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Abstract: It is proposed that gluten- and casein-rich diets
(GRD and CRD) can synergistically exacerbate dysbiosis
as comorbidity in autism by worsening leaky gut that
affects the brain through the gut–brain axis. In this study,
35 young male rats were divided into 7 groups, Group 1
serves as control; Group 2, clindamycin (CL)-treated; and
Group 3, propionic acid (PPA)-induced rodent model of
autism. These three groups were fed standard diet until
the end of the experiment. Groups 4–7 are rats treated
similarly with CL and PPA, then fed on CRD or GRD until
the end of the experiment. Serum zonulin, glutathione
(GSH), lipid peroxides, and gut microbial composition
were measured in the seven studied groups. Data demon-
strate the significant increase in serum zonulin as marker
of leaky gut in the CL-treated groups fed on CRD or GRD.
Lipid peroxides were significantly higher in the serum of
GRD-fed rats compared to CRD-fed or normal diet-fed
rats. GSH was much lower in CL-treated groups fed on

CRD or GRD compared to PPA-treated rats fed on both
diets. Both diets differentially affected the diversity of the
gut microbiota. This study demonstrates that CRD and
GRD exacerbates leaky gut, according to serum zonulin,
which was used as marker for increased gut permeability.

Keywords: autism, leaky gut, zonulin, lipid peroxides,
glutathione, gut microbiota

1 Introduction

Globally, about 20% of children and adolescents demon-
strate mental, behavioral, and neurodevelopmental dis-
orders and these are the prominent reasons of disability
in young individuals [1,2]. The etiology of most intellec-
tual disorders, including neurodevelopmental disorders
such as autism spectrum disorders (ASD), is unknown,
but genetic influences, biochemical abnormalities, and
environmental stressors are contributed in the etiology
[3]. The interplay between the brain, leaky gut, and the
gut microbiota has become a rapidly growing area of
research. Increased leaky gut or intestinal permeability
has been examined with regard to emotional, behavioral,
and neurodevelopmental disorders such as ASD [4,5].

Children with ASD have been found to display an
increased immune reactivity against proteins such as
gliadin (a gluten-specific protein) and casein (a protein
in dairy products). It was demonstrated that children
with ASD have high rates of antibodies against gliadin
and casein (i.e., anti-gliadin and anti-casein) [6]. Inter-
estingly they also have antibodies against dipeptidyl pep-
tidase 4 (DPP4) as digestive enzyme which is involved
both in digestion and in regulation processes such as
immune function, pain perception, intracellular signal
transduction coupled to control of cell migration and
proliferation [7]. It is very important in the processing
of gliadin. It is well known that gliadin is broken down
into several peptides among which are gliadinomorphin-7
(GM7) [8] an immune reactive peptide with “opioid
activity”, and thus it stimulates opioid receptors in the
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body [9]. Further degradation of GM7 is therefore neces-
sary and its cleavage is catalyzed by DPP4 which is
not very active in ASD patients [10]. As Vojdani et al.
reported, the presence of anti-DPP4 would theoretically
diminish the amount of circulating DPP4, with concomi-
tant increase in GM7 and the probability of downstream,
opioid-like response [10]. It should be highlighted that
casein and other dietary peptides are similarly degraded
to intermediary substances with opioid properties (e.g.,
casomorphin) [11] and together these potentially harmful
peptides have been termed “exorphins” [12]

Zonulin is a family of architecturally related peptides
that are well-known as physiologic modulator of intestinal
tight junctions [13]. Zonulin appears to be the primary mod-
ulator that is involved in the regulation of gut–blood and
blood–brain barriers permeability that were recently related
to the pathology of ASD [14]. Zonulin is also a potential
inflammatory marker and contributes to intestinal innate
immunity. Increased IP coinciding with inflammation has
been described in mental disorders in children [15].
1. Zonulin has been associated with low-grade inflamma-

tion and autoimmune diseases, as well as ASD, which
might have an autoimmune component [16]. Further-
more, in ASD, higher serum zonulin has been associated
with social impairment compared to controls [4,5].

2. It is well known that oxidative stress plays a key role in
the early phase of intestinal injury, and it implements as
the activating factor for intestinal barrier dysfunction,
thus prompting the immune imbalance and inflammation
[17]. ASD patients with gastrointestinal (GI)–comorbidity
and celiac disease (CD) patients demonstrate oxidative
stress which is known to worsen in case of gluten-rich
diets (GRD). Much lower glutathione (GSH) and higher
lipid peroxides are previously recorded in blood of these
patients [18–20].

Propionic acid (PPA) as enteric fatty acid bacterial
fermentation metabolite has the ability to induce exten-
sive effects on gut, brain, and behavior. Brain tissue from
PPA-treated rats demonstrates numerous neurochemical
alterations for instance, neuroinflammation, glutamate
excitotoxicity, oxidative stress, GSH depletion, and altered
membrane phospholipid consistent with findings in ASD
patients. Moreover, PPA has additional bioactive proper-
ties on neurotransmitter systems, mitochondrial function,
intestinal permeability, and immune response. All these
PPA-induced alterations are consistent with the signs
and the suggested principal etiological mechanisms of
ASD and thus, support the use of PPA in rats as a valid
animal model of ASD [21,22]. Most recently, our team
tested the application of two interventional treatments,

Bifidobacterium probiotic treatment and fecal transplanta-
tion as two strategies to treat dysbiosis, and social inter-
action impairment in oral PPA-administered rats. Both
treatments were effective in modulating the overgrowth
of gut Clostridium bacteria and social impairment in PPA-
rodent model of autism [23].

Additionally, transplanting Clostridium difficile-rich
gut microbiota of ASD patients into pregnant mice is suf-
ficient to promote the autism-like behavior in offspring
[24]. These findings highlight the contribution of the
gut–brain axis in the etiology of autism and recommend
possible interventions in a preclinical model of autism.

A fundamental hypothesis proposed that antibiotic
treatment kills native intestinal bacterial inhabitants that
usually compete with pathogenic bacteria such as C. diffi-
cile. It is well known that a single dose of clindamycin (CL)
significantly reduces the diversity of the intestinal micro-
biota for at least 28 days, and induces a remarkable increase
in C. difficile as PPA producers. Thus, CL treatment could be
used as indirect strategy to test the neurotoxic effect of PPA
through the induction of C. difficile overgrowth [25].

This information initiates our interest to measure
serum zonulin as marker of impaired gut microbiota
together with GSH and lipid peroxides as antioxidant
and oxidative stress status markers, respectively, in CL-
treated and PPA-induced rodent model of autism fed on
standard diet (SD), casein-rich diet (CRD), and GRD. This
might help in understanding and ascertain the relation-
ship between casein and gluten sensitivity, oxidative
stress, and leaky gut in ASD.

2 Material and methods

2.1 Formulation of CRDs and GRDs

Both CRD and GRD were formulated by Dyets for labora-
tory animal’s research and all constituents are shown in
Tables 1 and 2, respectively.

2.2 Experimental animal model

Total of 35 healthy male rats weighing 80–100 g were
obtained from Prince Naif Animal Research Centre and
used in all studies. All experimental procedures for eval-
uating ASD development were performed on 3 week-old
animals. The rats were randomly divided into either con-
trol or CL-treated and PPA-treated (ASD) groups. Animals
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were allowed access to standard rodent chow and tap
water ad libitum.

All rats were housed 2 per cage under controlled
environmental conditions (22 ± 1°C) and an established
light:dark photoperiod (12:12 h; lights on: 07:00). The
experimental procedure is illustrated in Figure 1. On the
first day of testing, rats were designated to receive either
1mL of oral saline (control n = 5), or single dose of 30mg/kg
CL (n = 15) or an oral dose of 250mg/kg PPA (n = 15) dis-
solved in distilled water for 3 days [26]. Later, the CL- and
PPA-treated groups were sub-divided to feed on either SD
(n = 5), GRD (n = 5), or CRD (n = 5) for 28 days.

Ethical approval: The research related to animals’ use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals.
All animal study procedures were approved by the Ethics
Committee for Animal Care and Use of King Saud University
(No. KSU-SE-19-54).

2.3 Collection of serum

Blood sample was collected by direct cardiac puncture in
a plane tube without anticoagulant. Serum was collected
after centrifugation of blood at 1,100 × g for 10min. The
collected serum samples were immediately stored at −80°C
until use. ELISA and biochemical assays were performed
in the BMS lab at COM, KASU-HS.

2.3.1 Measurement of lipid peroxidation

The extent of lipid peroxidation was determined by mea-
suring the levels of the lipid peroxidation products and
thiobarbituric acid (TBA) reactive substances, mainly
malondialdehyde. According to the TBA test by Ruiz-
Larrea et al. [27], boiling the samples with TBA at a low
pH results in the development of a pink chromogen that
can be measured at 532 nm.

Figure 1: Illustration of the experimental design.
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2.3.2 Measurement of reduced GSH

Reduced GSH was measured using the GSH assay, carried
out using tissue homogenate according to the method of
Beutler and Kelly [28].

2.3.3 Measurement of serum zonulin

Serum zonulin in all groups were measured using ELISA
kit, a product of MyBioSource. In this assay, the plate has
been pre-coated with rat zonulin antibody. Samples are
added to different wells, and serum zonulin binds to anti-
bodies coated on the wells. This is followed by the addi-
tion of biotinylated rat zonulin antibody which binds to
zonulin in the serum sample. Then, Streptavidin-HRP is
added and binds to the biotinylated zonulin antibody.
After incubation, unbound Streptavidin-HRP is washed
away during the washing step. Substrate solution is then
added and color develops relative to the amount of serum
rat zonulin. The reaction was ended by adding acidic solu-
tion and read at 450 nm. 0.1–40 ng/mL, and sensitivity of
0.042 ng/mL.

2.4 Gut microbiota analyses from fecal
samples

Fecal samples of all animal groups were collected and stored
at −80°C. Each sample was homogenized using a sonicator
for 30 s in 0.1M pH 7.2 PBS (at a 1:10 weight/volume ratio).
The solutions were centrifuged at 3000 rpm for 5min at 4°C.
One milliliter of the fecal supernatant was serially diluted in
9mL of sterile PBS solution 4 times [29]. Bacterial popula-
tionswere estimated by growth on nutrient agar, MacConkey
agar, 5% sheep blood agar, and Mueller–Hinton agar, while
yeast populations were enumerated on Sabouraud dextrose
agar using 100 µL of sample from each animal separately. All
culture media were incubated at 37°C under aerobic condi-
tions for 18–24 h. The experiment was repeated twice. The
average number of bacteria/yeast per plate was recorded.
Gram staining and biochemical tests were used to identify
the bacterial strains [30].

2.5 Statistical analysis

SPSS version 16.0 was used for data analysis; the results
were expressed as mean value ± SE. The data were

checked for normality using the Shapiro-Wilk test. Not
more than one outlier was excluded to achieve normality
for some of the measures. Extreme outliers were deter-
mined using box plots and removed when they were more
than 3× the data’s interquartile range. Serum biochemical
assays were done by two-way ANOVA followed by a
Tukey’s post hoc analysis for multiple comparisons with
differences considered significant at P ≤ 0.05.

3 Results and discussion

Recent studies suggest potential, but unconfirmed, asso-
ciations between dietary, metabolic, infective, and GI
influences and the behavioral improvements or exacerba-
tions of ASDs. PPA as a metabolic end product of multiple
ASD-associated bacteria, such as Desulfovibrio, Clostridia,
and Bacteroidetes, is reasonably linked to ASDs and can
induce widespread effects on gut, brain, and behavior [23].

The main findings of the present translational study
is a trend of an increase (P = 0.09) in serum zonulin in
PPA-autismmodel fed on ND, CRD, and GRD compared to
control healthy model fed on ND. Significant increase in
serum zonulin was recorded in CL-autism model fed on
GRD compared either to control healthy model fed on ND
(P ≤ 0.0001), PPA-autism model fed on both CRD and
GRD (P ≤ 0.05), or CL-autism model fed on ND (P ≤ 0.01).
On the other hand, CRD demonstrates significant increase
in serum zonulin compared to control healthy and CL-
autism model fed on ND.

In an attempt to understand the mechanisms behind
the elevation of zonulin as marker of leaky gut in CRD-
and GRD-fed rats, we can highlight that both casein as
the major milk protein and gliadin as wheat gluten-
derived protein are hydrolyzed resulting in the release
of heptapeptide hβ-casomorphin-7 (hBCM7), bβ-casomor-
phin-7 (bBCM7), and α-gliadin yields GM7. Different amino
acids at positions 3–5 of these proteins together with the
presence of 2–3 proline residues give them unique con-
formations which are resistant to the action of intestinal
proteolytic enzymes [31]. Each of these homologous pro-
line-rich peptides has the ability to initiate opioid recep-
tors [32–34].

PPA-treated animals fed on ND, CRD, and GRD might
indicate higher permeability with a P-value of 0.09, but a
higher sample size is recommended to be confident to
suggest this. The significant increase in serum zonulin
in CRD- and GRD-CL-treated rats compared to CL-treated
rats fed on ND could help to suggest that both GRD-and
CRD worsen intestinal hyper permeability as realistic
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consequences of feeding both diets to CL-treated rats but
not in PPA-treated rats. Significant levels of zonulin were
observed as marker of intestinal permeability in GRD-
and CRD-fed CL-treated rats compared to those fed on
ND (P ˂ 0.001 and 0.01, respectively) (Figure 2). This
could be related to the opioid-excess hypothesis of autism.
It is well documented that children with ASD have shown
impaired protein digestion together with intestinal hyper
permeability, and raised levels of urinary peptides of
dietary origin classified as exorphins (exogenous opioids)
among which are casomorphins, and gliadinomorphins as
breakdown products of casein and gluten [35]. A1 β-casein
involves both opioid and non-opioid signaling pathways,
it increases total GI transit time and colonic myeloperox-
idase as opioid receptor-mediated effects, and DPP-4
activity modulation as opioid receptors – independent
together with the pro-inflammatory effects [36]. Gliadin
as wheat-derived exorphine stimulates the production
of pro-inflammatory cytokines for instance interleukin
(IL)-1β, tumor necrosis factor-α, IL-6,-8,-15, and induces
the release of zonulin as marker of leaky gut [37–39].
Zonulin activates epidermal growth factor receptor which
in turn increases intestinal permeability through the change
in tight junction proteins [40,41].

Based on the excess opioid theory, casomorphins and
gliadinomorphins agonist of opioid receptors can induce
systemic effects and are able to cross the blood–brain
barrier [35]. Treatment of these ASD subjects with an

extended gluten-free, casein-free diet for 2–4 years resulted
in significant decrease in urinary peptide levels as well as
satisfactory improvement in the autistic behavioral mea-
sures [35,42,43], regardless of abundant intake of meat
and fish protein, which can help to relate CRD and GRD
to excess opioid theory [35]. More support can be found in
considering multiple animal studies which demonstrated
that inhibition of gut peptidases, specifically DPP-4, results
in increased levels of urinary peptides of dietary origin
[10,43,44].

Both lipid peroxidation and GSHwas unaffected in the
serum of PPA- and CL-treated rats fed on ND (Figures 3
and 4). This is in contrast to the effects of both treatments
on brain tissues of treated animals which demonstrate
increase in lipid peroxides and GSH depletion as oxidative
stress markers [26,45]. This could be explained on the

Figure 2: Zonulin levels in the plasma of PPA- and CL-treated ani-
mals consuming ND, CRD, or GRD. Data presented are mean values ±
standard error. Significant one-way ANOVA was followed by multiple
comparisons using Tukey’s post hoc test ****P ≤ 0.0001,
***P ≤ 0.001, **P ≤ 0.01, and *P ≤ 0.05.

Figure 3: Lipid peroxide levels in the PPA- and CL-treated animals
consuming ND, CRD, or GRD. Data presented are mean values ±
standard error. Significant one-way ANOVA was followed by multiple
comparisons using Tukey’s post hoc test ***P ≤ 0.001, **P ≤ 0.01,
and *P ≤ 0.05.

Figure 4: GSH levels in the PPA- and CL-treated animals consuming
either ND, CRD, or GRD. Data presented are mean values ± standard
error. Significant one-way ANOVA was followed by multiple com-
parisons using Tukey’s post hoc test **P ≤ 0.01.
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basis that rat brain is especially susceptible to oxidative
stress as neurotoxic effects of PPA and CL [46,47].

Lipid peroxides were significantly higher in PPA-
treated rats fed on GRD compared to those fed on ND or
even CRD. Similarly, increase was observed in GRD fed
rats treated with CL in comparison to those on ND. This is
in good agreement with numerous studies which empha-
sized the immunologic or molecular mechanisms of gluten
toxicity, specifically demonstrating that gliadin as proline-
rich peptide shows an important role in exerting cytotoxic
and immunomodulatory activities, as well as triggering
oxidative stress in patients with GI morbidity such as
celiac disease (CD) patients [48–50]. It is very interesting
to note that enzymatically prepared wheat gluten hydro-
lysate (WGH) had antioxidant effects [51,52]. The con-
trasting effects seen between gluten/gliadin and WGH
ascertain the contribution of the incomplete digestion of
gluten and its toxic effect through gliadin.

Table 1: Ingredients of CRD

Ingredient kcal/g g/kg kcal/kg

Casein, high nitrogen 3.58 200 716
L-Cystine 4 3 12
Sucrose 4 100 400
Cornstarch 3.6 397.486 1430.9496
Dyetrose 3.8 132 501.6
Soybean oil 9 70 630
t-Butylhydroquinone 0 0.014 0
Cellulose 0 50 0
Mineral mix #210025 0.88 35 30.8
Vitamin mix # 310025 3.87 10 38.7
Choline bitartrate 0 2.5 0
Total 1,000 3760.0496

Table 2: Ingredients of GRD

Ingredient kcal/g g/kg kcal/kg

Wheat gluten 3.68 200 920
Sucrose 4 100 400
Cornstarch 3.6 342.786 1234.0296
Dyetrose 3.8 132 501.6
Soybean oil 9 70 630
t-Butylhydroquinone 0 0.014 0
Cellulose 0 50 0
Mineral mix #210025 0.88 35 30.8
Vitamin mix # 310025 3.87 10 38.7
Choline bitartrate 0 2.5 0
L-Methionine 4 3 12.00
L-Lysine 4 3.7 14.80
L-Threonine 4 1 4.00
Total 1000.00 3785.9296
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The GI tract has been related to autism through the
gut–brain axis. Several reports demonstrate the over-
representation of functional and pathological gut condi-
tions in individuals with autism [53,54], the influence of
different dietary interventions for autism [55], and the
novel triad involving GI immune function–intestinal bar-
rier permeability–gut microbiota [56] potentially being
relevant to some of the autistic features in humans and
rodent models. Recently in 2020, Forsyth [57] reported
the decrease in the abundance of certain bacteria among
which is Moraxella in ASD individuals compared to typi-
cally developing children. Table 3 demonstrates the remark-
able decrease in Moraxella in CL-treated rats fed on ND as
rodent model of autism (Group 2), absence in CL-treated
rats fed on GRD, PPA-treated rats fed on CRD or GRD
(Groups 4, 6, and 7), and a remarkable increase in CL-
treated rats fed on CRD. This can find support in the recent
work of Forsyth et al. [58] in which he recorded 31.9% lower
abundance ofMoraxella in individuals with ASD compared
to healthy controls. Moraxella has a tendency to secrete
multiple hydrolytic enzymes among which are proteases
which catalysis the hydrolysis of casein thatmight be related
to the production of casomorphins as exorphins [59].

Moreover, the recorded growth of Candida albicans in
PPA-treated GRD-fed rats could be supported by the work
of Harnett et al. [60] which detects Candida sp. in 33%
of CD fecal specimens as disease related to gluten sensi-
tivity compared to 0% of the control group confirming the
idea that Candida may act as a trigger of autoimmune
responses in genetically predisposed subjects. Thus, Can-
dida components might theoretically contribute to CD
etiology by modifying immunogenic epitopes of gluten
and resulting in immune response. The reported growth
of C. albicans in PPA-treated rats fed on GRD could
be explained on the basis that Candida is well-adapted
for growth in the gut where inflammation may disturb
the inhabitant bacterial community generating condi-
tions that favor Candida growth and inflammation. The
recorded growth of Candida in PPA group fed on GRD
(Table 3) could be explained through considering the
opioid-excess hypothesis of autism and the ability of
gliadin to initiate opioid receptors. It was shown that
morphine as opioid analgesics reduced the phagocytic
and fungicidal activity of macrophages towards C. albi-
cans, which could explain the noticed growth in response
to GRD [61,62]. The absence of C. albicans growth in CL-
treated group fed on GRD (Group 7) could be explained
through considering the early study of Kennedy and Volz
[63]. It was found that CL reduced anaerobic population
levels, but not enteric bacilli or aerobes, also animals
prone tomucosal association by C. albicans. It is suggested

that the strictly anaerobic bacterial populations which pre-
dominate in the gut in CL-treated rats (Enterobacteriaceae)
are responsible for the inhibition of C. albicans adhesion,
colonization, and diffusion from the intestinal tract (Table
3; Groups 2, 3, and 4). This explanation could be further
supported through considering the most recent work of
Markey et al. [64], who reported that bacterial colonization
and the C. albicans are more easily changed by CL treat-
ment providing perception into the microbiota response to
acute CL challenge and the effect of C. albicans coloniza-
tion on ecological resistance.

4 Conclusion

In conclusion, CRD and GRD can deteriorate intestinal
permeability leading to higher levels of serum zonulin
as marker of leaky gut. Moreover, both diets have syner-
gistic effects on dysbiosis as a contributing factor in the
development of GI comorbidity in ASD. Thus, dietary and
microbial interventions to promote a healthy microbial
profile in ASD patient could be suggested.
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