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Background: Subclinical atrial fibrillation (AF) is one of the pathogeneses of embolic

stroke. Detection of occult AF and providing proper anticoagulant treatment is an

important way to prevent stroke recurrence. The purpose of this study was to determine

whether an artificial intelligence (AI) model can assess occult AF using 24-h Holter

monitoring during normal sinus rhythm.

Methods: This study is a retrospective cohort study that included those who underwent

Holter monitoring. The primary outcome was identifying patients with AF analyzed with

an AI model using 24-h Holter monitoring without AF documentation. We trained the

AI using a Holter monitor, including supraventricular ectopy (SVE) events (setting 1) and

excluding SVE events (setting 2). Additionally, we performed comparisons using the SVE

burden recorded in Holter annotation data.

Results: The area under the receiver operating characteristics curve (AUROC) of setting

1 was 0.85 (0.83–0.87) and that of setting 2 was 0.84 (0.82–0.86). The AUROC of the

SVE burden with Holter annotation data was 0.73. According to the diurnal period, the

AUROCs for daytime were 0.83 (0.78–0.88) for setting 1 and 0.83 (0.78–0.88) for setting

2, respectively, while those for nighttime were 0.85 (0.82–0.88) for setting 1 and 0.85

(0.80–0.90) for setting 2.

Conclusion: We have demonstrated that an AI can identify occult paroxysmal AF using

24-h continuous ambulatory Holter monitoring during sinus rhythm. The performance

of our AI model outperformed the use of SVE burden in the Holter exam to identify

paroxysmal AF. According to the diurnal period, nighttime recordings showed more

favorable performance compared to daytime recordings.

Keywords: atrial fibrillation, 24-h Holter monitoring, artificial intelligence, continuous ambulatory rhythm

monitoring, supraventricular ectopy
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INTRODUCTION

Atrial fibrillation (AF) is common and has shown a progressive
increase in prevalence over time (1, 2). AF is associated with
increased risks of stroke and systemic embolism (2). The
diagnostic criteria for AF is standard 12-lead electrocardiography
(ECG) documentation or a single-lead ECG tracing of >30 s
according to the current guideline (3). However, screening
of AF remains challenging, and underdiagnosis is common
in patients with paroxysmal AF (pAF) due to their high
prevalence of asymptomatic AF. Subclinical AF is one of the
pathogeneses of embolic stroke of an undetermined source
(ESUS) (4). AF accounts for about 8–15% of ESUS cases, (4,
5) and these patients need anticoagulation therapy instead of
aspirin treatment. However, empirical use of anticoagulation
without documentation of AF did not show superiority to aspirin
in preventing recurrent stroke even when using direct oral
anticoagulants (6, 7). Therefore, aspirin remains the standard
antithrombotic treatment in the absence of documented AF
(8); nevertheless, the annual recurrent stroke rate on standard
antithrombotic treatment is∼5% in ESUS patients (9).

In this sense, the detection of occult AF and provision of
proper anticoagulant treatment are key strategies to prevent
stroke recurrence. Prolonged ambulatory rhythm monitoring,
including by non-invasive event-triggered recording, hospital
telemetry monitoring, continuous ECG patch monitoring, or
implantable cardiac monitoring, is recommended following
ESUS (10). Recently, several mobile health technologies have
been developed using smartphones or watches. In asymptomatic
patients, continuous monitoring increases the diagnostic yield
rather than opportunistic screening. However, implantable
cardiac monitors are invasive, and their cost-effectiveness should
also be considered. To find out whether the substrate for AF
relates to anatomical, structural, or functional changes is one of
the supportive findings in highly suspected AF cases (11).

To increase the diagnostic rate of ECG monitoring and its
cost-effectiveness, it is necessary to choose a patient who is
expected to have AF. This study used a deep learning model to
predict occult AF in patients who showed normal sinus rhythm
during 24-h Holter monitoring.

METHODS

Study Population
This study was a retrospective cohort study that included
consecutive patients aged ≥18 years who underwent 24-h
ambulatory Holter monitoring from August 2019 to June 2020.
We excluded patients with AF or a paced rhythm recorded
during the Holter exam. All exams involved acquiring three
channels (channel 1, modified V5; channel 2, modified V1;
channel 3, lead III) with the SEERTM 1000 Holter recorder (GE
Healthcare, Chicago, IL, USA). A raw wave signal was exported
in MIT format using the CardioDay Holter ECG software (GE
Healthcare, Chicago, IL, USA). This study was approved by
the local Institutional Review Board (IRB), South Korea (IRB
no. XC20REDE0135).

Data Collection
The study cohort was classified into two groups. The first was
an AF group with at least one atrial tachyarrhythmia clinically
documented by 12-lead ECG or previous 24-h Holter monitoring
identified in our electronic health records system from 2009
to 2020. Atrial tachyarrhythmias include AF, atrial flutter, and
atrial tachycardia. The second group was a control group with
no history of clinically documented atrial tachyarrhythmia. We
defined the index time as the day when pAF was diagnosed with
any ECG modality. We included the Holter exam findings from
1 year before the index time in the AF group.

Before the analysis, the electrograms annotated as an event
by the Holter ECG software were extracted. These events were
classified as supraventricular ectopy (SVE), ventricular ectopy,
or other. Each ventricular ectopy section filtered by the Holter
ECG software was eliminated from the analysis to remove the
influence of T-wave turbulence following ventricular ectopy.
Noise-filtering was performed for all electrograms, specifically
any ECG with non-identifiable noise recorded was eliminated
using a CNN based AI algorithm and the physician’s discretion.
We implemented reannotation for the rest of the SVE events
by an electrophysiologist to eliminate any F wave to prevent
overfitting. To make annotation process most efficient for
electrophysiologists, we have divided the 24-h long electrogram
recordings into 7-s segments making all eliminated events
containing ventricular or SVE segments 7-s long. 3.5 s forward
and backward based on the ectopic beat were extracted to remove
all the annotated events including couplet ectopic beats. Next, we
carried out three different settings for data analysis. As the first
setting, we analyzed the rest of all data, including SVE events.
Second, we excluded SVE events read by the Holter software and
performed training using only sinus rhythm electrogram. Finally,
we compared the performance of our AI model against the SVE
burden-based estimator derived fromHolter software annotation
data. The SVE burden-based estimator computes the ratio of SVE
event segments in the Holter monitor data as the pAF probability
(Figure 1).

As an additional analysis, we divided the ECG segments
according to the recording time to assess the difference in
detection rate between daytime and nighttime with diurnal
periods. Here, nighttime was defined as 22:00–07:00 with fixed
times (12). Furthermore, we compared AI detection rates
according to the differences between the index date and a Holter
exam date cutoff (T) of 3, 6, 12, or 36 months (T = the Holter
exam date–the index date of when AF was diagnosed) to assess
the relationship between the information intensity of the deep
learning model and the elapsed time from the initial diagnosis
(Figure 2). With T as a threshold, two subgroups, where one
included patients with the elapsed time being greater than T and
another included patients with the elapsed time being less than
T, were defined. As we moved the cutoff through from 3 to 6, 12,
and 36 months, we measured the sensitivity of the AI model.

In developing the AI model, we validated the model
performance with 5-fold cross-validation. All patients were
randomly assigned to one of the five folds. This way, 4 of the 5
folds were used during training, and the remaining 1 was used
to evaluate the model’s performance. Evaluation process is done
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FIGURE 1 | Flow chart.

FIGURE 2 | Timeframe of index date and Holter exam.

5 times so that model performance is evaluated on all 5 groups
(13). Note that, to prevent overfitting, we performed a random
split at the patient level so that the data associated with a single
patient in the testing set were not seen before.

Outcomes
The primary study outcome was to identify patients with AF with
the presence of occult atrial tachyarrhythmia (pAF) analyzed
with our AI model using 24-h Holter monitoring without AF
documentation. We created a receiver operating characteristic
(ROC) curve and assessed the area under the ROC curve
(AUROC), sensitivity, specificity, F1 score, and F2 score (14). We
established two deep learning model; the first model included
SVE events and the other included only normal sinus rhythm
Holter electrograms, excluding those with ectopy events.

Overview of the AI Model
The length of the data recorded using Holter monitors is usually
too long to be considered by deep learning models because most
existing neural network architectures are unsuited for processing
such lengthy data. We therefore divided the 24-h-long ECG data
into many 7-s segments to overcome this difficulty. Additionally,
we divided the training process into two steps so that the model

used in the first step learned to detect pAF segment-wise, where
the second step learned to detect pAF patient-wise. In the first
step of the two-step learning process, we used a convolutional
neural network (CNN) architecture followed by fully connected
layers. The CNN architecture consisted of three residual blocks,
where each block had two sets of modules of convolutional layer
followed by batch normalization and rectified linear unit layers.
Since the Holter data were recorded using three leads (III, V1,
and V5), ECG segments were formatted into a 3 × 896-size
matrix. The size of each row represents the time axis of a 7-
s signal recorded in a 128-Hz sampling rate. In order to gain
robustness with respect to random noise in the ECG signals, we
first Z-normalized each ECG segments and applied short-time
Fourier transformation (STFT) (15) with a window size of 50
prior to the convolutional filters. At this phase of training, we
labeled the ECG segment-wise such that ECG segments were
labeled true if they were from accurate pAF recordings.

In the second stage of the training step, each ECG segment
was encoded using the CNN model trained in the first
step and concatenated in a temporal order. As a result,
the Holter recordings were mapped into the latent space
of lower dimensions, making it possible for a model to
consider every available information of the 24-h recordings,
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FIGURE 3 | A graphical workflow and architecture of the full model including detailed parameters of the convolution and residual blocks.

including time-evolving information. In this step, we trained
a gradient-boosting machine (GBM) with these dimension-
reduced datasets. Specifically, we used LightGBM (16) for the
implementation and BOHB (17) for hyper-parameter tuning. For
implementation of neural network, we used Python language
with PyTorch (version 1.11.0) as deep learning library. For
hyperparameters, we used learning rate of 0.0001 with batch size
of 1,024. The training process was done on 8 NVIDIA GeForce
RTX 3090 GPUs. Figure 3 shows the workflow and architecture
of the full model.

Statistical Analysis
Statistical analysis was performed using the Statistical Package for
the Social Sciences version 27.0 (IBM Corporation, Armonk, NY,
USA). Continuous variables were compared using an unpaired
t-test or the Wilcoxon rank-sum test, while categorical variables

were compared using the chi-squared test or Fisher’s exact test,
as appropriate. We assessed the AUC using the ROC curve.
For the performance metrics of the AI model, we computed
95% confidence interval of the experiments done on 5-fold cross
validation datasets. Additionally, we computed 95% confidence
interval of performance metrics of SVE-burden based estimator
bootstrapping 1,000 times.

RESULTS

Baseline Characteristics
In total, 1,166 consecutive patients were included in this study.
Among these, 36 patients who showed AF or a paced rhythm
during the Holter exam were excluded. Meanwhile, 141 had
pAF according to the medical records. The mean age was 61.2
± 17.1 years at the date of the Holter exam, and 558 (49.4%)
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FIGURE 4 | Receiver operating characteristic curves for the performance of the AI model. Setting 1 for with supraventricular ectopy (SVE) events and Setting 2 for

without SVE events.

participants were male. The mean duration of Holter monitoring
included in the analysis was 877.74min, and a total of 8,501,538
segments were included for analysis. The average time from AF
diagnosis to the time of Holter monitoring was 2,040 days (range,
−311–43,971 days).

AI Model
We first examined the performance of our AI model in both
settings, where we assessed all the data, including those with
SVE events (setting 1) and without SVE events (setting 2).
For both settings, all folds were kept consistent with the same
compositions of each patient, with only SVE events removed
in setting 2. The AUROC (18) of setting 1 was 0.85 (0.83–0.87)
and that of setting 2 was 0.84 (0.82–0.86), as shown in Figure 4.
Additionally, the sensitivity, specificity, positive predictive value,
negative predictive value, F1 score, and F2 score for both settings
are shown in Table 1. To determine the optimal score cutoff of
the classifiers, we chose the cutoff that maximized the sum of the
sensitivity and specificity.

Second, we compared the performance of our AI model
against the SVE burden as an estimator of pAF probability.
The AUROC of such an estimator was 0.73, and the AI model
achieved significantly better performance than an SVE burden–
based estimator in the pAF-detection task (Figure 5). For a more
detailed comparison, we found an optimal score cutoff using the
same method for the AI model and computed the sensitivity,
specificity, positive predictive value, negative predictive value, F1
score, and F2 score as shown in Table 1.

Differences in Nighttime and Daytime
Ambulatory Holter Monitoring
In the analysis considering diurnal periods, the model intended
for daytime analysis was trained on daytime data and the
nighttime settings. As a result, the AUROCs for daytime were
0.83 (0.78–0.88) for setting 1 and 0.83 (0.78–0.88) for setting 2,
while the AUROCs for nighttime were 0.85 (0.82–0.88) for setting
1 and 0.85 (0.80–0.90) for setting 2. The comparison between
these settings is shown in Figure 6.

Analysis of Model Sensitivity According to
Time From Holter Monitoring to AF
Diagnosis
Using the cutoff (T) of 3 months, the detection rate of pAF with
the AI model for >3 months was 94.6% and that for <3 months
was 91.8%. When T was 6 months, the detection rate for >6
months was 93.6% and that for <6 months was 92.2%. When T
was 12 months, the detection rate for>12 months was 95.5% and
that for <12 months was 92.0%. Finally, when T was 36 months,
the detection rate for >36 months was 100% and that for <36
months was 92.0%.

DISCUSSION

This study shows that the described AI model, when using
24-h ambulatory continuous Holter monitoring without AF
recordings, can identify occult pAF. The performance of our AI
model outperformed the performance of the Holter examwith an
SVE burden to identify pAF within the same database. Subgroup
analysis according to the diurnal period, nighttime settings
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TABLE 1 | Performance evaluation of our artificial intelligence model for settings 1 and 2.

Sensitivity Specificity PPV NPV F1 score F2 score

Setting 1 0.85 (0.79–0.92) 0.72 (0.63–0.82) 0.32 (0.28–0.37) 0.97 (0.96–0.98) 0.47 (0.42–0.51) 0.63 (0.61–0.66)

Setting 2 0.84 (0.79–0.90) 0.72 (0.65–0.82) 0.34 (0.27–0.40) 0.97 (0.96–0.98) 0.47 (0.41–0.53) 0.64 (0.60–0.68)

SVE burden 0.40 (0.39–0.40) 0.88 (0.88–0.88) 0.30 (0.30–0.30) 0.92 (0.92–0.92) 0.34 (0.34–0.34) 0.37 (0.37–0.37)

SVE, supraventricular ectopy. The values in brackets refers to 95% confidence interval.

FIGURE 5 | Receiver operating characteristic curves for the performance of the artificial intelligence model [setting 1 including supraventricular ectopy (SVE)], and SVE

burden for Holter annotation.

showed more favorable performance compared to daytime
recordings. Finally, there was little performance difference
between the time differences of AF diagnosis and Holter exam
duration <12 months.

This study, to our knowledge, was the first to investigate
pAF with AI using a continuous ambulatory rhythm monitoring
system. The efforts in screening AF remain ongoing to aid in
treatment decision-making or stroke prevention. Ambulatory
Holter monitoring is an easy-to-use, non-invasive method that
can detect even asymptomatic events owing to continuous
recording. However, the detection rate of new-onset AF using
24-h Holter monitoring alone is low at 2.4–6.0% of patients
(19). Prolonged monitoring with an implantable recorder detects
more episodes but is invasive and costly. Recently, opportunistic
intermittent ECGmonitoring using remote rhythm sampling has
been suggested, and intermittent ECGmonitoring is significantly
more likely to identify AF, (20, 21) although it also requires
more extended monitoring periods and patient cooperation.
David et al. reported that SVE burden on routine 24-h Holter
was a strong independent predictor of prevalent subclinical AF
(22). According to our study result, the performance of our
AI model outperfromed that of the SVE burden to indentify

pAF. Therefore, our study result can suggest that who will need
intensive AF screening by filtering out those most likely to
have AF.

Recent AI-driven research reported use of an AI-enabled
ECG algorithm for identifying AF and predicting incident AF
(23, 24). These studies used 12-lead, 10-s ECGs. In our study,
we used 24-h continuous and ambulatory Holter monitoring to
train the AI model. Some important points should be noted.
The Holter monitor is a continuous and ambulatory recording
system. It can represent diurnal variation and rhythm differences
according to physical activity. For instance, Dilaveris et al.
reported that P-wave duration, area, and P–R interval showed
a significant circadian variation (25). Both P-wave duration and
P–R interval were longer during the nighttime than the daytime.
Our study results demonstrated that the performance of the
AI model using nighttime recordings was more suitable for
identifying occult AF than daytime recordings. Slowing heart
rate and longer P-wave duration might make it possible to find
the more subtle P-wave changes. We could not explain which
factor influenced the identification of AF, the so-called black
box. One hypothesis is that discrete structural changes such as
fibrosis that precede atrial enlargement or phenotype change
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FIGURE 6 | Receiver operating characteristic curves for the differences seen with diurnal periods. (A) Performance with setting 1. (B) Performance with setting 2.

lead to ECG changes. A deep neural network can detect these
subtle changes that the rule-based methods cannot confirm.
Also, these changes are predicted to appear on the ECG for at
least 12 months. Our study results showed little performance
difference between the time differences of AF diagnosis and
Holter exam duration between cutoff durations of 3, 6, and
12 months. However, when the duration was more than 36
months, the detection rate increased. These results may support
our hypothesis.

While deep neural networks are potent for classification and
prediction tasks for high-dimensional data, they must consume
a massive amount of data to reach their true potential (26).
Holter monitor–based ECG recordings, however, usually are
challenging to collect in large numbers due to the difficulty
faced in measurement processes. In addition, long sequences
compared to standard 12-lead ECG recordings render Holter-
based ECG datasets extremely high in dimension but low in

number. Due to such characteristics of Holter data, harvesting
the power of a deep neural network is necessary but, at the
same time, it is difficult to train. Because classical machine
learning algorithms are known to work better than deep neural
networks when used in situations with limited amounts of
training data points, we designed a two-step learning process
to exploit the advantages of both classical machine learning
algorithms and deep neural networks (27). Specifically, we have
used CNN to encode 7-s-long ECG segments into a latent
space by training the CNN to detect pAF at a segment-wise
level. After 24-h ECG sequences were mapped into the latent
space defined by the CNN, we trained a GBM to account for
information underlying the entire sequence obtained from the
original Holter recordings. This way, the models could consider
both the underlying regularity encoded within individual short-
time ECG segments and time-related information between the
segments recorded from a single patient. As an ablation study,
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we have also evaluated pAF detection performance at segment-
wise level. In these experiments, we only used CNN part of
our full model taking out the GBM part. The performances
of these experiments were much lower than entire sequence
of original Holter recordings were considered. For both setting
1 and setting 2, AUROC came out to be 0.68 which is much
lower than 0.85 and 0.84 of the original experiments. From
this ablation study, we concluded that using the entire Holter
recording sequence rather than short sequence is the key element
in detecting pAF.

Limitation
There are some limitations to our study. We used 3-lead
ECGs with V1, V5, and III, instead of 12-lead ECGs for
analysis. Although we did not use all 12 leads, some reports
show that the P-wave terminal force on lead V1 reflects the
atrial cardiomyopathic process (28). Therefore, it would have
been sufficient to reflect some P-wave changes in the analysis.
Furthermore, our study is thought to be a cornerstone of single-
lead ECG AI analysis. In this regard, we could not perform
external validation. The 12-lead ECG was achieved in a standard
maneuver; however, Holter leads vary depending on the channel
location, making them incompatible. To compensate for absence
of external validation, we chose 5-fold cross validation to better
estimate the average performances of other hypothetical datasets
drawn from true distribution (29). Further, our study contains
relatively small numbers of patients. However, previous studies
using 12-lead ECGs performed their analyses with a 10-s signal,
and our study analyzed 24-h ECG signals. Thus, it is believed that
we gathered enough data for analysis. In addition, ambulatory
continuous Holter monitoring contains more information than
the data from a resting 12-lead ECG. Finally, we did not
analyze subgroups with baseline characteristics, such as age
or sex. The incidence of AF increases with age. If the
age variable were used for analysis, it would have acted
as a bias.

CONCLUSION

We have demonstrated that an AI can identify occult pAF
using 24-h ambulatory Holter monitoring achieved during sinus
rhythm, and the performance of our AI model was better
than the performance using the SVE burden in the Holter
exam. Analysis using Holter monitoring can reflect the diurnal
variation and some differences according to the level of physical
activity. Further investigations will be necessary to confirm the
performance in clinical practice.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of Eunpyeong St. Mary’s
Hospital. Written informed consent for participation was not
required for this study in accordance with the national legislation
and the institutional requirements.

AUTHOR CONTRIBUTIONS

JYK contributed to study design, data acquisition, data analysis,
data interpretation, and writing of the report. KK contributed to
data analysis, data interpretation, and writing of the report. YT
andMC contributed to data analysis and data interpretation. S-JP,
K-MP, YO and JSK contributed to critical revision of the report.
YL contributed to study design, data acquisition, data analysis,
and data interpretation. S-WJ contributed to study design, data
acquisition, and critical revision of the report. All authors
contributed to the article and approved the submitted version.

REFERENCES

1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M,

Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation:

a Global Burden of Disease 2010 Study. Circulation. (2014)

129:837–47. doi: 10.1161/CIRCULATIONAHA.113.005119

2. Chung MK, Refaat M, Shen W-K, Kutyifa V, Cha Y-M, Di Biase L, et al. Atrial

fibrillation: JACC council perspectives. J AmColl Cardiol. (2020) 75:1689–713.

doi: 10.1016/j.jacc.2020.02.025

3. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist

C, et al. 2020 ESC Guidelines for the diagnosis and management of

atrial fibrillation developed in collaboration with the European Association

of Cardio-Thoracic Surgery (EACTS). Eur Heart J. (2021) 42:373–

498. doi: 10.1093/eurheartj/ehaa612

4. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, et al.

Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. (2014)

370:2467–77. doi: 10.1056/NEJMoa1311376

5. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA,

et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med.

(2014) 370:2478–86. doi: 10.1056/NEJMoa1313600

6. Diener HC, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al.

Dabigatran for prevention of stroke after embolic stroke of undetermined

source. N Engl J Med. (2019) 380:1906–17. doi: 10.1056/NEJMoa

1813959

7. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD,

et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined

source. N Engl J Med. (2018) 378:2191–201. doi: 10.1056/NEJMoa

1802686

8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC,

Becker K, et al. 2018 Guidelines for the early management of patients

with acute ischemic stroke: a guideline for healthcare professionals from

the American heart association/American stroke association. Stroke. (2018)

49:e46–e110. doi: 10.1161/STR.0000000000000158

9. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of

undetermined source: a systematic review and clinical update. Stroke. (2017)

48:867–72. doi: 10.1161/STROKEAHA.116.016414

10. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski

V. Diagnosis of atrial fibrillation after stroke and transient ischaemic

attack: a systematic review and meta-analysis. Lancet Neurol. (2015) 14:377–

87. doi: 10.1016/S1474-4422(15)70027-X

11. Tandon K, Tirschwell D, Longstreth WT Jr, Smith B, Akoum

N. Embolic stroke of undetermined source correlates to atrial

fibrosis without atrial fibrillation. Neurology. (2019) 93:e381–

7. doi: 10.1212/WNL.0000000000007827

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 July 2022 | Volume 9 | Article 906780

https://doi.org/10.1161/CIRCULATIONAHA.113.005119
https://doi.org/10.1016/j.jacc.2020.02.025
https://doi.org/10.1093/eurheartj/ehaa612
https://doi.org/10.1056/NEJMoa1311376
https://doi.org/10.1056/NEJMoa1313600
https://doi.org/10.1056/NEJMoa1813959
https://doi.org/10.1056/NEJMoa1802686
https://doi.org/10.1161/STR.0000000000000158
https://doi.org/10.1161/STROKEAHA.116.016414
https://doi.org/10.1016/S1474-4422(15)70027-X
https://doi.org/10.1212/WNL.0000000000007827
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Kim et al. AI With Holter

12. Booth JNI, Muntner P, Abdalla M, Diaz KM, Viera AJ, Reynolds K, et al.

Differences in night-time and daytime ambulatory blood pressure when

diurnal periods are defined by self-report, fixed-times, and actigraphy:

Improving the Detection of Hypertension study. J Hypertens. (2016) 34:235–

43. doi: 10.1097/HJH.0000000000000791

13. Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In: Proceedings of the 14th International Joint

Conference on Artificial Intelligence - Volume 2 (IJCAI’95). San Francisco, CA:

Morgan Kaufmann Publishers Inc. p. 1137–43.

14. Bortolan G, Christov I, Simova I. Potential of rule-based methods

and deep learning architectures for ECG diagnostics. Diagnostics. (2021)

11:1678. doi: 10.3390/diagnostics11091678

15. Huang J, Chen B, Yao B, He W. ECG arrhythmia classification using STFT-

based spectrogram and convolutional neural network. IEEE Access. (2019)

7:92871–80. doi: 10.1109/ACCESS.2019.2928017

16. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly

efficient gradient boosting decision tree. Paper presented at: Proceedings of

the 31st International Conference on Neural Information Processing Systems.

California: Long Beach (2017).

17. Falkner S, Klein A, Hutter F. BOHB: robust and efficient hyperparameter

optimization at scale. Paper presented at: Proceedings of the 35th International

Conference on Machine Learning. Proceedings of Machine Learning

Research (2018).

18. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP,

et al. Cardiologist-level arrhythmia detection and classification in ambulatory

electrocardiograms using a deep neural network. Nat Med. (2019) 25:65–

9. doi: 10.1038/s41591-018-0268-3

19. Seet RC, Friedman PA, Rabinstein AA. Prolonged rhythm

monitoring for the detection of occult paroxysmal atrial fibrillation

in ischemic stroke of unknown cause. Circulation. (2011)

124:477–86. doi: 10.1161/CIRCULATIONAHA.111.029801

20. Svennberg E, Engdahl J, Al-Khalili F, Friberg L, Frykman V,

Rosenqvist M. Mass Screening for untreated atrial fibrillation:

the STROKESTOP study. Circulation. (2015) 131:2176–

84. doi: 10.1161/CIRCULATIONAHA.114.014343

21. Halcox JPJ, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C, et al.

Assessment of remote heart rhythm sampling using the alivecor heart monitor

to screen for atrial fibrillation: the REHEARSE-AF study. Circulation. (2017)

136:1784–94. doi: 10.1161/CIRCULATIONAHA.117.030583

22. Gladstone DJ, Dorian P, Spring M, Panzov V, Mamdani M,

Healey JS, et al. Atrial premature beats predict atrial fibrillation in

cryptogenic stroke: results from the EMBRACE trial. Stroke. (2015)

46:936–41. doi: 10.1161/STROKEAHA.115.008714

23. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh

AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for

the identification of patients with atrial fibrillation during sinus rhythm:

a retrospective analysis of outcome prediction. Lancet. (2019) 394:861–

7. doi: 10.1016/S0140-6736(19)31721-0

24. Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati

T, Jing L, et al. Deep neural networks can predict new-onset

atrial fibrillation from the 12-lead ECG and help identify those

at risk of atrial fibrillation-related stroke. Circulation. (2021)

143:1287–98. doi: 10.1161/CIRCULATIONAHA.120.047829

25. Dilaveris PE, Färbom P, Batchvarov V, Ghuran A, Malik M.

Circadian behavior of P-wave duration, P-wave area, and PR

interval in healthy subjects. Ann Noninvasive Electrocardiol. (2001)

6:92–7. doi: 10.1111/j.1542-474X.2001.tb00092.x

26. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–

44. doi: 10.1038/nature14539

27. Sarker IH. Machine learning: algorithms, real-world applications

and research directions. SN Computer Science. (2021)

2:160. doi: 10.1007/s42979-021-00592-x

28. Huang Z, Zheng Z, Wu B, Tang L, Xie X, Dong R, et al. Predictive

value of P wave terminal force in lead V1 for atrial fibrillation: a meta-

analysis. Ann Noninvasive Electrocardiol. (2020) 25:e12739. doi: 10.1111/anec.

12739

29. Bates S, Hastie T, Tibshirani R. Cross-validation: what does it estimate

and how well does it do it?. arXiv [Preprint]. (2021). arXiv: 2104.00673.

doi: 10.48550/ARXIV.2104.00673

Conflict of Interest: KK, YT, MC, and YL were employed by VUNO Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Kim, Kim, Tae, Chang, Park, Park, On, Kim, Lee and Jang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 July 2022 | Volume 9 | Article 906780

https://doi.org/10.1097/HJH.0000000000000791
https://doi.org/10.3390/diagnostics11091678
https://doi.org/10.1109/ACCESS.2019.2928017
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1161/CIRCULATIONAHA.111.029801
https://doi.org/10.1161/CIRCULATIONAHA.114.014343
https://doi.org/10.1161/CIRCULATIONAHA.117.030583
https://doi.org/10.1161/STROKEAHA.115.008714
https://doi.org/10.1016/S0140-6736(19)31721-0
https://doi.org/10.1161/CIRCULATIONAHA.120.047829
https://doi.org/10.1111/j.1542-474X.2001.tb00092.x
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1111/anec.12739
https://doi.org/10.48550/ARXIV.2104.00673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

	An Artificial Intelligence Algorithm With 24-h Holter Monitoring for the Identification of Occult Atrial Fibrillation During Sinus Rhythm
	Introduction
	Methods
	Study Population
	Data Collection
	Outcomes
	Overview of the AI Model
	Statistical Analysis

	Results
	Baseline Characteristics
	AI Model
	Differences in Nighttime and Daytime Ambulatory Holter Monitoring
	Analysis of Model Sensitivity According to Time From Holter Monitoring to AF Diagnosis

	Discussion
	Limitation

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References


