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INTRODUCTION

Removing line noise from data is a basic need in the field of electrophysiological studies. Using
a notch filter, which is a narrow band-stop filter to suppress the line noise frequency centered at
50 or 60Hz, is still a widely accepted practice. However, for certain applications notch filter is
not a preferred choice. For example, for Granger causal analyses, making a deep “hole” on the
background PSD makes the empirically estimated VAR model order increased, indicating unstable
model and poor estimate of parameters (Barnett and Seth, 2011). To avoid this problem, line
noise rejection without affecting the background PSD is required. In this paper, we will focus two
alternative solutions to notch filter, namely ZapLine and CleanLine, and the suggested practice to
get the most out of them and the underlying complementary mechanism.

The “ZapLine” algorithm (de Cheveigné, 2020) is a novel and promising approach to remove
line noise artifacts. Described by the authors as “quasi-perfect artifact rejection,” the paper
demonstrated impressive results for this ubiquitous concern in electrophysiology. In this short
commentary, we validate the technique and suggest optimizations to further improve performance.

The unique assumption of ZapLine holds there should be no perfect solution in either the
spatial domain or spectral domain alone, but the best solution to separates line noise from brain
source activity, exists in spatio-spectral domains. To roughly describe the approach, (1) ZapLine
first separates the original data into two filtered signals: a narrow band-stopped (i.e., notch filter)
signal and a band-pass filter that captures the noise artifact (original_data= band-stopped_data+
filtered_artifact); (2) ZapLine fits a spatial filter to the filtered_artifact that is optimized to capture
the maximal variance of the extracted line noise; (3) ZapLine accepts user-input parameters that
determines the number of dominant artifact subspaces for rejection; (4) ZapLine adds back the
cleaned filtered_artifact to the band-stopped data. Thus, the background power frequency spectra
within the line-noise frequency bands is recovered. In our hands, we noticed that using a time-
domain solution (CleanLine) in post processing may further improve performance. By design,
ZapLine does not account for temporal non-stationarity as it depends on a spatial filtering. An
assumption of spatial filtering is that relations among a fixed set of scalp electrodes should stay
unchanged throughout the recording. However, in real world data this assumption is often violated.
In fact, we recently demonstrated the significant consequences of violating non-stationarity with
another spatial filter method, independent component analysis (ICA) (Hsu et al., 2018).
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CleanLine (Mullen, 2012) is an example of line-noise
removal algorithm that principally works in the time domain.
This solution is based on the original idea that multi-taper
decomposition can be used to identify and remove line noise
components while minimizing background signal distortion
(Mitra and Pesaran, 1999; Mitra and Bokil, 2007). The Cleanline
algorithm, uses a short sliding window (default 4 s with 1-s
step size) to generate a frequency-domain regression model to
estimate the amplitude and phase of a deterministic sinusoid
of a specified frequency. The fitted signal representing line-
noise is subtracted from the data. We can see several interesting
contrasts between the two algorithms: ZapLine uses a stationary
spatial filter and as such, multivariate, while CleanLine uses a
non-stationary temporal filter that is applied univariately. Thus,
we predicted that CleanLine when used in post-processing of
ZapLine-cleaned data should improve line-noise cleaning as the
two algorithms are complementary in nature.

To test our prediction, we chose a clinical dataset exemplar
that contained a very high level of line-noise artifact (60Hz in
US) as a challenging example of real-world data preprocessing.
If we could observe improvement in the result from applying
“quasi-perfect” ZapLine by using CleanLine, it provides evidence
that ZapLine results still leaves space to be improved by methods
with complementary nature. In performing this comparison,
reduction of the line-noise power is one critical measure of
performance. On the other hand, the influence of the filter on off-
target frequency range is another critical measure, as it indicates
undesired “side effect.” To evaluate it, the test data low-pass
filtered at 55Hz was used to serve as the ground-truth. Any
deviation from the 55-Hz low-pass filtered data indicates the
“side effect.”

METHODS AND RESULTS

Data Used
The data contained 5-min of resting-state recording from a 128-
channel recording system sampled at 1,000Hz (NetAmp 400 and
Hydrocell electrode nets, Phillips/EGI, Eugene, OR) recorded in
a project of National Institutes of Health U54 Fragile X Center.

Data Preprocessing
The data were imported to EEGLAB (Delorme andMakeig, 2004)
running underMatlab 2017b (Mathworks, Natic,MA). High-pass
filter (FIR, Hamming window, cutoff frequency 0.5Hz, transition
bandwidth 1Hz) was applied to the data to remove near-DC
component. From the beginning and the ending of the data, 10-s
windows were removed to avoid possible irregular artifact that is
typically present due to recording-related artifacts.

Parameters for Zapline and Cleanline
There were five datasets prepared from the same data processed
differently. The first data was Raw, which is just high-pass filtered
and edge-trimmed, as described above. This data served as a basis
for any of subsequent filter applications. The second data was 60-
Hz low-pass filtered, which served as ground-truth of the intact
off-target frequency range data, namely below 60Hz. The third

data was ZapLine-processed. The fourth data was CleanLine-
processed. Finally, the fifth data was ZapLine-processed then
CleanLine-processed. The parameters used were as follows.

The 60-Hz low-pass filter was applied using pop_firws()
function (FIR, Blackman window, cutoff frequency 55Hz,
transition bandwidth 5Hz). This filter was a part of an EEGLAB
plugin firfilt (ver. 1.6.2) written by Andreas Widmann. Because
the line noise was known to have an extraordinary level of power,
Blackman window (−74 dB) was selected instead of EEGLAB
default of Hamming (−53 dB) to make sure the suppression is
sufficient. For the same reason, the low-pass fitler was designed
so that maximum suppression was achieved at 57.5Hz to secure
a margin against the 60-Hz artifact.

ZapLine (version 18-Feb 2020, generated by nt_version that is
a Matlab function to display ZapLine version) was applied with
the following parameters: Target frequency, 60Hz (and auto-
selected harmonics up to 500Hz); Size of FFT, 1024; Number of
components to remove, 25, which was determined by fitting two
lines to determine a bisection point that minimizes the sum of
errors for the two fits (Dmitry, 2012).

CleanLine was applied using Matlab function
cleanLineNoise() included in PREP Pipeline 0.55.3 (Bigdely-
Shamlo et al., 2015) was used. This PREP-implemented version
of CleanLine, labeled as cleanLineNoise(), received a critical
bug fix since the original CleanLine had released. We used the
following parameters: Target frequency, 60Hz and its integer
harmonics up to 500Hz; fscanbandwidth, 2; taperbandwidth,
2; taperwindowsize, 4; taperwindowstep, 1; tau, 100; pad, 2;
fpassband, [0 500]; maximumiterations, 10.

Results
A power spectral density (PSD) comparison demonstrates
ZapLine’s performance was better than CleanLine, but further
improved when CleanLine was used successively after ZapLine
(Figure 1). The result confirmed that our prediction was correct.
Next, we investigated if these processes influenced non-target
frequency bands below 60Hz (Figure 1, bottom right). ZapLine
deviated from ground-truth (low-pass filtered) PSD inflating
power above 25Hz which was not seen in the CleanLine results.
The result can be explained as ZapLine implements a spatial
filter that is not strictly limited to certain frequency bands but
aims to minimize the influence on non-targeted frequency bands.
In addition, the large number of components (25/128) rejected
may have exacerbated this effect. By reducing the number of
components to reject, the impact on non-targeted frequency
bands should be reduced, but at the cost of less line noise
suppression. In contrast, CleanLine method (explicitly limited to
address 60Hz (and its multiple integers)+/– 2Hz) did not show
any deviation in the non-targeted frequency band.

Visual inspection of the time-domain data shows that both
ZapLine and CleanLine reduced the very high (over+/– 900µV)
raw data amplitude to a standard EEG amplitude range (+/–
40 µV) (Figure 2). It is apparent in the ZapLine tracing, that
the algorithm was more effective at power-line noise suppression
than CleanLine. Unlike the spectrogram, the visual impression in
the raw tracing of the advantage of ZapLine + CleanLine over
ZapLine alone is subtle (Figure 2, bottom right).
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FIGURE 1 | Comparing power spectral densities (PSD) across raw data (gray), CleanLine result (top left), ZapLine result (top right), and ZapLine followed by CleanLine

(bottom left). The thicker lines indicate average PSD across all the 128 electrodes, and the thin blue lines represent cleaned PSD of each electrode. To evaluate

influence on the non-target frequency bands, PSD under 70-Hz range is magnified with overlaying PSDs of different conditions (bottom right).

DISCUSSION

In this study, we made a prediction that “quasi-perfect” artifact
rejection performance by ZapLine may be further improved
by using a method with a complementary properties that
were equipped by CleanLine. The result in the PSD plots
supported our prediction, and demonstrated that CleanLine
used as a post-process of ZapLine indeed improved the line
noise removal. The explanation for the result is that CleanLine’s
sliding-window based non-stationary approach complements
ZapLine’s stationary spatial filter approach. The result indicates
that whenever one uses ZapLine, CleanLine may be used together
as a post processing to easily outperform the performance of
ZapLine alone. Thus, our theoretical prediction was confirmed
by using empirical data, which makes an immediately useful
suggestion for practice of line noise artifact rejection in the field
of electrophysiology.

In addition to the performance of line-noise power
suppression, there is another important aspect that needs
to be considered, which is the influence on off-target frequency
range i.e., below 60Hz in the current case. In this extreme
line-noise example in which the raw data looks like +/– 900
µV sine wave (Figure 2), the aggressive line noise removal
using ZapLine (25/128 components removal, suggested by
elbow detection algorithm) introduced unwanted off-target
frequency range distortion between 30 and 50Hz. To be fair,
this particular test was akin to a “torture test” using an extreme
data example. As such, the result may not generalize to other
datasets, so caution needs to be taken. However, the result is
still informative to learn the critical property of ZapLine: it does
not hard-limit a frequency range to work on. On this point,
ZapLine is different from notch filter or CleanLine. This property
of ZapLine derives from the process of using a spatial filter to
maximally capture the target frequency power; if it were a spatial
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FIGURE 2 | Comparing the first 3 s of the data at FCz. The raw data showed +/– 900 µV range of data (top left), which was brought down to a more standard range

of +/– 40 µV by both CleanLine (top right) and ZapLine (bottom left).

filter that captures only the target frequency power, would it not
cause the undesired distortion in the off-target frequency ranges.
However, designing such a spatial filter is impossible because
a spatial filter cannot not have explicit control over frequency
domain. This off-target effect should occur in application to
more normally-looking data even if the effect is in much lower
level, and it is difficult to predict its behavior since it depends on
both signal characteristics and user parameters. Based on these
observations, we recommend that in using ZapLine in general,
it is a good practice to evaluate not only the reduction of the
line noise power but also power below the line noise frequency,
particularly if large amounts of line noise and/or a large number
of components are removed. It is also a good idea to watch the
number of components removed across subjects. If a subject
show outlier values, one might make sure whether the off-target
frequency still remains minimally impacted.

Related to the argument above, we propose use of some
objective criterion to the optimum number of components

for rejection in addition to visual examination using analyst’s
expert knowledge. Needs for processing large EEG database
has been surging recently. To be adopted to a part of fully
automated preprocessing, ZapLine primarily needs to have an
additional solution to determine the number of components for
rejection. We believe that the use of bisection point method we
demonstrated in the current study could be one such an approach
to determine the optimum number. The detection of outlier can
be done after preprocessing all the data sets in a data base by
generating a distribution of the number of components to be
removed. If outliers are found, it suggested these datasets needed
to spend abnormally large number of components compared
with other datasets, indicating problematically large line noise
contamination in these datasets. Such a distribution would
provide a data-driven, empirical criterion to separate abnormal
from normal, which would be also useful for other studies.

The current results warrant further investigation on ZapLine’s
impact on phase integrity, such as phase coherence across
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multiple electrodes. Despite these considerations, we are
enthusiastic about the development and optimization line noise
removal techniques which broadly improve data retention in
circumstances in which optimal recording conditions may not
be feasible or frequencies within line-noise frequencies may be
of interest.
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