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Abstract: Cardiovascular diseases (CVDs) have become the leading cause of disability and death
worldwide, particularly in low- and middle-income countries. Hypertension, a major cause of
CVD progression, is widely attributable to genetic, behavioral, and environmental risk factors.
Among the genetic reasons, angiotensin II enzyme, produced as a result of abnormal functioning
of the renin–angiotensin system, is reported as the foremost cause of hypertension. A cascade of
genes, including those encoding for WNK kinases (WNK1 and WNK4), Bp1, Bp2, angiotensinogen,
and other enzymes, is involved in the conversion of angiotensin I to angiotensin II. However, the
angiotensin-converting enzyme (ACE) plays a crucial role in this pathway. Therefore, ACE could
be a potential therapeutic target in regulating the conversion of angiotensin I to angiotensin II and
eventually controlling hypertension. In this study, a molecular docking-based approach was utilized
for identifying and evaluating potential inhibitors of ACE present in herbs, other natural sources,
and synthetic sources, on the basis of these compounds’ binding affinities and other physicochemical
features. In addition, the suitability of these inhibitors as drugs for biological systems, considering
their adsorption, distribution, metabolism, and excretion (ADME), was predicted using Lipinski’s
rule. In conclusion, our study provides a novel and clearer insight into the interaction properties of
known putative inhibitors of ACE.

Keywords: angiotensin-converting enzyme; ligands; hypertension; molecular docking;
drug designing

1. Introduction

Cardiovascular diseases (CVDs) refer to disorders of the heart and blood vessels, including
coronary artery diseases (CAD) such as angina and myocardial infarction, that are very common
and represent a major challenge to sustainable human development nowadays [1]. With the turn of
the century, these diseases have become the leading cause of disability and death around the globe,
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particularly in developing countries. Global status reports have shown that approximately 12.3 million
deaths (25.8% of all deaths) globally were caused by CVDs in 1990 and increased to 17.9 million deaths
(32.1% of all deaths) in 2015 [2]. In the United States, 11%, 37%, 71%, and 85% of people are affected by
CVDs between 20 and 40, 40 and 60, 60 and 80, and over 80 years of age, respectively [3]. Risk factors
of CVDs include genetic, behavioral, and environmental factors, such as high blood pressure, smoking,
diabetes, physical inactivity, obesity/overweight, high blood cholesterol, low socioeconomic status,
and excessive alcohol. Among these, high blood pressure is the main risk factor for CVD deaths (13%),
followed by the tobacco (9%), diabetes (6%), lack of exercise (6%), and obesity (5%), and the prevalence
of risk factors fluctuates in various regions [4].

Hypertensive heart disease mostly known as hypertension, refers to a group of disorders including
heart failure, ischemic heart disease, and left ventricular hypertrophy and is becoming a major cause
of death associated with high blood pressure worldwide [5]. Several genes including WNK1, WNK4,
Bp1, Bp2, AGT, and ACE were reported to be involved in hypertension [6]. Mutation in WNK1 and
WNK4 genes could cause disturbances in the homeostasis of K+, salts, and pH level [7], whereas
a mutation in AGT genes present on chromosome 1 results in an imbalance of angiotensinogen
production, ultimately leading to hypertension [8]. It was revealed that ACE plays a key role in
hypertension, its dysfunction being the most frequent cause of hypertension [9]. The most comon
biological reason behind hypertension is the production of angiotensin II enzyme, which is produced
from the conversion of angiotensin I by the action of a series of the enzymes [10]. Therefore, regulating
the conversion of angiotensin I to angiotensin II could be an effective strategy to control hypertension.

Angiotensin-converting enzyme (ACE) is considered crucial in this pathway and has received
considerable attention as a therapeutic target for controlling hypertension. Repressing ACE expression
has been proved as an effective strategy in controlling hypertension, as its downregulation will
inhibit the conversion of angiotensin I to angiotensin II [11]. In this study, the binding affinities
of various natural, synthetic, and herbal inhibitors for active sites of ACE were predicted using the
molecular docking approach, which is becoming an extremely important tool in drug design. Molecular
docking is playing a major role in structure-based molecular biology and computer-based drug design.
The molecular docking methodology can be utilized to demonstrate the cooperation between a small
molecule and a protein at the nanoscale, which empowers us to describe the behavior of small particles
in the binding site of the proteins and explain key biochemical processes. Furthermore, drug-likeness
and compatibility with gastrointestinal and brain absorption were computed for all the inhibitors
tested to evaluate their suitability as potential therapeutic agents and orally active drugs for the
treatment of hypertension.

2. Materials and Methods

2.1. Physiochemical Properties

The physiochemical properties of human ACE were predicted using Protparam [12].
The Protparam tool works on the basis of the Edelhoch method [13], determining the weight value of
instability with respect to 400 different dipeptides (DIWV) and the hydropathy values for extinction
coefficients, instability index (II), and GRAVY value (grand average of hydropathy value).

2.2. Secondary Structure Predictions

The number of helix turns and coils was calculated using “Psipred” [14]. Psipred used two
feed-forward neural networks which perform an analysis of output obtained from PSI–BLAST
(Position-Specific Iterated–BLAST) for secondary structure prediction.

2.3. Domain and Motif Analysis

Domains of human ACE were retrieved from the NCBI conserved domain database (https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?), and motifs were predicted using the MEME [15] software.

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?
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To overcome the limitation of finding gapped motifs, an efficient algorithm of MEME motif discovery is
integrated with the algorithm of GLAM2 [16] which enables users to discover novel motifs having gaps.

2.4. Selection of Ligand, Receptor, and Active Site Prediction

The structures of ligand molecules were downloaded from PubChem that selects compounds
based on their chemical formula and physiochemical properties [17]. To explore the binding sites of
ligands (inhibitors) on the ACE structure, its 3D-structure was retrieved from RCSB-PDB (Figure 1).
Active sites of human ACE were retrieved from InterPro (https://www.ebi.ac.uk/interpro/).
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Figure 1. Results from (a) TOPCONS and (b) Signalp4 showed that ACE is present outside of the cell
membrane and has no signal peptide.

2.5. Preparation of Ligands and Receptor

Ligands and receptor were prepared for docking by minimizing their energy and then 3D
protonating in MOE 2009.10 [18] by removing solvent molecules (water) and other sites on ACE,
facilitating the interaction of only inhibitors or ligands with the selected receptor.

2.6. Molecular Docking

The scope of therapeutic targets in drug design and discovery has broadened with the completion
of the human genome project. At the same time, advanced strategies such as excessive-throughput
crystallography, protein purification, and nuclear magnetic resonance (NMR) spectroscopy have
been providing structural information of protein–ligand and protein complexes [19,20]. All these
advancements have resulted in the development of computer-aided drug design, also known as
molecular docking. Molecular docking consists of structure-based and ligand-based methods.
The ligand-based methods such as QSAR (quantitative structure–activity relationship) are preferred
when information about a ligand is large; otherwise, structure-based docking methods are
used [21]. In this study, molecular docking of reported synthetic and natural inhibitors of ACE
was performed using diverse computational tools, with the aim to discover the optimum inhibitor,
which ultimately would provide the basis for designing drugs against hypertension by inhibiting
ACE. The structure-based docking method was used because structure-based Computer Aided Drug
Designing (CADD) relies on the knowledge of the target protein structure to calculate interaction
energies for all compounds tested, whereas ligand-based CADD exploits the knowledge of known
active and inactive molecules through chemical similarity searches or construction of predictive, QSAR
models [22]. Structure-based CADD is generally preferred where high-resolution structural data
of the target protein are available, i.e., for soluble proteins that can readily be crystallized. These
advancements in research allow computational techniques to analyze all factors involved in drug
design and discovery.

https://www.ebi.ac.uk/interpro/
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A plethora of computational tools have been developed and are widely used for protein-ligand
docking, particularly for discovering drugs based on small well-structured molecules. These tools
include Glide, Gold, Auto dock, PyRx, Surflex, ICM, FITTED, MOE (Molecular Operating
Environment). MOE, which helps to visualize, characterize, and evaluate protein interactions with
other proteins or ligands, was utilized in this study. Proteins and small molecules can be designed using
modern in silico design applications, and structure–activity relationships (SAR) in micro-molecules
can be developed. It works on the basis of high-throughput screening, docking, energy determination,
combining biology, chemistry, and information technology [23]. A list of widely used docking tools
and their description are presented in Table 1.

MOE was selected for docking among various available resources as it has a user-friendly
graphical interface. It represents a good graphical view of results by showing ligand and receptor
binding residues with their positions and interactions. In MOE, receptor–ligand binding affinities
with all possible binding geometries are prioritized on the basis of a numerical value called S-score.
MOE has multi-disciplinary applications, such as in structure-based design, fragment-based design,
pharmacophore discovery, medicinal chemistry applications, biologics applications, protein and
antibody modeling, molecular modeling and simulations, cheminformatics and QSAR, and methods’
development and deployment. MOE identifies salt bridges, hydrogen bonds, hydrophobic interactions,
sulfur-LP, cation-π, and solvent exposure, and gives the S score. Interactions of inhibitors with receptor
proteins are predicted on the basis of the S score [24].
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Table 1. A list of widely used tools for docking.

No. Software/Tools Algorithm Scoring Term Advantages Ref.

1. Molecular Operating Environment
(MOE) High-Speed α shapes algorithms London dG, FlexX,

DrugScore, Mcdock

Customizable, available source-code, gives
binding affinity score, shows interacting

amino acids with position, and is
user-friendly.

[25]

2. PyRx Lamarckian genetic algorithm Binding energy, Internal energy,
Internal energy, Unbound energy

Temperature Resistance. Pyrex’s excellent
thermal properties at both high and low
temperatures are one of its key features.

[26]

3. Glide (Grid-based Ligand
Docking with Energetics) Monte Carlo Glide score Lead discovery and lead optimization [27]

4. AutoDock Lamarckian genetic algorithm Empirical free-energy function Adaptability to user-defined input [28]

5. GOLD (Genetic Optimization for
Ligand Docking) Genetic algorithm

GoldScore, ChemScore, ASP (Astex
Statistical Potential), CHEMPLP

(Piecewise Linear Potential),
User-defined

Allows atomic overlapping between protein
and ligand [29]

6. Surflex Surflex-Dock search
Algorithm Bohm’s scoring function High accuracy level by extending force fields [30]

7. FlexX Incremental reconstruction Modified Bohm scoring function Provides a large number of conformations [31]

8. ICM (Internal Coordinate
Modeling) Monte Carlo minimization Virtual library screening

scoring function
Allows side chain flexibility to find a parallel

arrangement of two rigid helixes [32]

9. MVD (Molegro Virtual Docker) Evolutionary algorithm MolDock score High accuracy level of predicting
binding mode [33]

10. Fred (Fast Rigid Exhaustive
Docking) Exhaustive search algorithm Gaussian scoring function Nonstochastic approach to examine all

possible poses within a protein active site [34]

11. LigandFit Monte Carlo method LigScore, Piecewise Linear Potential
(PLP), Potential of Mean Force (PMF) Generates good hit rates based on LigScore [35]

12. FITTED (Flexibility Induced Through
Targeted Evolutionary Description) Genetic algorithm Potential of Mean Force (PMF),

Drug Score
Analyzes the effect of water molecules on

protein–ligand complexes [36]

13. GlamDock Monte Carlo method ChillScore
Provides provision of two-dimensional

analysis to screen ligands by
targeting protein

[37]

14. iGEMDOCK Genetic algorithm Empirical scoring function

Integrates the structure-based virtual
screening and post-screening analysis.

Provides a graphical integrated environment
for virtual screening

[38]
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2.7. Lipinski’s Rule of Five for Drug-Likeness or ADME (Absorption, Distribution, Metabolism, and
Excretion) Analysis

Drug-likeness of our inhibitors, including absorption, distribution, metabolism, and excretion of
these inhibitors within the body, was predicted using SwissADME (Swiss Institute of Bioinformatics,
Switzerland) [39]. The Egan BOILED-Egg method available in SwissADME tool was used for the
determination of the absorption of the inhibitors in the gastrointestinal tract and brain. BOILED-Egg
(Brain Or IntestinaL EstimateD permeation predictive model), also called Egan egg, provides a
threshold (WLOGP ≤ 5.88 and TPSA ≤ 131.6) and a clear graphical representation of how far a
molecular structure is from the ideal one for good absorption [40]. In this 2D graphical representation,
the yolk area represents the molecules that can passively permeate through the blood–brain barrier
(BBB), whereas the molecules located in the white region are predicted to be passively absorbed by the
gastrointestinal (GI) tract.

Herein, we particularly focused on ACE, which has been reported as a key enzyme in
hypertension [9]. Various substances containing naturally occurring compounds from herbal and
animal sources (e.g., Allicin and teprotide) have come forward as potential inhibitors of ACE (Table 2)
and may control high blood pressure.

Table 2. Synthetic, herbal, and animal source inhibitors of angiotensin-converting enzyme (ACE).

No. Ligand Features Source Function Citation

1. Benazepril 97% protein binding, a half-life of
10–11 h, pregnancy category: D Synthetic Cures

hypertension [41]

2. Captopril 25–30% protein binding, a half-life of
2 h, pregnancy category: D Synthetic Controls blood

pressure [42]

3. Cilazapril A half-life of 1 to 4 h Synthetic ACE inhibition [43]

4. Lisinopril
Pregnancy category: D,

does not bind serum proteins other
than ACE

Synthetic Inhibition of ACE [44]

5. Moexipril Pregnancy category: D,
<90% protein binding and 1 h half-life Synthetic

Treatment of
hypertension and
congestive heart

failure

[45]

6. Trandolapril Half-life 6 to 10 h, pregnancy
category: D Synthetic Controls high

blood pressure [46]

7. Enalapril Pregnancy category: D,
half-life of 11 h Synthetic

ACE inhibition to
control

hypertension
[47]

8. Fosinopril 12 h half-life, pregnancy category: D,
≥95% protein-binding capacity Synthetic Normalizes blood

pressure [48]

9. Perindopril 20% protein binding, pregnancy
category: D and 1–2 h half life Synthetic Controls blood

pressure [49]

10. Quinapril 97% protein binding, 2 h biological
half-life, pregnancy category: D Synthetic Inhibition of ACE [50]

11. Ramipril Protein binding 73% (ramipril),
56% (ramiprilat), half-life of 2–4 h Synthetic Congestive heart

failure control [51]

12. Allicin Has water solubility of 24 mg/mL at
10 ◦C, solid, melting point >25 ◦C

Garlic and
onion Inhibition of ACE [52]

13. Teprotide
Has 10 hydrogen bond donors, 13
hydrogen bond acceptors, and 79

heavy atoms
Snake venom Antihypertensive

agent [53]
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3. Results and Discussion

3.1. Physiochemical Properties of ACE

Human ACE was found to exhibit a molecular weight of 67,993.2 Daltons and isoelectric pH 5.82.
It is a stable protein with an aliphatic index of 78.86, whereas its instability index was predicted to
be 39.46. The prediction of GRAVY value of −0.4441 demonstrates that ACE is a hydrophilic peptide
(Table 3).

Table 3. Physiochemical properties of ACE predicted by ProtParam.

Serial Number Property Value

1. Number of amino acids 589
2. Total number of atoms 9457
3. Molecular weight 67,993.20 Dalton
4. Theoretical pI 5.82

5. Extinction coefficient * 143,240 at Abs 0.1% 2.112, assuming all pairs of Cys residues
form cystines

6. Instability index 39.46
7. Aliphatic index 78.86
8. Grand average of hydropathicity (GRAVY) −0.441
9. Chemical Formula C3076H4656N818O883S24
10. Charge Negative

* Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water.

3.2. Membrane Topology of ACE

The use of diverse computational tools including TOPCON, Signal p4.1, OCTOPUS, PolyPhobius,
SCAMPI, and SPOCTOPUS predicted that ACE is an extracellular enzyme, present outside of the cell
membrane (Figure 1). The structure of human ACE was predicted to comprise 333 helices, 9 strands,
and 247 coils (Figure 2). NCBI Conserved Domain Database has shown that human ACE has only one
domain and belongs to the family Peptidase M2, peptidyl-dipeptidase A, with the interval from 11 to
571 amino acid numbers. However, MEME predicted that ACE has the sequences “VCHPNGSC” in
position 115–122, “HHEMGHIQYFMQYK” at 346–359, and “FHEALC” at 373–378. The 3D structure of
human ACE was retrieved from the PDB (PDB ID: 1o8A) online protein database and visualized with
a desktop tool, i.e., CHIMERA (Figure 3). ACE was predicted to have 14 active sites for interactions
using InterPro (EMBL-EBI, Cambridgeshire, UK) (Table 4).

Table 4. Active sites of human ACE.

Amino Acid Position Amino Acid Position

Histidine 317 Alanine 318
Serine 319 Histidine 347

Glutamic Acid 348 Histidine 351
Glutamic Acid 375 Phenylalanine 421

Lysine 475 Phenylalanine 476
Histidine 477 Valine 482
Tyrosine 484 Tyrosine 487
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3.3. Reported Inhibitors of ACE

The 2D structures of reported inhibitors of ACE were downloaded from PubChem in SDF format
and are portrayed in Figure 4.

Herbal and Natural Inhibitors

(1) Garlic contains “allicin”, a chemical compound with a reported role in ACE inhibition. A fresh
clove of garlic (4 g) contains about 1% allicin [54].

(2) Snake (Bothrops jararaca) venom contains “teprotide”, which is known to have ACE inhibition
activity [53].

3.4. Molecular Docking

In silico docking of human ACE against selected inhibitors was performed using MOE against
all the predicted active sites. The results showed that all selected inhibitors were in the pocket
of the target protein (ACE), exhibiting a possible interaction with ACE. The docking results were
manipulated using the GBVI/WSA dG scoring function with the generalized Born solvation model
(GBVI). The GBVI/WSA dG is a force field-based scoring function, which estimates the free energy
of binding of the ligand from a given orientation. Interaction results were evaluated with the S score.
Inhibitors with the lowest S score tend to establish a strong interaction with ACE on specific active
sites (Table 5). After in silico docking, we identified a ligand showing the minimum S score among all
the inhibitors. Teprotide, which is present in snake venom, showed a minimum S score of −20.1163;
therefore, it establishes the strongest interaction with ACE among all the inhibitors discussed in this
study. Fosinopril is another widely used and effective drug against hypertension. It was predicted to
exhibit a strong binding affinity for ACE, with an S score of −18.9225. Earlier studies demonstrated
that fosinopril doses of 10 and 20 mg could inhibit 85% and 93% of ACE activity, respectively, within
24 h of administration [55]. Hayek et al. used ACE as a receptor and fosinopril as an inhibitor to cure
hypertension and concluded, after 12 weeks of treatment, that fosinopril remarkably reduces blood
pressure in mice [56]. Heart Outcomes Prevention Evaluation Study Investigators evaluated the role of
ramipril in reducing the overactivity of ACE and showed that ramipril significantly lessens the rates of
myocardial infarction and stroke in a wide range of high-risk patients [57].
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Figure 4. 2D structures of various ACE inhibitors including (A) Benazepril, (B) Captopril, (C) Cilazapril,
(D) Enalapril, (E) Fosinopril, (F) Lisinopril, (G) Moexipril, (H) Perindopril, (I) Quinapril, (J) Ramipril,
(K) Trandolapril, (L) Allicin, and (M) Teprotide.

Table 5. Inhibitors ranked on the basis of their S-values.

No. Name S-Values

1. Teprotide −20.1163
2. Fosinopril −18.9225
3. Moexipril −16.816
4. Quinapril −13.456
5. Lisinopril −12.502
6. Cilazapril −12.493
7. Trandolapril −12.2673
8. Enalapril −11.7516
9. Ramipril −11.3562

10. Captopril −10.8282
11. Benazepril −9.3245
12. Perindopril −8.105
13. Allicin −5.5448

3.5. Drug-Likeness and ADME Predictions of Our Inhibitors

The antagonistic interaction of inhibitors with a receptor protein or enzyme cannot guarantee the
suitability of an inhibitor as a drug; therefore, ADME analysis of inhibitors is important in the drug
development [58]. ADME is based on Lipinski’s rule of five [59] and helps to make decisions on the
approval of inhibitors for biological systems. Poor ADME characteristics and unfavorable toxicology
for a biological system are the major cause of the failure of most medicines in clinical experiments.
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The Lipinski’s rule of five was published in 1997 by Christopher A. Lipinski and is also known as
the Pfizer’s rule of five or Rule of five (Ro5). It is a rule of thumb to evaluate the drug-likeness and to
determine if a chemical compound with a certain pharmacological or biological activity has properties
that would make it a likely orally active drug in humans. Ro5 depends on four simple physiochemical
parameter ranges: the molecular weight (MW), which should be less than 500 g/mol, lipophilicity
(Log P) less than 5, and number of hydrogen bond donors and acceptors less than 5 and 10, respectively,
as seen for 90% of orally functional drugs that have obtained phase II clinical status. These parameters
are connected with intestinal permeability and aqueous solubility and determine the first step of oral
bioavailability. These rules explain molecular properties valuable for a drug’s pharmacokinetics in
the human body, including their absorption, distribution, metabolism, and excretion (ADME). If a
ligand fails to fulfill the parameters of Ro5, then it is highly probable that it will cause trouble if
ingested [1]. ADME predictions of our inhibitors are shown in Table 6. BOILED-egg results, showing
the possibility of absorption and penetration of inhibitors in the GI attract and brain using WLOGP
and TPSA parameters are presented in Figure 5.

All of the inhibitors or ligands discussed herein satisfy the Lipinski’s rule, except for teprotide,
which significantly violates three parameters (MW > 500, number of hydrogen bond donors > 5 and
number of hydrogen bond acceptors > 10); furthermore, it also violates the BOILED-egg method.
Although teprotide has the highest binding affinity for human ACE among all the inhibitors, it is
not proposed as an orally active drug due to violation of the Lipinski’s rule. An Egan’s egg graph
for the inhibitors was generated using SwissADME. The graph showed that only allicin, a herbal
compound, is absorbed by the brain, though in the acceptable range. The remaining inhibitors
showed gastrointestinal absorption within an acceptable range, except for teprotide and lisinopril
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Table 6. Lipinski’s rule of five for ADME analysis of our inhibitors (ligands).

No. Name

Lipinski’s Rule of Five
Drug-LikenessMolecular

Weight (g/mol)
Lipophilicity

(MLog P)
Hydrogen

Bond Donors
Hydrogen

Bond Acceptors
No. of Rule
Violations

Less than
500 Dalton Less than 5 Less than 5 Less than 10 Less than 2

Violations
Lipinski’s

Rule Follows

1. Teprotide 1101.26 −3.11 10 13

3: MW > 500,
NH or OH > 5,
N or O > 10, 1:

MW > 500

No

2. Fosinopril 563.66 3.74 1 7 0 Yes
3. Moexipril 498.57 1.54 2 8 0 Yes
4. Quinapril 438.52 2.17 2 6 0 Yes
5. Lisinopril 405.49 −1.46 4 7 0 Yes
6. Cilizapril 417.50 1.79 2 7 0 Yes
7. Trandolapril 430.54 2.19 2 6 0 Yes
8. Enalapril 376.45 1.32 2 6 0 Yes
9. Ramipril 416.51 1.98 2 6 0 Yes

10. Caprtopril 217.29 0.45 1 3 0 Yes
11. Benzapril 424.49 2.23 2 6 0 Yes
12. Perindopril 368.47 1.36 2 6 0 Yes
13. Allicin 162.27 1.18 0 1 0 Yes

So, on the basis of Egan’s boiled-egg rule threshold values (WLOGP ≤ 5.88 and TPSA ≤ 131.6),
only allicin penetrates the blood–brain barrier, though within acceptable limits. The blue dots indicate
molecules predicted to be effluated from the CNS by P-glycoprotein, and the red dots indicate
molecules predicted not to be effluated from the CNS by P-glycoprotein.

The above-mentioned results of the molecular docking that were obtained using molecular
operating environment (MOE) allowed us to observe ligand–receptor. Analysis of the interactions
with the Protein–Ligand Interaction Profiler between ACE and the inhibitor teprotide revealed the
best binding affinity. By analyzing the drug’s score (S-value), teprotide showed the lowest S-value
(−20.1163), resulting as the best ligand among our selected ligands to inhibit the activity of ACE.
However, it violates three parameters (MW > 500D, H-bond donors >5 and H-bond acceptors >10)
of the Lipinski’s rule, as well as Egan’s parameters (WLOGP > 5.88 and TPSA > 131.6). Although
teprotide is proposed to be a potential therapeutic inhibitor of ACE, it may fail as an orally active
drug because it deviates from the Lipinski’s rule and from the Egan’s rule. Compared to teprotide,
the higher S-value (−18.9225) of fosinopril demonstrates its lower binding affinity for ACE. Notably,
fosinopril satisfies all parameters of the Lipinski’s rule, except for MW >500D, and also complies
to the BOILED-egg approach, showing no brain and GI tract absorption, which renders it a more
suitable potential orally active drug and therapeutic inhibitor of ACE to be tested in clinical trials,
compared to teprotide. Allicin is a herbal compound found in garlic that helps to inhibit the activity of
ACE and satisfy all Lipinski’s rules with minimal absorption in the brain. Nonetheless, it displayed
lower binding affinity and placed last among our selected inhibitors because of its highest S-value
(−5.5448). Although allicin has a lowest binding affinity for ACE, it can be used in drug design for the
treatment of hypertension because of its herbal nature; also, garlic can be used as food to bring the
blood pressure within normal range. Therefore, from various investigations, it is clear that teprotide,
which is extracted from a snake (B. jararaca) venom, has the highest binding affinity for ACE compared
to other inhibitors but it cannot be used as an orally active drug. In contrast, fosinopril, a synthetic
compound, showed the second highest binding affinity for ACE and therefore could be used as a
potentially therapeutic compound for the development of orally active drugs inhibiting the activity of
ACE and thereby useful to treat hypertension. Fosinopril also does not exhibit any type of absorption
in the brain and gastrointestinal tract. Similarly, allicin can also be used to develop orally active drugs
for the management of hypertension.
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4. Conclusions

In this study, fosinopril was predicted as the best ACE inhibitor (with maximum binding affinity
for ACE after teprotide) to be used as a potentially therapeutic orally active drug (on the basis of
Lipinski’s rule of five and BOILED-egg approach) for the treatment of hypertension. Among the
animal inhibitors, teprotide showed the highest binding affinity compared to all other ligands studied
here; however, according to Lipinski’s rule and BOILED-egg method, it is not recommended as a
suitable therapeutic agent. Furthermore, allicin, a herbal ligand, exhibited reasonable binding affinity
for ACE and follows Lipinski’s rule of five but can only be used as food because of its slight absorption
in the brain. In conclusion, our study provides a clearer insight into the interaction properties of
known putative synthetic inhibitors of ACE and bioactive inhibitors, including interactions with the
blood–brain barrier. In recent years, consumers have paid attention to natural bioactive compounds as
potential medicines because of their effectiveness in promoting health, associated with less adverse
effects. In future, we will be able to use the knowledge of inhibitors’ pharmacological properties,
including those of bioactive compounds such as allicin, to make effective therapeutic drugs based on
ACE inhibition to cure hypertension.
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