59. Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, et al. (2007) Temporal

dynamics and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology

76: 112–122. PMID: 17184359

60. Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, et al. (2014) Does the niche

breadth or trade-off hypothesis explain the abundance–occupancy relationship in avian Haemospori-

dia? Molecular ecology 23: 3322–3329. https://doi.org/10.1111/mec.12744 PMID: 24689968

61. Dimitrov D, Zehtindjiev P, Bensch S (2010) Genetic diversity of avian blood parasites in SE Europe:

Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria.

Acta Parasitologica 55: 201–209.

62. Martinsen E, Paperna I, Schall J (2006) Morphological versus molecular identification of avian Haemos-

poridia: an exploration of three species concepts. Parasitology 133: 279–288. https://doi.org/10.1017/

S0031182006000424 PMID: 16740182

63. Loiseau C, Zoorob R, Robert A, Chastel O, Julliard R, Sorci G (2011) Plasmodium relictum infection

and MHC diversity in the house sparrow (Passer domesticus). Proceedings of the Royal Society of Lon-

don B: Biological Sciences 278: 1264–1272.
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