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Introduction
Recent studies of fungal genomes have shown that subtelomeric regions of chromosomes are
areas of rapid evolution that facilitate adaptation to novel niches [1]. Several years ago, analysis
of the genome of the human pathogenic yeast Candida albicans revealed the presence of a large
family of telomeric orfs (TLO genes) [2]. The function of this gene family remained an enigma
in C. albicans genetics for many years; however, recent studies have revealed that the TLO
genes encode a subunit of the Mediator complex with roles in transcriptional regulation [3,4].
This gene family expansion is unique to C. albicans, the species responsible for the majority of
human yeast infections and the species that is most commonly recovered as a human commen-
sal. If selective pressures in the host have driven this expansion, it is likely that this gene family
somehow contributes to the success of C. albicans as a commensal and opportunistic pathogen.
To support this hypothesis, it was first necessary to determine the exact function of Tlo pro-
teins in C. albicans. Armed with this knowledge, investigators are now beginning to understand
how possession of multiple copies of TLO could contribute to the virulence properties of
C. albicans.

What Are the Tlo Proteins?
The earliest reference to a TLO gene was made by Kaiser et al. [5] who identified CTA2 (now
TLOα3) because it encoded transcriptional activating activity in a yeast one-hybrid screen.
Goodwin and Poulter [6] later noted that sequences homologous to this ORF were commonly
found at telomeres in C. albicans, indicating that these genes were widely dispersed. Subse-
quently, annotation of the C. albicans genome revealed 14 TLO family members in strain
SC5314 (13 telomeric; one centromeric) [2]. The large expansion of the TLO gene family is,
however, unique to C. albicans (there are two copies in C. dubliniensis and only one in the se-
quenced genomes of other Candida species). In silico analysis of these sequences by Bourbon
et al. [7] suggested that the TLO genes encode proteins with a domain similar to the Saccharo-
myces cerevisiaeMed2 protein, a component of Mediator.

Zhang et al. [4] carried out the first purifications of Mediator complex from C. albicans and
were able to identify Tlo proteins as stochiometric components of Mediator. Mediator is a
large multisubunit complex that plays a primary role in facilitating physical and functional in-
teractions between DNA-bound transcription factors and RNA polymerase II (Pol II) to acti-
vate transcription [7–10]. Recent analysis of Mediator functions in C. albicans have shown that
this complex plays an important role in regulating many virulence-associated traits such as
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filamentous growth, white—opaque switching, stress responses, biofilm formation, and phago-
cyte interactions (Fig. 1) [10–14]. Mediator in fungi has 25 subunits organised into four distinct
modules: a head module that interacts with Pol II, a regulatory middle module, and a tail mod-
ule that includes Med2, Med3, and Med15, and which may play a direct role in transcriptional
regulation [8]. A fourth variably associated Cdk8 module both negatively and positively regu-
lates transcription [4,15]. Mediator purified from amed3Δmutant lacked the Tlo subunit,
strongly suggesting that Tlo proteins are Mediator tail subunits anchored to the complex via
Med3. However, C. albicans cells also contained an excess of non-Mediator—associated Tlo
protein, with this “free Tlo” form estimated to be at least 10-fold more abundant than the Me-
diator-associated form [4]. Whether the free-Tlo population carries out functions distinct from
those of the Mediator bound form, or whether it acts as a reservoir of Tlo protein that can in-
terchange with the Mediator bound subunits remains to be explored. In addition to the expan-
sion of the Tlo orthologs of Med2 in C. albicans and C. dubliniensis, there are several other
species and specific circumstances in which the copy number of a Mediator subunit exceeds
the norm [7]. Intriguingly, the human fungal pathogen Candida glabrata has two paralogs of
the Med15 Tail module subunit, which have both overlapping and non-overlapping functional-
ity [16]. An increase in copy number of the human Mediator subunit Cdk8, which is accompa-
nied by increased expression, is found in 70% of colorectal cancer samples and is significantly
correlated with increased colon cancer—specific mortality [17].

Fig 1. Current knowledge on structure and function of C. albicans andC. dubliniensisMediator. (A) Predicted structure of C. albicans (and C.
dubliniensis) Mediator based on structural analysis of S. cerevisiae complex [25]. Biochemical analyses of Mediator Tail subunits from C. albicans [3,10] and
C. dubliniensis [3] supports the proposed structure of this module in the pathogens. Biochemical studies provide direct evidence that Tloβ2, Tloα3, Tloα9,
Tloα12, and Tloα34 are mutually exclusive Med2 orthologs of theC. albicansMediator complex, while not excluding other expressed Tlo paralogs [4].
Additional biochemical studies showmost Mediator inC. dubliniensis incorporates the Tlo1 subunit, but does not rule out the possibility that Tlo2 could
associate with the complex under conditions in which its expression is increased [3]. (B) Summary of virulence related phenotypes associated withC.
albicans andC. dubliniensis null mutants of genes encoding individual Mediator subunits. “Filamentation” includes defects in the yeast to hyphae transition.
The “White to Opaque” arrows refer specifically to the white to opaque cell phenotypic switching frequency, including also the opaque to white cell switch
frequency. “Biofilm” defects specifically refer to the ability to form a structure on a hard solid (i.e., plastic) support. “Stress/Metabolism” is a broad catchall that
refers to the cell’s ability to remodel its internal metabolic wiring to respond to environmental stresses such as changes in carbon source, as well as oxidative
and heat stress. Detailed information on each of these phenotypes can be found briefly within the body of the text, and in more detail in the references cited.

doi:10.1371/journal.ppat.1004614.g001
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How Did the TLO Family Evolve in C. albicans?
Analysis of the synteny of the TLO genes in Candida species suggests that C. albicans TLO2
corresponds to the ancestral locus, as a TLO2 orthologue is present in the same subtelomeric
locus in all related Candida species (i.e., C. tropicalis, C. parapsilosis, and C. dubliniensis).
Translocation of an ancestral Med2 gene to this telomeric locus appears to have occurred early
in the evolution of the clade, remaining stable until the emergence of the closely related species
C. dubliniensis and C. albicans. C. dubliniensis harbors a second TLO gene internally on chro-
mosome 7, whereas C. albicans underwent a massive expansion in TLO copy number, probably
facilitated by subtelomeric recombination. Further diversification of the C. albicans TLO gene
family was likely driven by retrotransposon activity, as three distinct subfamilies of TLOs (α, β,
and γ) can be identified based on the presence of retrotransposon LTR sequences within the
30-half of the gene [18]. Studies have shown that these TLO gene subfamilies are variably ex-
pressed in in vitro—grown cells, with the TLOα and TLOβ genes and their encoded proteins
expressed at higher levels than the TLOγ genes [18]. Concomitant with this, biochemical stud-
ies have directly shown that Tloβ2, Tloα3, Tloα9, Tloα12, and Tloα34 can be copurified with
Mediator in vitro [4].

Mediator: Monolithic or Multifaceted?
Large multisubunit coregulatory complexes, like Mediator, were once thought of as monolithic
intermediaries in gene regulation, but the discovery of the Tlos as Mediator subunits are part of
an emerging view of these complexes as dynamic entities whose functionality can be regulated.
The evidence presented by Zhang et al. [4] suggests that Tlo proteins encode interchangeable
Med2-like subunits of the Mediator tail. Most fungi appear to have one copy of Med2, which
raises the question, what advantage could the expression of multiple Med2 subunits confer on
C. albicans? In S. cerevisiae, Med2, as well as the Mediator tail in general, interacts with tran-
scriptional activators to facilitate the transcription of highly inducible genes [8]. The Mediator
tail is thought to be especially important for the regulation of stress responses and nutrient ac-
quisition in S. cerevisiae [9]. These characteristics are also important in pathogenic fungi. How-
ever, why this function was amplified to such a great degree in C. albicans and whether this is
connected to stress survival and nutrient status is not known.

Perhaps the amplification and divergence of the Med2 tail subunit facilitated the emergence
of Mediator variants with specific regulatory functions. Transcriptional control of the C. albi-
cans Tlos in response to pathways that impact pathogenesis [19,20] suggests that regulation of
the Tlo pool could influence virulence gene expression. Testing such a hypothesis in C. albicans
using traditional reverse genetic approaches on the 14 diploid TLO genes is a daunting chal-
lenge. Fortunately, the closely related species C. dubliniensis possesses only two TLO gene cop-
ies [21]. C. dubliniensis shares many characteristics with C. albicans (including the capacity to
produce hyphae), but is responsible for far fewer infections and is generally less pathogenic in
animal models of infection [22]. Haran et al. [3] deleted both TLO genes in C. dubliniensis and
found virulence-associated phenotypes such as an inability to form true hyphae, increased sus-
ceptibility to oxidative stress, and a reduced capacity to assimilate alternative carbon sources.
Transcript profiling indicated defective induction of filament-specific genes and regulators,
e.g., UME6. Interestingly, many filament-specific genes were induced in tloΔ null mutants, but
to a much lower level than in the wild-type parental strain, implying that the Tlo protein is re-
quired for full induction of the filament-specific transcriptional response. The tloΔ null mutant
also exhibited reduced expression of stress response and galactose utilization genes, indicating
a general defect in inducible transcriptional responses. Expression data also suggested that Tlos
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may have repressor functions, as many starvation responses (gluconeogenesis, glyoxylate cycle,
amino acid catabolism) were induced in the mutant [3].

C. dubliniensis yeast cells express Tlo1 at a level comparable to other Mediator subunits.
However, expression of Tlo2 is far lower [3]. Deletion of TLO1 appeared to have stronger ef-
fects on filamentous growth and growth in galactose, consistent with the near complete restora-
tion by TLO1 of those phenotypes in the tloΔ null. Restoration of TLO1 or TLO2 expression, at
a level comparable to native TLO1, in the tloΔ null mutant was found to restore the expression
of overlapping and distinct sets of genes. If each of two C. dubliniensis MED2 orthologs exhibits
diversity, does each of the 14 C. albicans TLO/MED2 orthologs also affect expression different-
ly? The answer to this question awaits the results of studies currently underway to analyse the
roles of individual CaTLO genes.

Evidence to date suggests that the C. albicans TLO gene family is subject to several layers of
transcriptional regulation. The promoters of the telomeric members of the gene family have a
strong Gal4 binding site, suggesting they may be coordinately regulated by this transcription
factor [23]. TLO genes are also subject to local, chromatin-mediated positional effects that re-
sult in highly variable expression patterns from cell to cell and population to population [24].
This “noisy” expression pattern has been termed Telomere-Adjacent Gene Expression Noise
(TAGEN) and results in highly variable patterns of TLO expression between individual cells
and even between alleles of the same TLO gene. Mechanistically, this variation is dependent on
telomere position and silencing regulators such as Sir2 [24]. Ectopically expressed genes at sub-
telomeric regions were also subject to TAGEN. Interestingly, when the URA3 gene, which can
be subjected to both positive and negative selection, was placed adjacent to a TLO gene, and
high-level or low-level expression was selected, the level of TAGEN was reduced [24]. This il-
lustrates that some selective pressures can influence the natural level of gene expression noise.
Furthermore, because their expression is noisy, the range of assembled Mediator complexes
containing a given Tlo/Med2 subunit can vary greatly from cell to cell, generating an epigenetic
mechanism for phenotypic diversity within an isogenic population of cells.

Fig 2. Summary of hypotheses on the possible function(s) of multiple TLO genes inC. albicans. Tlo proteins are subunits of the tail module of the
Mediator complex (Med). (A) Different Tlo proteins could facilitate high-affinity interaction of Mediator with specific promoters or transcription factors,
facilitating rapid or high level transcriptional responses. (B) As a consequence of telomere-associated gene expression noise (TAGEN) exhibited by TLO
genes, adaptive pressure may select populations of cells expressing specific Tlos. (C) Excess, non-Mediator—associated “free Tlo”may also exhibit
regulatory functions, either independently of Mediator or perhaps in an antagonisitic fashion.

doi:10.1371/journal.ppat.1004614.g002
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Future Directions
Many questions about TLO gene function remained unanswered (Fig. 2). One key piece of in-
formation currently absent from our knowledge is whether the C. albicans Tlo proteins exhibit
functional diversity. Heterologous expression of the various C. albicans TLO genes in C. dubli-
niensismay provide clues about their specific regulatory functions. These data may support the
hypothesis that differential expression of specific Tlos could provide a selective advantage in
specific environments. In support of these heterologous expression experiments, in vitro and in
vivo selection experiments with C. albicansmay enable us to generate strains of C. albicans
with a fitness advantage conferred by expression of specific TLOs. These data may enable us to
determine whether the TLO expansion in C. albicans contributes to its greater pathogenicity
relative to its TLO-deficient relatives, C. tropicalis and C. dubliniensis.
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