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Abstract 
Lipid metabolism affects cell proliferation, differentiation, membrane homeostasis and drug resistance. An in-depth exploration 
of lipid metabolism in gliomas might provide a novel direction for gliomas treatment. A lipid metabolism-related risk signature 
was constructed in our study to assess the prognosis of patients with gliomas. Lipid metabolism-related genes were extracted. 
Differentially expressed genes (DEGs) were screened, and a risk signature was built. The ability of the risk signature to predict the 
outcomes of patients with gliomas was assessed using the log-rank test and Cox regression analysis. The relationships between 
immunological characteristics, drug sensitivity and the risk score were evaluated, and the risk-related mechanisms were also 
estimated. Twenty lipid metabolism-related DEGs associated with the patient prognosis were included in the risk signature. The 
survival rate of high-risk patients was worse than that of low-risk patients. The risk score independently predicted the outcomes 
of patients. Immunological parameters, drug sensitivity, immunotherapy benefits, and numerous molecular mechanisms were 
significantly associated with the risk score. A lipid metabolism-related risk signature might effectively assess the prognosis of 
patients with gliomas. The risk score might guide individualized treatment and further clinical decision-making for patients with 
gliomas.

Abbreviations: CGGA = The Chinese Gliomas Genome Atlas, CIBERSORT = cell-type identification by estimating relative 
subsets of RNA transcripts, DEGs = differentially expressed genes, ESTIMATE = estimation of stromal and immune cells in 
malignant tumor tissues using expression data, GBM = glioblastoma, GSEA = gene set enrichment analysis, GTEx = genotype-
tissue expression, ICIs = immune checkpoint inhibitors, KEGG = Kyoto encyclopedia of genes and genomes, LGG = low-grade 
gliomas, PPI = protein–protein interaction, TCGA = The Cancer Genome Atlas, TIDE = tumor immune dysfunction and exclusion, 
TMB = tumor mutational burden, TME = tumor immune microenvironment.
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1. Introduction

Metabolic reprogramming, immune evasion, and inflammation 
are considered 3 important hallmarks of malignant tumors.[1] 
In terms of metabolic reprogramming, in addition to alter-
ations in glycolysis,[2] the dysregulation of lipid metabolism 
has been identified as one of the emerging hallmarks of abnor-
mal metabolism in tumor cells, particularly the increase in de 
novo lipid synthesis, which promotes tumor aggressiveness.[3,4] 
Lipid metabolism affects cell proliferation, differentiation and 
membrane homeostasis.[5] The alterations that occur in lipid 
metabolism provide energy for the rapid growth of tumor cells, 
and lipid metabolites help protect tumor cells from damage 
caused by harmful external environments.[6–8] Lipid metabolism 
was identified to be dysregulated in multiple cancers. Lipid-
associated synthetases were inversely associated with survival 
in patients with glioblastoma (GBM), breast cancer, ovarian 

cancer, bladder cancer, and lung cancer.[9,10] Moreover, the 
acidic microenvironment induced by hypoxia might maintain 
the survival of cancer cells, such as lung cancer and breast can-
cer cells, by increasing lipid metabolism.[11] Lipid metabolism 
was also associated with drug resistance in cancers, and leptin 
produced by adipocytes contributes to resistance to 5-fluoro-
uracil in pancreatic cancer and colorectal cancer.[12,13] Based 
on these findings, the roles of lipid metabolism in malignant 
tumors have received extensive attention.

Gliomas are the most common primary intracranial malig-
nant tumors, and their incidence is increasing.[14] The world 
health organization classifies gliomas into 4 grades: grade I is 
benign, grades II to III are low-grade gliomas (LGGs), and grade 
IV is GBM. Gliomas are intractable, despite the use of multiple 
treatment approaches; unfortunately, high-grade gliomas have a 
poor prognosis (median survival of patients with GEM was 16 
months), and even some patients with LGGs do not respond to 
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treatments, mainly due to the highly heterogeneous and invasive 
nature of gliomas.[15–17] Furthermore, gliomas have a high recur-
rence rate and are prone to progress to higher grades. Therefore, 
novel tumor markers for the diagnosis and treatment of gliomas 
are urgently needed. Several recent studies have suggested that 
gliomas exhibit abnormal lipid metabolism.[18–20] Therefore, an 
in-depth exploration of lipid metabolism in gliomas might pro-
vide a novel direction for the treatment of gliomas.

In the current study, gliomas data from The Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were used 
to identify differentially expressed lipid metabolism-related genes 
in normal and tumor tissues, and a risk signature was constructed 
that could accurately assess the prognosis of patients with gliomas. 
Data from the Chinese gliomas genome atlas (CGGA) were uti-
lized to validate the risk signature. Subsequently, the relationships 
between the risk score and the tumor immune microenvironment 
(TME), immune cell infiltration, immune checkpoints, drug suscep-
tibility, and biological function were further evaluated (Fig. 1).

2. Methods

2.1. Collection of gliomas data

Transcriptome data, mutation data and corresponding clini-
cal data for gliomas (LGG and GBM) were downloaded from 
TCGA database, and messenger RNA data from normal brain 
tissues were obtained from the GTEx database. After remov-
ing unavailable data, 1854 tissue-specific transcriptome data, 
including data from 1152 normal brain tissues and 697 tumor 
tissues, and clinical data from 1187 patients were included. 
The normalized merge data from TCGA and GTEx databases 
were used as the training set. Transcriptome data and clinical 
data for 1018 gliomas in the CGGA database were included as 
the validation set. The gene set “GOBP_LIPID_METABOLIC_
PROCESS” was obtained from the molecular signatures data-
base, and 1388 lipid metabolism-related genes were extracted. 
The tumor immune dysfunction and exclusion (TIDE) database 
(http://tide.dfci.harvard.edu/) was used to predict the immune 
checkpoint inhibitor (ICI) response in patients with gliomas.[21]

2.2. Screening of differentially expressed genes (DEGs) and 
construction of a risk signature

DEGs were identified using the limma package in R. The 
screening thresholds were adjusted P values <.05 and |log [fold 
change] | > 1. The screened DEGs were included in a univar-
iate Cox analysis, and those with a P value <.001 were con-
sidered associated with the prognosis. Then, the selected genes 
were incorporated into least absolute shrinkage and selection 
operator Cox regression model, and the obtained coefficients 
for each gene were utilized to calculate the risk score (glmnet 
package in R). The cutoff value for the high-risk group and 
low-risk group was the median risk score. The difference in 
survival between the high-risk group and the low-risk group 
was tested by constructing survival curves (log-rank test), and 
the accuracy of the risk score in predicting the prognosis of 
patients with gliomas was visualized by constructing receiver 
operating characteristic curves using the R time receiver oper-
ating characteristic package. Univariate and multivariate Cox 
analyses were performed to assess whether risk scores could 
serve as an independent predictor of the prognosis of gliomas 
patients. A nomogram was built using the R rms package, and 
the corresponding calibration curve was used to evaluate the 
degree of agreement between the clinical results predicted by 
the nomogram and the actual clinical results. The CGGA data-
set was used to validate the aforementioned risk score. Genes 
included in the risk signature were used to construct a pro-
tein–protein interaction (PPI) network through the STRING 
database (https://cn.string-db.org), and then the hub genes in 
the network were identified. Coexpression between the selected 
genes was also further investigated and visualized with a cor-
relation heatmap. Images of immunohistochemical staining for 
the proteins encoded by the selected genes were retrieved from 
the Human Protein Atlas database (https://www.proteinatlas.
org/) to preliminarily verify gene expression.

2.3. TME and immune cell infiltration

The transcriptome data obtained from the tumor samples 
were used to evaluate the status of the TME (stromal score, 
immune score and tumor purity) using the Estimation of 
Stromal and Immune cells in Malignant Tumor tissues using 
Expression data (ESTIMATE) algorithm,[22] and the infiltra-
tion levels of 22 specific immune cells were evaluated using 
the Cell-type Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT) algorithm.[23] The relation-
ships between the stromal score, immune score, tumor purity 
and 22 immune cell infiltration levels and the risk score were 
assessed.

Figure 1. Flowchart of current research. CGGA  =  Chinese gliomas 
genome atlas, DEGs  =  differentially expressed genes, GBM  =  glioblas-
toma, GSEA  =  gene set enrichment analysis, LGG  =  low-grade gliomas, 
TCGA  =  The Cancer Genome Atlas, TMB  =  tumor mutational burden, 
TME = tumor microenvironment.

http://tide.dfci.harvard.edu/
https://cn.string-db.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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2.4. Drug sensitivity

The relationships between the risk score and the susceptibility to 6 
common chemotherapeutic drugs (bleomycin, cisplatin, docetaxel, 
doxorubicin, gemcitabine, and paclitaxel) were assessed using the 
R pRRophetic package.[24] The tumor mutational burden (TMB), 
which was calculated using the maftools R package, was used as 
one of the criteria for evaluating the efficacy of ICIs therapy. The 
relationship between the risk score and the TMB was estimated. 
Differences in the effects of ICIs between the 2 risk groups predicted 
by the TIDE database were assessed using the chi-square test.

2.5. Biological functions

A gene set enrichment analysis (GSEA) was performed to ana-
lyze risk score-related functions and pathways. The “c2.cp.kegg.
v7.4.symbols.gmt” and “c5.go.v7.4.symbols.gmt” sets were 
downloaded from the Molecular Signatures Database. A nomi-
nal P value (P value) <.05 and a false discovery rate Q value (Q 

value) <0.25 were considered significant. GSEA was completed 
using GSEA software version 4.0.

2.6. Statistical analysis

The Wilcoxon rank sum test was used to compare the significance 
of differences between the 2 groups. The survival analysis was 
performed using the survival package in R. For correlation anal-
yses, the Spearman test was used. All statistical calculations were 
performed with R software (version 4.1.3).

3. Results

3.1. Identification of DEGs and establishment of a risk 
signature

The clinical information obtained from TCGA and CGGA 
datasets were shown in Tables 1 and 2. In TCGA dataset, 139 

Table 1

Characteristics of the gliomas patients obtained from the TCGA database.

Basic information  TCGA (n = 1187) 

Age  52 (median)

Gender Female 492

 Male 695

Grade G2 291

 G3 264

 G4 272

 NA 1

Radiotherapy status Yes 821

 No 252

 NA 114

TCGA = The Cancer Genome Atlas.

Table 2

Characteristics of the gliomas patients obtained from the CGGA database.

Basic information  CGGA (n = 1018) 

Age  42 (median)

Gender Female 417

 Male 601

Grade G2 291

 G3 334

 G4 388

 NA 5

Radiotherapy status Yes 754

 No 202

 NA 62

Chemotherapy status Yes 679

 No 272

 NA 67

IDH1 mutation status Wildtype 435

 Mutant 531

 NA 52

1p19q codeletion status Codeletion 212

 Non-codeletion 728

 NA 78

MGMT methylation status Un-methylated 376

 Methylated 472

 NA 170

CGGA = Chinese glioma genome atlas, IDH1 = isocitrate dehydrogenase 1, MGMT = O6-methylguanine-DNA methyl-transferase.
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lipid metabolism-related DEGs were screened (tumor vs nor-
mal), including 108 downregulated genes and 31 upregulated 
genes (Fig. 2A and B). According to the univariate Cox analy-
sis, 45 DEGs were significantly associated with the prognosis 

of patients with gliomas (P < .001) (Fig.  3A). The selected 
genes were included in the least absolute shrinkage and selec-
tion operator Cox regression model, and the risk score was 
calculated from the coefficients for each gene (Fig.  3B and 

Figure 2. Identification of the DEGs. Lipid metabolism-related DEGs were screened (tumor vs normal) in TCGA dataset and visualized with a heatmap (A) and 
volcano plot (B). DEGs = differentially expressed genes, TCGA = the Cancer Genome Atlas.
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Figure 3. Establishment of the risk score. Based on the univariate Cox analysis, DEGs were significantly associated with the prognosis of patients with gliomas 
(P < .001) (A). The selected genes were included in the LASSO Cox regression model (B), and the risk score was calculated from the coefficients for each gene 
(C). DEGs = differentially expressed genes, LASSO = least absolute shrinkage and selection operator.

Table 3

The coefficients of included genes.

ID Gene name Coefficients 

ABCA5 ATP binding cassette subfamily A member 5 0.04447

ABCG4 ATP binding cassette subfamily G member 4 0.01257

ACAD11 acyl-CoA dehydrogenase family member 11 0.00087

AGMO alkylglycerol monooxygenase −0.00007

ALDH1A3 aldehyde dehydrogenase 1 family member A3 −0.00171

ALOX15B arachidonate 15-lipoxygenase type B 0.00287

APOBR apolipoprotein B −0.21707

BMP2 bone morphogenetic protein 2 0.01956

CRABP1 cellular retinoic acid binding protein 1 −0.01630

CYP2E1 cytochrome P450 family 2 subfamily E member 1 −0.01290

ECHDC2 enoyl-CoA hydratase domain containing 2 −0.02504

EPHA8 EPH receptor A8 0.00371

FLT3 fms related receptor tyrosine kinase 3 −0.00607

HTR2C 5-hydroxytryptamine receptor 2C 0.01463

IL1A interleukin 1 alpha −0.00072

PLCH2 phospholipase C eta 2 0.12151

PLGLB1 plasminogen like B1 −0.73505

PNPLA5 patatin like phospholipase domain containing 5 0.04197

TSKU tsukushi, small leucine rich proteoglycan 0.13857

TTC7B tetratricopeptide repeat domain 7B −0.32989
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C) (Table 3). The high-risk and low-risk groups were distin-
guished by the median risk score (Fig. 4A and B). The areas 
under the curves at 1 year, 3 years and 5 years were 0.867, 
0.910, and 0.879, respectively (Fig. 4C). The high-risk group 
had a significantly lower survival rate than the low-risk group 
(P < .001) (Fig. 4D). The risk score was then validated using 
the CGGA dataset (Fig. 4E and F). The areas under the curves 
at 1-year, 3-year, and 5-year were 0.753, 0.762, and 0.747, 
respectively (Fig. 4G). The high-risk group also had a signifi-
cantly lower survival rate than the low-risk group (P < .001) 
(Fig. 4H).

The results of both univariate and multivariate Cox regres-
sion analyses indicated that the risk score independently 
predicted the prognosis of patients with gliomas patients in 
TCGA dataset (Fig. 5A and B), and the results from the anal-
ysis of the risk score using the CGGA dataset were consistent 
with those obtained using TCGA dataset (Fig. 5C and D). The 
nomogram and calibration curves constructed based on the 
risk score predicted 1-year, 3-year, and 5-year overall survival 
of patients in both TCGA (Fig.  6A–D) and CGGA datasets 
(Fig. 7A–D).

The results of immunohistochemical staining for the pro-
teins encoded by the 20 genes included in the risk signature 
showed that the expression patterns of 9 genes were con-
sistent with our previous DEG analysis (ABCA5, ACAD11, 
APOBR, CYP2E1, EPH48, PLCH2, PNPLA5, TSKU, and 
TTC7B) (Fig. 8A–R). Of the remaining 11 genes, the immu-
nohistochemical images of 6 genes were not included in 
the Human Protein Atlas database (AGMO, BMP2, FLT3, 

HTR2C, IL1A, and PLGLB1), 4 genes were not detected in 
the immunohistochemical images of tumor tissues and normal 
tissues (ABCG4, ALOX15B, CRABP1, and ECHDC2), and 
the expression trend of 1 gene was opposite to that found in 
our study (ALDH1A3).

3.2. Immune-related parameters and the risk score

According to the ESTIMATE algorithm, the risk score based on 
TCGA dataset was significantly positively correlated with the 
stromal score and immune score and was significantly negatively 
correlated with tumor purity (all P values <.001) (Fig. 9A–C). 
The results from the CGGA dataset were consistent with those 
from TCGA dataset (Fig. 9D–F).

The differences in the expression of common immune check-
point genes in the 2 risk groups were explored, and the results 
indicated that the expression of common immune checkpoint 
genes in the high-risk group were upregulated in both TCGA 
(Fig. 10A) and CGGA datasets (Fig. 10B). Differences in immune 
cells in the 2 risk groups were assessed using the CIBERSORT 
algorithm. In TCGA dataset, increased infiltration levels of mem-
ory B cells, CD8 T cells, activated memory CD4 T cells, regula-
tory T cells (Tregs), gamma delta T cells, resting mast cells, resting 
memory CD4 T cells, follicular helper T cells, M0 macrophages, 
M1 macrophages and neutrophil were observed in the high-risk 
group. Increased infiltration levels of eosinophils, CD4 naive T 
cells, monocytes and mast cell-activated were observed in the 
low-risk group (Fig. 10C). The CGGA results were mostly consis-
tent with TCGA results (Fig. 10D).

Figure 4. The risk signature. Patients with gliomas in TCGA dataset were distributed into different risk groups (A). Survival status of patients with gliomas in 
different risk groups (B). The AUCs of the ROC curves at 1 year, 3 years and 5 years were 0.867, 0.910, and 0.879, respectively (C). The high-risk group had 
a significantly lower survival rate than the low-risk group (D). Patients with gliomas in the CGGA dataset were distributed into different risk groups (E). Survival 
status of patients with gliomas in different risk groups (F). The AUCs of the ROC curves at 1 year, 3 years and 5 years were 0.867, 0.910, and 0.879, respectively 
(G). The high-risk group had a significantly lower survival rate than the low-risk group (H). AUC = area under the curve, CGGA = Chinese gliomas genome atlas, 
ROC = receiver operating characteristic, TCGA = The Cancer Genome Atlas.
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Figure 5. Independent prognostic analysis of the risk score. In TCGA dataset, the results of both univariate and multivariate Cox regression analyses indi-
cated that the risk score independently predicted the prognosis of patients with gliomas (A and B), and the results from the analysis of the risk score of 
patients in the CGGA dataset were consistent with those from TCGA (C and D). CGGA = Chinese gliomas genome atlas, IDH1 = isocitrate dehydrogenase 1, 
MGMT = O6-methylguanine-DNA methyl-transferase, TCGA = The Cancer Genome Atlas.

Figure 6. Construction of a nomogram with TCGA dataset. Nomograms (A) and calibration curves (B–D) constructed based on the risk score predicted 1-year, 
3-year, and 5-year OS of patients in TCGA dataset. OS = overall survival, TCGA = The Cancer Genome Atlas.
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3.3. PPI network and coexpression analysis

A PPI network was constructed, and coexpression analysis was 
performed based on the genes included in the risk signature. 
CYP2E1 formed the most connections with other genes in the PPI 
network (Fig. 11A) and had significant coexpression relationships 
with other genes (Fig. 11B); thus, CYP2E1 was regarded as a hub 

gene. The relationships between CYP2E1 and various clinical 
parameters were then explored. In TCGA dataset, CYP2E1 expres-
sion was increased in normal tissues (Fig. 12A), younger patients 
(Fig. 12B), those who did not receive radiotherapy (Fig. 12C) and 
patients with LGGs (Fig. 12D); its expression was also not related 
to gender (Fig. 12E). High expression indicated a better clinical 

Figure 7. Construction of a nomogram with the CGGA dataset. Nomograms (A) and calibration curves (B–D) constructed based on the risk score pre-
dicted 1-year, 3-year, and 5-year OS of patients in the CGGA dataset. CGGA  =  Chinese gliomas genome atlas, IDH1  =  isocitrate dehydrogenase 1, 
MGMT = O6-methylguanine-DNA methyltransferase, OS = overall survival.

Figure 8. Validation of the expression of genes selected to constitute the risk signature according to the HPA database. Images of immunohistochemical stain-
ing for the proteins encoded by the 20 genes selected to constitute the risk signature showed that the expression patterns of 9 genes were consistent with our 
previous DEG analysis (A–R). HPA = human protein atlas.
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outcome (Fig. 12F). In the CGGA dataset, CYP2E1 expression was 
increased in patients who were younger (Fig. 12G), those who did 
not undergo chemotherapy (Fig. 12H), and those who had LGGs 
(Fig. 12I), isocitrate dehydrogenase 1 mutation (Fig. 12J), 1p19q 
codeletion (Fig. 12K) and O6-methylguanine-DNA methyl-trans-
ferase methylation (Fig. 12L). Its expression was not related to the 
radiotherapy status (Fig. 12M) or gender (Fig. 12N). High expres-
sion also indicated a better clinical outcome (Fig. 12O).

3.4. Risk score and drug sensitivity

The results of the drug sensitivity analysis showed that 6 com-
mon chemotherapy drugs had higher half-maximal inhibitory 
concentration (IC50) levels in the low-risk group in both TCGA 
(Fig. 13A–F) and CGGA datasets (Fig. 13G–L), suggesting that 
the high-risk group was more sensitive to chemotherapy drugs. 
In addition, the TMB was significantly positively correlated with 
the risk score (Fig. 14A), indicating that ICIs exerted a better 
treatment effect on the high-risk group, which was consistent 
with the results from the TIDE database (Fig. 14B).

3.5. Biological functions and pathways

The results for gene set enrichment in the high-risk and low-risk 
groups of patients obtained using the gene ontology analysis are 
shown in Tables 4 and 5, respectively. The results for gene set 
enrichment in the high-risk patients obtained using the Kyoto 
encyclopedia of genes and genomes (KEGG) analysis are shown 
in Table 6. No gene sets were significantly enriched in low-risk 
patients in the KEGG analysis.

4. Discussion
The connections among metabolism, immunity and cancer 
deserve further exploration. Dysregulated metabolic pro-
cesses, such as glucose metabolism,[25] protein metabolism,[26] 
and lipid metabolism,[26] lead to tumor development and 
immune cell dysfunction. Lipid metabolism in tumors, the 
focus of our study, has been shown to be involved in both 
cellular signaling and the energy supply.[8] Dysregulation of 
lipid metabolism and related enzymes in gliomas has been 
reported.[27–29] Therefore, lipid metabolism represents a new 
research direction in the field of cancer therapy. Compared 
with previous studies,[30–32] the research contents of our study 
were relatively more comprehensive. Our focus was only on 
lipid metabolism, not all metabolic processes, which might 
reduce the number of confounding factors and explain the 
significant role of lipid metabolism in gliomas, thus providing 
a new perspective for the treatment of gliomas. Furthermore, 
compared with other metabolic processes, the roles of lipid 
metabolism in gliomas have been less extensively studied and 
deserve further analysis.

In our study, a risk signature containing 20 genes was con-
structed based on DEGs related to lipid metabolism in gliomas. 
Patients with gliomas in the high-risk group had a poor progno-
sis, and the risk score was associated with multiple immunologi-
cal parameters, sensitivity to common chemotherapy drugs, and 
biological functions. In addition, a hub gene in the risk signa-
ture, CYP2E1, was identified by the coexpression analysis and 
was present in the constructed PPI network. CYP2E1, a mem-
ber of the cytochrome 450 family, promotes lipid production 
by inducing oxidative stress and is differentially expressed in a 

Figure 9. Risk score and TME. According to the ESTIMATE algorithm, the risk score in TCGA dataset was significantly positively correlated with the stromal 
score (A) and immune score (B) and was significantly negatively correlated with tumor purity (C). The results from the CGGA dataset were consistent with those 
from TCGA dataset (D-F). CGGA = Chinese gliomas genome atlas, ESTIMATE = estimation of stromal and immune cells in malignant tumor tissues using 
expression data, TCGA = The Cancer Genome Atlas, TME = tumor microenvironment.
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Figure 10. Analysis of immune checkpoint expression and immune cell infiltration between the 2 risk groups. The expression of common immune checkpoints 
in the high-risk group was upregulated in both TCGA and CGGA datasets (A and B). Differences in immune cell infiltration between the 2 risk groups were 
assessed using the CIBERSORT algorithm. In TCGA dataset, increased levels of memory B cells, CD8 T cells, activated memory CD4 T cells, regulatory T cells, 
gamma delta T cells, resting mast cells, resting memory CD4 T cells, follicular helper T cells, M0 macrophages, M1 macrophages and neutrophil infiltration 
were observed in the high-risk group. Increased levels of eosinophils, naive CD4 T cells, monocytes and mast cell-activated infiltration were observed in the 
low-risk group (C). The results from the CGGA dataset were mostly consistent with the results from TCGA dataset (D). CGGA = Chinese gliomas genome atlas, 
CIBERSORT = estimating relative subsets of RNA transcripts, mRNA = messenger RNA, TCGA = the Cancer Genome Atlas.

Figure 11. PPI network and coexpression analysis. By constructing a PPI network (A) and performing a coexpression analysis (B) based on the genes included 
in the risk signature, the results showed that CYP2E1 formed the most connections with other genes in the PPI network and exhibited significant coexpression 
relationships with other genes; therefore, CYP2E1 was identified as a hub gene. PPI = protein–protein interaction.
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Figure 12. CYP2E1 and numerous clinical features. In TCGA dataset, the results suggested that CYP2E1 expression was increased in normal tissues (A), 
younger patients (B), patients who did not receive radiotherapy (C) and patients with low-grade gliomas (D), and its expression was not related to gender 
(E). High expression indicated a better clinical outcome (F). In the CGGA dataset, the results suggested that CYP2E1 expression was increased in patients 
who were younger (G), those who did not receive chemotherapy (H), and those who had low-grade gliomas (I), IDH1 mutation (J), 1p19q codeletion (K) and 
MGMT methylation (L), and its expression was not related to the radiotherapy status (M) or gender (N). High expression also indicated a better clinical outcome 
(O). CGGA = Chinese gliomas genome atlas, IDH1 = isocitrate dehydrogenase 1, MGMT = O6-methylguanine-DNA methyltransferase, TCGA = The Cancer 
Genome Atlas.
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variety of tumors; it has also been reported to affect antitumor 
drug metabolism.[33–36] A previous study confirmed that CYP2E1 
acts as a tumor suppressor in gliomas, consistent with our find-
ings, suggesting that this hub gene could be a key target for 
follow-up studies.[37]

The correlation analysis revealed that the risk score may be 
significantly correlated with various immunology-related param-
eters. Elevated expression of immune checkpoint proteins that 
facilitate immune escape was observed in high-risk patients with 
gliomas, and thus the microenvironment of high-risk patients 

Figure 13. Risk score and drug sensitivity. The results of the drug sensitivity analysis showed that 6 common chemotherapy drugs (bleomycin, cisplatin, 
docetaxel, doxorubicin, gemcitabine, and paclitaxel) had higher IC50 levels in the low-risk group in both TCGA (A–F) and CGGA datasets (G–L), suggesting 
that the high-risk group was more sensitive to chemotherapy drugs. CGGA = Chinese gliomas genome atlas, IC50 = half-maximal inhibitory concentration, 
TCGA = The Cancer Genome Atlas.
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with gliomas could be characterized as immunosuppressive.[38] 
The results from the ESTIMATE algorithm suggested that 
patients in high-risk group had higher level of stromal cell infil-
tration, higher level of immune cell infiltration, and lower tumor 
purity, which appeared to contradict the immune checkpoint 
analysis. However, the results from the CIBERSORT algorithm 
showed that the immune cells that were significantly enriched in 
high-risk patients in both TCGA and CGGA datasets were reg-
ulatory T cells (Tregs), gamma delta T cells, follicular helper T 

cells, M0 macrophages, and neutrophils. The immune cells that 
were significantly enriched in low-risk patients in both TCGA 
and CGGA datasets were CD4 naive T cells and monocytes. 
Although the high-risk group showed enrichment of more types 
of immune cells than the low-risk group, Treg cells and M0 mac-
rophages have been reported to play an immunosuppressive role 
in gliomas, and Treg cells, neutrophils and M0 macrophages 
are associated with the malignant clinical features of gliomas, 
indicating the predominance of cancer-promoting immune cells 

Figure 14. Risk score and ICIs. TMB was significantly positively correlated with the risk score (A), suggesting that the high-risk group experienced a better ICI 
treatment effect, consistent with the results from the TIDE database (B). ICIs = immune checkpoint inhibitors, TMB = tumor mutational burden.

Table 4

Gene sets enriched in the high-risk phenotype via GO.

Gene set name NES NOM P value FDR Q value 

GOMF_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT 1.903 .002 0.142

GOMF_COLLAGEN_BINDING 1.876 .000 0.149

GOBP_POSITIVE_REGULATION_OF_CELL_CELL_ADHESION 1.851 .004 0.129

GOCC_COLLAGEN_CONTAINING_EXTRACELLULAR_MATRIX 1.834 .004 0.120

GOBP_NEGATIVE_REGULATION_OF_IMMUNE_RESPONSE 1.828 .015 0.120

GOBP_NEGATIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 1.827 .013 0.118

GOBP_POSITIVE_REGULATION_OF_FIBROBLAST_PROLIFERATION 1.819 .004 0.111

GOBP_SMOOTH_MUSCLE_CELL_MIGRATION 1.812 .004 0.104

GOBP_REGULATION_OF_COLLAGEN_METABOLIC_PROCESS 1.805 .008 0.101

GOBP_FIBROBLAST_PROLIFERATION 1.781 .000 0.097

GOBP_POSITIVE_REGULATION_OF_ENDOTHELIAL_CELL_CHEMOTAXIS 1.701 .006 0.097

GOBP_POSITIVE_REGULATION_OF_SMOOTH_MUSCLE_CELL_MIGRATION 1.684 .013 0.099

GOBP_REGULATION_OF_ENDOTHELIAL_CELL_CHEMOTAXIS 1.664 .016 0.100

GOBP_OSTEOBLAST_DIFFERENTIATION 1.647 .009 0.102

GOBP_POSITIVE_REGULATION_OF_EPITHELIAL_TO_MESENCHYMAL_TRANSITION 1.639 .035 0.104

GOBP_POSITIVE_REGULATION_OF_COLLAGEN_METABOLIC_PROCESS 1.617 .038 0.111

GOBP_POSITIVE_REGULATION_OF_OSTEOBLAST_DIFFERENTIATION 1.608 .029 0.113

GOBP_POSITIVE_REGULATION_OF_FATTY_ACID_METABOLIC_PROCESS 1.516 .041 0.144

GOBP_REGULATION_OF_FATTY_ACID_METABOLIC_PROCESS 1.442 .043 0.178

GOBP_GLUCOSE_METABOLIC_PROCESS 1.428 .037 0.183

Gene sets with NOM P value <.05 and FDR Q value <0.25 were considered significant.
FDR = false discovery rate, GO = gene ontology, NES = normalized enrichment score, NOM = nominal.
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in the high-risk group.[39–42] The monocytes that were enriched 
in the low-risk group were antigen-presenting cells that elic-
ited significant antitumor effects.[43] Interestingly, the levels of 
infiltrating CD8 + and CD4 + T cells in high-risk patients with 

gliomas were higher than those in low-risk patients. We hypoth-
esized that the constant exposure of neoantigens due to the 
strong malignant proliferation ability of gliomas in the high-
risk group would activate the immune response and increase the 

Table 5

Gene sets enriched in the low-risk phenotype via GO.

Gene set name NES NOM P value FDR Q value 

GOMF_UBIQUITIN_LIKE_PROTEIN_SPECIFIC_PROTEASE_ACTIVITY −1.947 .000 0.249

GOBP_PEPTIDYL_LYSINE_TRIMETHYLATION −1.945 .000 0.236

GOBP_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_VACUOLE −1.943 .000 0.227

GOBP_N_TERMINAL_PROTEIN_AMINO_ACID_MODIFICATION −1.942 .000 0.214

GOBP_NEUROMUSCULAR_PROCESS_CONTROLLING_BALANCE −1.935 .000 0.217

GOBP_REGULATION_OF_MRNA_PROCESSING −1.925 .006 0.227

GOBP_PROTEIN_ACYLATION −1.925 .000 0.216

GOBP_LIGAND_GATED_ION_CHANNEL_SIGNALING_PATHWAY −1.924 .000 0.206

GOCC_PROTEIN_ACETYLTRANSFERASE_COMPLEX −1.921 .010 0.202

GOBP_ENDOSOMAL_TRANSPORT −1.911 .004 0.217

GOBP_POSITIVE_REGULATION_OF_MRNA_SPLICING_VIA_SPLICEOSOME −1.909 .002 0.210

GOCC_MAGNESIUM_DEPENDENT_PROTEIN_SERINE_THREONINE_
PHOSPHATASE_COMPLEX

−1.905 .004 0.209

GOBP_REGULATION_OF_MRNA_POLYADENYLATION −1.903 .000 0.205

GOBP_REGULATION_OF_MRNA_SPLICING_VIA_SPLICEOSOME −1.900 .008 0.202

GOBP_LYSOSOMAL_TRANSPORT −1.896 .004 0.204

GOBP_CYTOPLASMIC_MICROTUBULE_ORGANIZATION −1.895 .006 0.197

GOBP_L_GLUTAMATE_TRANSMEMBRANE_TRANSPORT −1.895 .004 0.190

GOBP_RESPONSE_TO_POTASSIUM_ION −1.894 .000 0.187

GOBP_REGULATION_OF_TRANSCRIPTION_ELONGATION_FROM_
RNA_POLYMERASE_II_PROMOTER

−1.892 .004 0.183

GOBP_STARTLE_RESPONSE −1.892 .000 0.178

Gene sets with NOM P value <.05 and FDR Q value <0.25 were considered significant.
FDR = false discovery rate, GO = gene ontology, mRNA = messenger RNA, NES = normalized enrichment score, NOM = nominal.

Table 6

Gene sets enriched in the high-risk phenotype via KEGG.

Gene set name NES NOM P value FDR Q value 

KEGG_GLUTATHIONE_METABOLISM 2.034 .000 0.052

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 1.967 .000 0.067

KEGG_ECM_RECEPTOR_INTERACTION 1.863 .010 0.117

KEGG_PANTOTHENATE_AND_COA_BIOSYNTHESIS 1.791 .010 0.106

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 1.779 .019 0.106

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 1.775 .010 0.100

KEGG_PYRIMIDINE_METABOLISM 1.771 .014 0.096

KEGG_CELL_CYCLE 1.768 .033 0.091

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 1.753 .014 0.080

KEGG_FOCAL_ADHESION 1.737 .025 0.077

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.709 .026 0.078

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 1.685 .034 0.082

KEGG_PRIMARY_IMMUNODEFICIENCY 1.684 .033 0.080

KEGG_JAK_STAT_SIGNALING_PATHWAY 1.676 .019 0.081

KEGG_DNA_REPLICATION 1.651 .028 0.085

KEGG_GALACTOSE_METABOLISM 1.643 .020 0.087

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM 1.583 .032 0.097

KEGG_TYROSINE_METABOLISM 1.545 .032 0.112

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.541 .043 0.112

Gene sets with NOM P value <.05 and FDR Q value <0.25 were considered significant.
FDR = false discovery rate, KEGG = Kyoto encyclopedia of genes and genomes, NES = normalized enrichment score, NOM = nominal.
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infiltration of CD4+ and CD8+ T cells in the high-risk group. 
However, if T cells were continuously exposed to neoantigens, 
T cell exhaustion could occur, which was manifested by the loss 
of T cell functions and an increase in the expression of various 
immunosuppressive factors, resulting in immunosuppression 
in the tumor microenvironment and finally promoting tumor 
progression.[44,45] In addition, the increased number of stromal 
cells observed in the high-risk group might mediate immune 
escape, rendering these patients resistant to immunotherapy.[46] 
Therefore, the comprehensive analysis has shown that the poor 
prognosis of patients with gliomas in the high-risk group is due 
to immunosuppression caused by multiple factors.

Gliomas are resistant to chemotherapy due to their high 
heterogeneity and increased proliferation rate.[47,48] According 
to the results of the drug sensitivity analysis, patients in the 
high-risk group were more sensitive to 6 common chemo-
therapy drugs. Differences in the TMB and the effects of ICI 
treatment between the 2 risk groups were further evaluated. 
The TMB is considered a biomarker for the response to ICI 
treatment, and a higher TMB implies better ICI efficacy.[49] In 
our study, the results from the TIDE database showed that the 
high-risk groups benefited more from ICIs than the low-risk 
groups, consistent with the results showing that the TMB was 
positively associated with the risk score. Currently, immuno-
therapy has emerged as an alternative therapy for patients 
with gliomas who cannot tolerate conventional treatments.[50] 
However, due to the inherent immunosuppressive microenvi-
ronment of gliomas and the low TMB in some patients, the 
effect of immunotherapy is unsatisfactory.[51–53] Therefore, the 
risk score we built might be used to stratify patients with gli-
omas, which might help clinicians choose more individualized 
and effective treatment methods for patients according to the 
risk score.

Next, the biological functions associated with the risk score 
were evaluated. Numerous pathways associated with metabolic 
processes, tumor progression, the epithelial-mesenchymal tran-
sition (EMT), extracellular matrix (ECM) and stromal cell-re-
lated functions were identified in the high-risk groups using 
the KEGG and gene ontology analyses. Fibroblasts have been 
shown to inhibit the immune response and promote tumor 
development, and osteoblasts have been found to promote 
tumor metastasis.[54,55] ECM signaling has been reported to 
inhibit tumor cell apoptosis and increase the ability of cells to 
proliferate and infiltrate.[56]

Finally, some limitations of our study must be addressed. First, 
no mutation data were available in the CGGA database, which 
prevented us from calculating the TMB of the CGGA samples. 
Second, this study was a retrospective study conducted using 
public databases. Prospective studies should be conducted as a 
supplement in the future. Third, the level of infiltrating immune 
cells, drug sensitivity and biological functions must be further 
confirmed by performing in vitro experiments and large-scale 
clinical trials.

5. Conclusions
Dysregulated lipid metabolism is one of the novel hallmarks of 
tumors. A lipid metabolism-related risk signature might effec-
tively assess the prognosis of patients with gliomas. The risk 
score was significantly correlated with the prognosis, immune 
features, drug sensitivity and biological molecular functions, 
which has important implications for the decision making of 
clinicians and individualized treatment of patients with gliomas.
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