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Several fMRI studies have examined brain regions mediating inter-subject variability in
cognitive efficiency, but none have examined regions mediating intra-subject variability in
efficiency. Thus, the present study was designed to identify brain regions involved in intra-
subject variability in cognitive efficiency via participant-level correlations between trial-level
reaction time (RT) and trial-level fMRI BOLD percent signal change on a processing speed
task. On each trial, participants indicated whether a digit-symbol probe-pair was present
or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected.
Deconvolution analyses, using RT time-series models (derived from the proportional scaling
of an event-related hemodynamic response function model by trial-level RT), were used to
evaluate relationships between trial-level RTs and BOLD percent signal change. Although
task-related patterns of activation and deactivation were observed in regions including
bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus,
default mode network regions including anterior cingulate, posterior cingulate, bilateral
temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a
more circumscribed set of regions. Positive RT-BOLD correlations, where fast RTs were
associated with lower BOLD percent signal change, were observed in regions including
bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not
observed in the default mode network indicating a smaller set of regions associated with
intra-subject variability in cognitive efficiency. The results are discussed in terms of a
distributed area of regions that mediate variability in the cognitive efficiency that might
underlie processing speed differences between individuals.
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INTRODUCTION
Experimental psychology research has identified basic speed-based
processing resources that govern an individual’s consistent perfor-
mance (i.e., speed and accuracy) across a broad range of cognitive
tasks compared to other individuals. This inter-subject variability
in processing speed resources contributes to individual differences
in general intelligence, g (Spearman, 1904; Kahneman, 1973; Ver-
non, 1983; Just and Carpenter, 1992). Processing-speed theories
posit that individual differences in g arise from variability in
the efficiency with which fundamental cognitive operations are
performed (Vernon, 1983). These theories posit a central role
for cognitive efficiency on the idea that when cognitive opera-
tions can be performed quickly, neural resource allocation can
be minimized, made available for other task-relevant cognitive
operations, and performance can be maximized (i.e., “the lim-
ited time principle,” Vernon, 1983; Salthouse, 1996). Notably,
just as some individuals are more consistent in their perfor-
mance compared to other individuals across a broad range of
cognitive tasks, some individuals also are more consistent in
their performance from one trial to another. This intra-subject
performance variability also is associated with variability in g

(Vernon, 1983) and can reflect alterations at a systems or cellu-
lar level in the brain and possibly indicate underlying pathology
(MacDonald et al., 2006).

Intra-subject variability in processing speed indexes unique
aspects of cognition compared to inter-subject variability (Jensen,
1992a). For example, although reaction time (RT) SD generally
increases with mean RT on a variety of cognitive tasks, RT SD
predicts unique variance in Raven’s Progressive Matrix scores (i.e.,
a measure of g) relative to mean RT (Jensen, 1992a). Additionally,
greater RT variability is associated with lower Intelligence Quotient
[IQ as measured by Wechsler Adult Intelligence Scale (WAIS-III-
R); Wechsler, 1985; Jensen, 1992b]. Physiological research suggests
a plausible neural basis for individual differences in processing
speed task performance. Faster central nervous system (CNS)
nerve conduction velocity (NCV) predicts higher g (Reed and
Jensen, 1992), and greater intra-subject variability in CNS NCV
contributes to greater RT variability and lower IQ (Barrett et al.,
1990) even though inter-subject variability in peripheral ner-
vous system NCV is not a reliable predictor of g (Barrett et al.,
1990; Barrett and Eysenck, 1993; Rijsdijk et al., 1995; McRorie
and Cooper, 2004). Additionally, Burzynska et al. (2013) observed

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 840 | 1

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00840/abstract
http://community.frontiersin.org/people/u/104781
http://community.frontiersin.org/people/u/173588
http://community.frontiersin.org/people/u/83810
mailto:neena.rao@utdallas.edu
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Rao et al. Neural bases of intra-subject cognitive efficiency

greater structural integrity, as measured by white matter tracts,
was associated with a more efficient use of task-related gray matter
processing resources in task-positive regions on an n-back working
memory task.

Behavioral evidence for individual differences in cognitive effi-
ciency relies on measures of processing speed (e.g., Vernon, 1983;
Salthouse, 1996) such as the Digit-Symbol Coding task from the
WAIS-III-R (Wechsler, 1985). They are designed to assess the
time required to perform elementary cognitive operations. While
such tasks are designed to be sufficiently simple to minimize the
influence of semantic knowledge, memory, and strategy on per-
formance, the imposition of time-limits in these tasks allows them
to be sufficiently complex so as to measure more than just sensori-
motor functions (see Carroll and Maxwell, 1979; Vernon, 1983;
Jensen, 1993; Salthouse, 1996). Measurement of the execution
speed of one or a few isolated cognitive processes (e.g., visual
search, response selection) is thought to index the efficiency with
which more complex operations (e.g., reading comprehension,
motor-sequence learning) are performed. This execution speed
has been posited to reflect the integrity of physiologic mecha-
nisms (i.e., the “neural efficiency”; Vernon, 1983; Jensen, 2006)
such as the extent of myelin content (see Glasser and Van Essen,
2011) or its function (e.g., Buxton et al., 2004; Attwell et al., 2010;
Hutchison et al., 2013).

Neuroimaging results suggest that the frontal cortex medi-
ates inter-subject differences in cognitive efficiency (Rypma et al.,
2006; Motes et al., 2008, 2011; Zhu et al., 2013). For instance,
when participants perform a fMRI-adapted version of the Digit-
Symbol Coding task (Wechsler, 1985), faster participants show
less task-related BOLD percent signal change in dorsal prefrontal
cortex [PFC; Brodmann’s Areas (BAs) 9 and 46] than slower par-
ticipants, but faster participants show more task-related BOLD
percent signal change in ventral PFC (BA 44) and parietal regions
(BAs 39 and BA 40). Additionally, in young adults, faster per-
formers show less dorsal PFC functional connectivity with other
regions during the task than slower performers (Rypma et al., 2006;
Rypma and Prabhakaran, 2009; Kannurpatti et al., 2011) suggest-
ing that PFC plays a central role in speed-related functions by
exerting greater executive control in the presence of slower and
less accurate performance (see Rypma and Prabhakaran, 2009).
Additionally, young adults show lower task-related BOLD percent
signal change associated with faster speeds on processing speed
within the PFC; whereas older adults show higher task-related
BOLD percent signal change associated with faster speeds within
PFC (e.g., Rypma and D’Esposito, 2000; Motes et al., 2011) indi-
cating PFC-mediated age-related differences in processing speed.
Additionally, age-related increases in frontal brain activity are asso-
ciated with poorer task-switching performance among the elderly
(Zhu et al., 2013).

Given that intra-subject variability indexes unique cogni-
tive components compared to inter-subject variability (Jensen,
1992a) and in fact is a common component of cognitive decline
or behavioral changes associated with aging, traumatic brain
injury, attention-deficit hyperactivity disorder, and schizophrenia
(MacDonald et al., 2006), we set out to explore the neural regions
contributing to this variability in young adults. In the present
study, we explored the extent to which intra-subject differences

in processing speed were related to neural activity in healthy
young adults. We used an fMRI-adapted Digit-Symbol Verifica-
tion Task (DSVT; see Rypma et al., 2006) to examine trial-by-trial
RT correlations with BOLD percent signal change. It is known
that faster participants show less BOLD activity than slower par-
ticipants in task-positive regions (Haier et al., 1988; Rypma and
D’Esposito, 1999; Rypma et al., 2006; Motes et al., 2011). Thus,
we expected to observe positive trial-level RT-BOLD correlations
in which faster RTs would be associated with less BOLD percent
signal change in a subset of regions showing DSVT task-related
involvement. Observation of such performance-level correlations
will lend insight to region-specific mechanisms of neural cognitive
efficiency.

MATERIALS AND METHODS
PARTICIPANTS
Thirty participants (ages 20–39 years, 13 M, 27 right-handed)
were recruited from the University of Texas at Dallas campus
through advertisements. Participants were excluded if they had
any MRI contra-indicators, a history of brain trauma, neurolog-
ical or psychiatric disorders, or if they were taking psychotropic
drugs. The experiment was approved by the Institutional Review
Boards for University of Texas at Dallas and University of Texas
Southwestern Medical Center, and the experiment was con-
ducted according to the principles expressed in the Declaration
of Helsinki. All participants gave informed, written consent prior
to participating.

PROCEDURE
While undergoing fMRI scanning, participants completed a mod-
ified version of the digit-symbol verification task (DSVT; see
Rypma et al., 2006), which was adapted from the Digit-Symbol
Coding test from the WAIS-III-R (Wechsler, 1985). An array of
digit-symbol pairs (nine simple shapes each paired with a sin-
gle digit, one through nine) and a single digit-symbol probe-pair
(Figure 1) appeared simultaneously for 3.5 s. Participants were
instructed to indicate with a button-press on MR compatible
button-boxes if the probe was present (right thumb button-press)
in the array or absent (left thumb button-press) from the array.
The probe was present in half of the trials and absent in the other
half. The order of the trials was randomized throughout each run,
as was the numeric location of the digit-probe in the array. Par-
ticipants were given until the end of the display time to respond,
but were instructed to respond both as quickly and as accurately
as possible. RT was recorded from the onset of the stimulus until
the participant responded. Rest periods (0.5, 4.5, 8.5, or 12.5 s;
n = 23 per run) were randomly intermixed between trials to give
a jittered event-related trial design. Participants completed three
runs with 52 trials per run (a total of 156 trials over the three runs).
Digit-symbol pairings in the array varied across the trials to avoid
learning or memory-based strategies.

Stimuli were projected onto a screen at the rear of the bore of the
scanner and were viewed by the participants via an angled mirror
(∼45◦) positioned above the receiving coil, with the midpoint of
the mirror approximately 12 cm from a participant’s eye. E-prime
(Psychology Software Tools, Pittsburgh, PA, USA) was used to
control stimulus presentations and to record RT and accuracy.
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FIGURE 1 | Example of a DSVT trial. Stimuli consisted of an array of
digit-symbol pairs (nine simple shapes each paired with a single digit, one
through nine) and a single digit-symbol probe. The array and probe were
centered on the screen and presented for 3.5 s. While undergoing fMRI
scanning, participants indicated whether the probe was present (right
button-press) in the array or absent (left button-press). Rest periods (0.5,
4.5, 8.5, or 12.5 s; n = 23 per run) followed each trial. Novel digit-symbol
pairings appeared on each trial.

Following MRI acquisition and outside of the scanner, par-
ticipants completed the Digit-Symbol Coding Task from the
WAIS-III-R (Weschler, 1985).

MRI ACQUISITION
Image acquisition was performed using a 3T MRI scanner
(Siemens) equipped with a standard head coil (8-element, SENSE,
receive-only). Foam padding was used to prevent head motion.
High resolution MPRAGE anatomical images (TR = 3.7 ms,
resolution = 1 mm isovoxel, flip angle = 12◦, slices = 160 sag-
gital orientation) and three functional EPI runs (TR = 2000 ms,
TE = 30 ms, resolution = 3.5 mm × 3.5 mm × 4 mm,
flip angle = 70◦, slices per volume = 45, volumes per
run = 150) were acquired for each participant. Before each
functional run, nine whole-volume EPI scans were run to
remove any T1 saturation effects and discarded prior to
analysis.

DATA ANALYSIS
Data were analyzed using AFNI software (Cox, 1996). Images
for each participant were first corrected for slice-timing and
head motion offsets. Participants included in these analyses had
movement of <1 mm. These data were corrected by register-
ing each 3D sub-brick from each run to the base sub-brick of
the first functional run (Cox, 1996). Additionally, we included
motion parameters (i.e., roll, pitch, yaw, x, y, z) in the decon-
volution analysis to remove these effects from the subject-level
data. Data were then spatially smoothed with a Gaussian kernel
(FWHM = 8mm). At each voxel, data then were expressed in
terms of percent signal change relative to the mean (i.e., 100∗
yt/My, t = time point) per run so that the deconvolution param-
eter estimates would be expressed in terms of percent signal
change.

We used a modulated deconvolution neuroimaging technique
(Cox, 1996) to investigate the neural basis of intra-subject dif-
ferences in processing speed performance. FMRI studies have
shown the efficacy of including behavioral measures of trial-
to-trial variability in cognitive processes while modeling BOLD
responses to observe intra-subject differences (see MacDonald
et al., 2006). An organized difference in RT can contribute to vari-
ability in activation patterns and represent a longer engagement
of some processes (Christoff et al., 2001). Thus, modeling such
auxiliary behavioral information in the analyses can provide more
information. Hemodynamic response function (HRF) regressors
modulated by trial-level RTs have the potential to better account
for BOLD percent signal changes than the more typical non-
modulated models, thus increasing statistical power (Grinband
et al., 2008). RT-modulation analyses have been used to explore
a broad range of cognitive processes including selective attention
(Weissman et al., 2006), spatial attention (Prado and Weissman,
2011), inhibition (Bellgrove et al., 2004), as well as shared processes
across a range of cognitive tasks (Yarkoni et al., 2009).

For each participant, voxel-wise analyses were carried out
to obtain (1) performance-independent DSVT-related BOLD
percent signal change and (2) performance-dependent trial-
level RT-BOLD correlations using amplitude modulated linear
deconvolution analyses (Cox, 1996).

Performance-independent DSVT effects
Regressors were created to obtain estimates of DSVT-related
BOLD percent signal changes for correct responses only. For the
DSVT effects, a canonical HRF [i.e, a gamma-variate function
(Cohen, 1997) with parameters b = 8.6, c = 0.547; max ampli-
tude = 1.0] was convolved with trial onset time-courses for correct
responses only (e.g., Figure 2A). This regressor was regressed on
subjects’ data to identify brain regions where BOLD percent signal
change varied with the task (DSVT effect Bs).

yDSVT(t) =
K∑

k=1

h(t − τk), where h(t) = t8.6exp(−t/0.547)

Performance-dependent trial-level RT effects
Another regressor also was created to obtain RT variability effects
(i.e., trial-level processing speed effects for correct responses only).
That is, the DSVT-effect regressors based on the canonical HRFs
(i.e., Figure 2A) were proportionally scaled based on the corre-
sponding standardized trial-RTs (e.g., Figure 2B). Standardized
trial-RTs were calculated by taking the logarithm of each RT
(Ratcliff, 1993).

yDSVT−RTMOD(t) =
K∑

k=1

h(t − τk)
∗[log(RT)]

These RT-scaled HRF models (i.e., Figure 2B) were regressed
on the canonical HRF-based regressors (i.e., Figure 2A) to remove
the canonical HRF effects and produce a residual standardized
trial-level RT time-series (e.g., Figure 2C). This trial-level RT time-
series regressor was regressed on subjects’ data to identify regions

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 840 | 3

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Rao et al. Neural bases of intra-subject cognitive efficiency

FIGURE 2 | Examples of regressors created for the amplitude

modulated linear deconvolution of the time-series. Data are based on a
single run for one study participant. (A) The canonical HRF model was first
created to obtain estimates of DSVT-related percent signal-changes. A
gamma-variate function was convolved with trial onset times (for correct
responses only). (B) Each gamma-variate function in the model HRF was
scaled based on corresponding standardized trial-RTs [i.e., log(RT)]. (C) The
RT-Modulated HRF model was regressed on the HRF model to remove the
canonical HRF effects and obtain the RT model time-series. See “Materials
and Methods” section for equations.

where trial-level RTs were correlated with trial-level BOLD percent
signal change (trial-level DSVT-RT effect Bs).

yRT(t) = yDSVT-RT MOD(t) − yDSVT(t)

Each participant’s 3D structural image (co-registered to the
functional data) was transformed, via a 12-parameter affine trans-
formation, to fit it to a Talairach template (i.e., the Colin-brain
template; Talairach and Tornoux, 1988). The B-maps for all
conditions were transformed to Talairach space based on struc-
tural transformation parameters. Group whole-brain one-sample
t-test analyses were carried out to identify brain regions where
BOLD percent signal change (DSVT effect Bs) varied with the
task and where trial-level BOLD percent signal change varied
with trial-level RTs (intra-subject DSVT-RT effect Bs) to observe
intra-subject variability in processing speed.

All results were cluster thresholded based on Monte Carlo sim-
ulations (AlphaSim; Ward, 2000) so that Family Wise Type 1
α ≤ 0.05 (145 voxels at 2 mm isovoxel resolution with defining

neighboring voxels as being connected by surfaces, edges, or
corners).

RESULTS
BEHAVIORAL RESULTS
Overall, participants made few errors (M = 94.2% accurate,
SD = 2.3%), and their RTs (M = 1696 ms, SD = 273ms; see
Table 1 for behavioral data) were comparable to previous find-
ings (Rypma et al., 2006). Participants’ mean RT (M = 1696 ms,
SD = 273 ms) was significantly correlated with participants’ SD
RT (M = 379.60 ms, SD = 96.38 ms; r = 0.84, p < 0.001) suggest-
ing larger variability in RT was associated with poorer, or slower,
mean RT (i.e., performance). RT and accuracy were significantly
negatively correlated, (r = −0.61, p < 0.05) indicating that faster
participants were also more accurate. Thus, suggesting partic-
ipants were not randomly responding and that speed-accuracy
trade-off was not an issue at the group level.

Participants’ performance on the Digit-Symbol Coding task
(Mnumbercorrect = 90.3, SD = 10.4) was significantly correlated with
all measures from the DSVT (Table 1). Thus, this provides con-
vergent validation for this fMRI-adapted DSVT as a measure of
processing speed and cognitive efficiency.

fMRI RESULTS
Group analyses were performed on the subject-level DSVT-effect
and subject-level RT-effect parameter estimates (Figures 3A,B and
4A,B). Figures 3A and 4A illustrate the performance-independent
DSVT-effect BOLD percent signal changes. Figures 3B and
4B illustrates the performance-dependent trial-level RT-effect
correlations with trial-level BOLD percent signal change, or
intra-subject variability in processing speed.

Performance-independent DSVT effects
This analysis revealed regions of BOLD percent signal change
activations and deactivations independent of subjects’ task per-
formance.

Patterns of activation and deactivation were found in a wide
range of brain regions (Figures 3A and 4A; see Table 2 for

Table 1 | Digit-symbol coding and DSVT behavioral data (mean and

SD) and correlations to digit-symbol coding.

Mean SD Digit-symbol coding

number correct

correlation [p value

(2-tailed)]

Digit-symbol coding

number correct

90.30 10.36 –

DSVT

accuracy total

94.22% 2.25% 0.45 (p = 0.01)

DSVT

mean RT (ms) total

1695.92 272.94 −0.52 (p = 0.003)

DSVT

SD RT (ms) total

379.60 96.38 −0.64 (p < 0.001)
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FIGURE 3 | Lateral and medial views of statistical parametric maps of DSVT effects and RT effects. (A) Color scaled t -values from voxel-wise one sample
t-tests comparing mean percent DSVT-related BOLD percent signal change to zero. (B) Color scaled t -values from voxel-wise one sample t -tests comparing
mean RT-related signal change to zero. All voxel-wise ps ≤ 0.005.

FIGURE 4 | Cerebellar and subcortical views of statistical parametric

maps of DSVT effects and RT effects. (A) Color scaled t -values from
voxel-wise one sample t-tests comparing mean percent DSVT-related
BOLD percent signal change to zero. (B) Color scaled t -values from voxel-
wise one sample t -tests comparing mean RT-related signal change to zero.
All voxel-wise ps ≤ 0.005.

focal anatomical areas). Voxel-wise one-sample t-tests, compar-
ing the subject-level amplitude parameter estimates to zero, were
calculated to identify significant activations and deactivations
(tmin[29] = −11.37 and tmax[29] = 18.19; with all voxel-wise
ps ≤ 0.005).

Patterns of significant activations (illustrated in red to yel-
low) occurred within visual regions including bilateral activation
occurred in primary visual cortex (BA 17), both foveal and
parafoveal regions, and extending across lateral occipital and visual
association areas (BAs 18, 19, 20, and 37). Within parietal areas,
bilateral activation occurred in superior parietal (BA 7) and infe-
rior parietal (BA 40) regions. Within frontal areas, activation
extended from dorsal PFC (BAs 9 and 46) to ventral PFC (BAs
44 and 47), and to insula cortex (BAs 30, 31, and 32). Additionally,
bilateral activation occurred within medial PFC regions (BA 6)
and cingulate cortex (BA 24). Motor activation patterns consis-
tent with the manual responses also were detected within motor
and supplementary motor regions and within the cerebellum.

Patterns of significant bilateral deactivation (illustrated in
blue to cyan) also occurred within temporal areas, deactivation
extended from inferior parietal regions (BA 39) along superior
and middle temporal regions (BAs 21, 22) to the temporal pole
(BA 38). Deactivation also occurred within areas of the default
network, in anterior and posterior cingulate cortex (Gusnard and
Raichle, 2001).

Performance-dependent trial-level RT effects
This analysis revealed regions of BOLD percent signal change
variability dependent on trial-level task performance (i.e., intra-
subject variability). That is, trial-level RT-BOLD correlations
across subjects.

Patterns of positive and negative correlations between RT
and BOLD percent signal change were found in more local-
ized regions compared to the DSVT effects (Figures 3B and
4B; see Table 3 for focal anatomical areas). Voxel-wise one-
sample t-tests, comparing the slopes (i.e., standardized trial-level
RT-BOLD Bs) relating the RT model values to BOLD percent
signal change, were calculated to identify significant group-
level trial-level RT-BOLD percent signal change correlations
(tmin[29] = −7.90 and tmax[29] = 10.55; with all voxel-wise
ps ≤ 0.005).

Patterns of significant positive correlations, wherein slower
RTs were associated with greater BOLD percent signal change
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Table 2 | Focal anatomical areas of significant BOLD percent signal change for the performance-independent DSVT effects (all voxel-wise

ps ≤ 0.005).

Anatomical

structure

Brodmann

area

Talairach coord of peak voxel (RAI order) Number

voxels

Maximum t value

at peak voxel

Average %

signal-change (SD)
x y z

Right Inferior

Occiptial

18 –29 87 –2 55695 18.19 0.54 (0.16)

Left Anterior

Cingulate

32 3 –19 –8 8047 –9.57 –0.15 (0.09)

Left Angular 19 43 77 30 5420 –9.97 –0.26 (0.14)

Right Middle

Temporal

39 –49 69 28 3440 –9.83 –0.20 (0.11)

Left Cingulate 31 1 41 32 2306 –11.37 –0.14 (0.07)

Right Pyramis – –19 79 –34 391 –6.37 –0.08 (0.07)

Right Cuneus 18 –13 85 18 166 –5.30 –0.14 (0.15)

Table 3 | Focal anatomical areas of significant RT-BOLD correlations for the performance-dependent trial-level RT effects (all voxel-wise

ps ≤ 0.005).

Anatomical

structure

Brodmann

area

Talairach coord. of

peak voxel (RAI order)

Number

voxels

Maximum t value

at peak voxel

Average slope for

subj.-level RT-BOLD

correlations (SD)
x y z

Right cingulate 32 –7 –15 34 47717 10.55 0.75 (0.39)

Right caudate – –25 41 12 762 –7.90 –0.38 (0.27)

Left caudate – 23 43 12 541 –7.60 –0.39 (0.28)

Left middle frontal 9 27 –27 26 343 4.00 0.34 (0.46)

(illustrated by red to yellow), occurred within visual areas. Trial-
level RTs were associated with BOLD percent signal change
within lateral occipital and visual association areas (BAs 18,
19, 20, and 37) as well as within primary visual areas
(BA 17).

Positive correlations also occurred bilaterally within pari-
etal and frontal regions. Slower RT also was associated with
greater BOLD percent signal change within superior parietal
(BA 7), particularly located in the intraparietal sulcus and the
occipito-parietal junction, and inferior parietal cortex (BA 40).
Additionally, slower RT was associated with greater BOLD per-
cent signal change within both dorsal (BA 8), ventral (BA 46),
and medial (BA 6, extending into BA 24) PFC. Faster pro-
cessing speed was associated with less activation within these
regions.

Patterns of significant negative correlations wherein slower RTs
were associated with less BOLD percent signal change (illustrated
by blue to cyan) occurred within bilateral caudate.

In regions in which patterns of significant bilateral
performance-independent DSVT deactivation were observed [e.g.,
temporal areas, inferior parietal regions (BA 39), superior and
middle temporal regions (BAs 21, 22), temporal pole (BA 38) and

areas of the default network (Gusnard and Raichle, 2001)], we did
not observe performance-dependent RT effects in which RT was
associated with BOLD activity.

DISCUSSION
The present study explored the brain bases of intra-subject vari-
ability in cognitive efficiency using an fMRI-adapted DSVT pro-
cessing speed task. Correlations between trial-level RTs and cor-
responding fMRI BOLD percent signal change on the DSVT were
assessed. Positive correlations, where slower RTs were associated
with greater BOLD percent signal change, were observed across a
more circumscribed set of regions compared to task-related BOLD
effects.

Performance-independent DSVT effects (i.e., DSVT BOLD
effects) were observed in primary visual cortex and sec-
ondary and associative visual areas. Additional task-related
activation was observed in dorsal, ventral, and medial PFC,
insula, and cingulate cortex. Deactivation was observed
in temporal and inferior parietal areas as well as regions
associated with the default network (Gusnard and Raichle,
2001). Task-related activation and deactivation patterns were
consistent with previous findings (e.g., Rypma et al., 2006)
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illustrating a wide set of regions associated with processing
speed.

Whereas performance-independent DSVT effects were
observed in a large set of brain regions, a smaller subset
of regions were involved in mediating performance-dependent
DSVT effects, or intra-subject processing speed variability.
Performance-dependent effects (i.e., RT-BOLD correlations) were
observed in primary and secondary visual and association cor-
tex, but not areas of the default network as observed in the
performance-independent effects. These results suggest that trial-
to-trial variability in processing speed emanates from a more
circumscribed set of regions than task-general effects.

The absence of an association between RT and BOLD percent
signal change in the default network suggests that those networks
that support performance are independent of those associated
with rest such as the default mode network. Other work show-
ing associations between task-negative BOLD and performance
has been taken to represent reallocation of processing resources to
regions involved in performing the task (Burzynska et al., 2013).
The present results are not consistent with this hypothesis.
Clearly more work is needed to understand the relation-
ships between task-related activity, rest-related activity, and
performance.

In the present study, slower RTs were associated with greater
PFC BOLD percent signal change. The trial-level RT-BOLD cor-
relations are consistent with previous inter-subject observations
in which slower mean RTs were associated with greater BOLD
percent signal change (Motes et al., 2011) and associated with
greater connectivity from PFC to other regions (e.g., Rypma
et al., 2006) suggesting a PFC-related executive guidance account
of inter-subject and intra-subjectdifferences in processing speed.
The present intra-subject level analysis also indicated that slower
RTs were associated with greater inferior and superior parietal
BOLD percent signal change. Prior inter-subject variability results
showed greater BOLD activity within inferior parietal regions
associated with faster mean RT (Rypma et al., 2006) suggesting a
functional dissociation between processing speed variability (i.e.,
RT variability) and mean processing speed (i.e., mean RT), and
thus also between trial-level cognitive efficiency and subject-level
cognitive efficiency.

Several lines of evidence support the hypothesis that RT-BOLD
correlations reflect variability in processing speed at the inter-
subject level. A strength of the present study is the use of a direct
measure of processing speed to observe intra-subject cognitive
efficiency effects. DSVT performance correlates with performance
on other independent measures of processing speed (i.e., Digit
Symbol Coding; Wechsler, 1985; see also Rypma et al., 2006;
Table 1), providing evidence that the DSVT is a valid measure
of processing speed. Processing-speed measures also account for
both juvenile and adult developmental performance differences
(see Kail, 1991; Salthouse, 1996) across a wide range of cog-
nitive tasks. Furthermore, variability in processing speed also
accounts for variability in performance on Raven’s Progressive
Matrices and other measures of g (Barrett et al., 1990; Jensen,
1992a) associated with neural activity integration of parieto-
frontal regions [see parieto-frontal integration theory (P-FIT);
Jung and Haier, 2007]. The P-FIT network explains the brain

regions, connected by white-matter pathways, underpinning indi-
vidual differences in reasoning competence and intelligence (Jung
and Haier, 2007).

The present results, using a basic measure of processing speed,
suggests that RT-BOLD correlations distributed across a broad
set of regions might reflect the effects of task-general, process-
ing speed variability. Longer DSVT RTs were generally associated
with greater BOLD percent signal change across frontal, parietal,
and caudate regions (in addition to visual regions and insula)
overlapping with areas showing task-general correspondence in
RT-BOLD correlations. In particular, trial-to-trial variability in
processing speed might underlie the task-general correspondence
in RT-BOLD correlations reported in other studies (Rypma et al.,
2006).

Our data support the hypothesis of a set of regions, including
the PFC and parietal cortex, that mediates trial-to-trial intra-
subject performance variability. Other psychological mechanisms
might additionally contribute to intra-subject performance vari-
ability. Some theorists have posited that individual differences
in cognitive strategies can contribute to individual differences
in efficient cognitive performance. On the Sternberg working
memory task for instance, it has been suggested that some indi-
viduals place more emphasis on encoding whereas others place
more emphasis on maintenance or retrieval processes to success-
fully execute a working memory trial (Wagner and Sternberg,
1985; Braver et al., 2009). Differential BOLD signal amplitude
in one task period or another is thought to reflect such strat-
egy differences. Previous neuroimaging research suggests evidence
for task-period-specific individual differences in neural activity
(Rypma et al., 2002; Braver et al., 2009). Individual variabil-
ity in the BOLD amplitude difference between less-demanding
and more-demanding task conditions has also been posited to
reflect strategy differences (e.g., Rypma and D’Esposito, 1999).
For instance, during the delay period of trials within a work-
ing memory task, faster performers showed greater PFC BOLD
signal amplitude than slower performers on a Sternberg item-
recognition task (Rypma et al., 2007). Thus it might be that faster
performers might strategically utilize the time between encoding
and retrieval to perform additional processing aimed at opti-
mizing performance. Faster performers might also utilize the
time between trials to carry out similar performance-optimizing
strategies. In fact, pre-trial RT-BOLD correlations are observed
across a wide range of cognitive tasks that have indirectly mea-
sured working memory, episodic memory, decision-making, and
affective rating (Weissman et al., 2006). Decreased PFC BOLD
percent signal change, prior to a trial, were associated with
longer RTs (Weissman et al., 2006) and increased PFC BOLD per-
cent signal change, during a trial, were associated with faster
RTs (Yarkoni et al., 2009), suggesting strategic attentional prepa-
ration in advance of the trial and goal-directed maintenance
of attention during the trial (see Burgess et al., 2011). Rest-
related activity might also facilitate strategic inter-trial processing
which may aid in development of more efficient, less executive-
demanding “automatic,” task-performance. More research is
certainly needed to understand how physiological networks and
psychological processes interact in the service of optimizing task
performance.

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 840 | 7

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Rao et al. Neural bases of intra-subject cognitive efficiency

The results reported in the present study suggest that an
organized set of brain regions are associated with intra-subject
processing-speed variability. We observed a broad-spread DSVT-
related regions revealed by performance-independent activation
(and deactivation). We also observed a broad, but more restricted,
DSVT performance-dependent brain regions in which greater
activation was associated with slower RT, and these cognitive
efficiency patterns occurred in regions showing positive DSVT-
related BOLD signal changes. These results support the hypothesis
that a subset of task-related processing regions are associated with
intra-subject cognitive efficiency variability and might contribute
to the individual variability observed in processing speed measures
contributing to individual variability in general intelligence.
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