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Heterogeneous enhancer states orchestrate
β cell responses to metabolic stress

Liu Wang 1,5, Jie Wu 1,5, Madeline Sramek1, S. M. Bukola Obayomi 1,
Peidong Gao2, Yan Li 2, Aleksey V. Matveyenko 3 & Zong Wei 1,4

Obesity-induced β cell dysfunction contributes to the onset of type 2 diabetes.
Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction
at single cell level remains challenging. Hereweprofile single-nuclei RNA along
with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice.
Our study identifies distinct gene signatures and enhancer states correlating
with β cell dysfunction trajectory. Intriguingly, while many metabolic stress-
induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at
their enhancers, expression changes of specific subsets are solely attributable
to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of
H3K4me1+H3K27ac- primed enhancers prevalent in lean β cells and occupied
by FoxA2 are largely absent after metabolic stress. Lastly, cell-cell commu-
nication analysis identified the nerve growth factor (NGF) as protective para-
crine signaling for β cells through repressing ER stress. In summary, our
findings define the heterogeneous enhancer responses to metabolic chal-
lenges in individual β cells.

The rise of the obesity pandemic and the concurrent global increase in
the incidence of type 2 diabetes (T2D) present a significant challenge
to public health. Dysfunction of β cells serves as an early hallmark of
prediabetes and is essential for the progression of T2D1. Overnutrition
leads to metabolic and inflammatory stress in β cells, thus impairing
their insulin secretion capacity2,3. Extensive research has shed light on
the cellular and molecular mechanisms underlying β cell dysfunction.
Significant differences in gene expression, glucose-stimulated insulin
secretion, and stress responses exist between normal and dysfunc-
tional β cells4–8. Moreover, in both normal and diabetic islets, con-
siderable heterogeneity at transcription, protein, and functional levels
has been observed across all major endocrine cell types9–12. Recent
advances in single-cell RNA sequencing (scRNA-seq), single-cell Assay
for Transposase-Accessible Chromatin sequencing (scATAC-seq), and
single-cell multiome have established transcriptional and epigenetic
signatures that define the heterogeneous states of β-cell13–23. In addi-
tion, by integrating chromatin accessibility, transcription factor motif

enrichment, and gene expression at the single-cell level, these studies
were able to infer the β cell-specific gene regulatory network (GRN)24

and link T2D GWAS variants to β cell function13.
Gene expression is governed by transcription factors (TFs) and

epigenetic cofactors that bind to both proximal and distal enhancers,
collectively referred to as cis-regulatory regions (CREs)24. The hetero-
geneity in gene expression and CRE activity has been instrumental in
defining subpopulations in islet endocrine cells, particularly in β
cells13,14. In mature β cells, the heterogeneous gene expression corre-
sponds to functional heterogeneity at single-cell level22,25–27. While
sometimes described in simplistic binary terms as open or closed,
CREs are, in fact, demarcated by a spectrum of histone
modifications28,29. The chromatin states defined by the histone code
are linked to diverse biological functions, providing a nuanced per-
spective on gene regulation30. Functional studies in islets have
revealed that the perturbation of epigenetic modulators for different
enhancer marks showed distinct phenotypes, suggesting both
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collaborative and divergent regulatory networks31–34. Nevertheless, the
precise way in which specific enhancer states contribute to gene
expression dynamics in islet cells at the single-cell level remains to be
fully elucidated. Furthermore, the role of enhancer activity in gen-
erating heterogeneous gene expression, especially in the context of β
cell dysfunction, is not well defined.

The recent development of multi-omic platforms such as Paired-
Tag35 and CoTECH36, based on the combinatorial indexing platform,
enables joint profiling of histone modifications and RNA from single
nuclei at an unprecedented scale. Here, we use Paired-Tag to inves-
tigate themultifaceted cellular trajectories defined by the integration
of transcriptome and epigenome of H3K27ac or H3K4me1, in islets of
mice under normal chow (NC) or high-fat diet (HFD). Our results
demonstrated consistent trajectories of islet dysfunction defined by
both histone marks. The trajectories from healthy to dysfunctional β
cells are defined by elevatedmetabolic stress, as well as reduced β cell
identity and function at both transcription and enhancer level.
Interestingly, the degree of coupling betweenH3K27ac/H3K4me1 and
gene expression is highly locus-specific. The complex relationship can
display either concordant or discordant patterns between H3K27ac
and H3K4me1 in different gene subsets. Through gene regulatory
network (GRN) analysis and pharmacological perturbation, we
revealed distinct regulatory modes for inflammation- and ER stress-
induced genes. Surprisingly, we found that a large portion of
H3K4me1+/H3K27ac- primed enhancers in NC islets were lost after
HFD. These enhancers are occupied by the pioneer factor FoxA2. The
loss of primed enhancers is linked to the suppression of β cell func-
tion genes by HFD. Lastly, we identified intra-islet cell-cell commu-
nication that regulates HFD-induced transcriptome changes in β cells
and identified NGF as a protective paracrine factor for β cells.
Importantly, the administration of NGF curbs excessive ER stress-
induced β cell dysfunction and ameliorates hyperglycemia in diabetic
Akita mice. Taken together, our data presented a dynamic and com-
prehensive regulatory roadmap of β cell dysfunction undermetabolic
stress, revealed the essential and often discordant H3K27ac/H3K4me1
enhancers activities, and identified NGF-TrkA (Tropomyosin receptor
kinase A) signaling that can be modulated to ameliorate β cell
dysfunction.

Results
Define heterogeneous β cell states and the trajectory of β cell
dysfunction in obesity
To identify the gene expression dynamics and their relationship with
enhancer states in islet dysfunction, we employed Paired-Tag35 to
simultaneously quantify the enhancer marks (H3K27ac or H3K4me1),
and RNA transcription from single nuclei. It is well documented that
HFD induces islet dysfunction due to both glucolipotoxicity and
insulin resistance in mice2. We harvested islets from male and female
C57BL/6Jmiceunder normal chow (NC) or high-fat diet (HFD) (8weeks
or 16weeks),whichcaused increasedbodyweight,mildhyperglycemia
(Supplementary Fig. 1), and β cell proliferation and stress37–39. Using a
“split-and-pool” strategy to index both RNA and enhancers from the
same nuclei35, this protocol enables us to establishmulti-omic datasets
of “RNA+H3K4Me1” and “RNA+H3K27ac” (Fig. 1A).

After quality control (see methods and Supplementary Fig. 2) for
bothRNAandDNA reads, wefirst integrated the single nuclei RNAdata
across all timepoints andboth sexes.We identified allmajor endocrine
and nonendocrine islet cell types (Fig. 1B), consistent with multiple
published scRNA-seq and snRNA-seq13–23. We were able to clearly
define various known cell populations (α, β, δ, PP, ductal, endothelial,
fibroblast, and macrophage) based on cell type-specific expression
signatures (Fig. 1B, C, Supplementary Fig. 3A). Next, we used scVelo40

and CellRank41 to unbiasedly determine the cell kinetics from healthy
(NC) state to dysfunctional (HFD) state in the integrated β cell popu-
lation. Interestingly, we found clear directions of RNA velocities

pointing to a subset of β cells (Fig. 1D), which is consistent with the
pattern of latent time (Fig. 1E). Multiple scRNA-seq studies in mouse
and human islets have identified subpopulations of β cells13,14,17,42,43.
Based on clusters defined by Seurat44 (Supplementary Fig. 3B) and
driver genes resolved along latent time (Fig. 1F), we defined twomajor
β cell subpopulations in our datasets (β-hi, beta-low), and anadditional
minor population of proliferating β cells (Mki67-β) (Fig. 1D). The top
driver genes (Fig. 1F, G) enriched in beta-hi states include hormonal
genes (Ins2, Iapp, Chga), β cell-essential transcription factors (Rfx6,
Foxo1), and genes essential for nutrient metabolism and insulin
secretion (Rptor, Syt7, Pak3, Dcx). Conversely, the beta-low state is
characterized by genes related to the unfolded protein response (UPR)
(Pdia3, Ddit3, Atf3, Herpud1, Hspa5, Eif2ak3), ER-associated degrada-
tion (Sel1l, Herpud1) and inflammatory stress (Nfkbiz) (Fig. 1F). These
results confirmed that the cellular trajectories defined here reflect a
progression from healthy β cells to stressed and dysfunctional cells.
Though we defined the two states based on integrated RNA, the beta-
low and beta-hi states do not simply reflect diet conditions (NC or
HFD). In fact, bothNC andHFDβ cells contain substantial beta-low and
beta-hi state cells (Fig. 1H). However, the ratio of beta-hi to beta-low
changed dramatically in HFD islets (Fig. 1H, I), suggesting that HFD
induces a progression from beta-hi state to beta-low state. RNA velo-
city results suggest that beta-low cells have themost evident dynamics
(Fig. 1D). Indeed, when we quantified HFD-induced gene expression
changes in β-hi, beta-low, and Mki67+ β cells, the number of differ-
entially expressed genes was much larger in beta-low cells (Fig. 1J,
Supplementary Data 1). Gene ontology analysis further confirms that
HFD-repressed genes are related to insulin secretion, while HFD-
induced genes are enriched in excessive ER stress-induced unfolded
protein response (UPR) (Fig. 1K, Supplementary Fig. 3C). Lastly, we
found a substantial overlap of dynamic genes defined here with the
published GWAS-associated T2D genes or previous single-cell studies
in human T2D islets16,45 (Supplementary Fig. 4), suggesting that the
dysfunction trajectories of mouse and human β cells may be evolu-
tionarily conserved. Together, these results demonstrate that at the
transcriptome level: 1) β cells are heterogeneous, 2) HFD induces a
transition from beta-hi state to beta-low state, and 3) the main sig-
nature of this dysfunction trajectory is the downregulation of β cell
function genes and the elevation of ER stress and proinflammatory
genes induced by HFD.

Our analysis also revealed a minor β cells population (Mki67 + -β)
that highly expresses proliferation markers such as Mki67, Top2a,
Cenpp, and Smc4. (Fig. 1C, Supplementary Fig. 5A, B). These cells
showed substantial differences in gene expression when compared
with either beta-hi or beta-low cells (Supplementary Fig. 5C, D). Gene
ontology enrichment analysis revealed that in contrast to beta-hi or
beta-low cells, the Mki67+ β cell-enriched genes are uniquely asso-
ciated with cell cycle, mitotic chromosome condensation, and
separation (Supplementary Fig. 5E). Motif analysis showed that the
H3K27ac and H3K4me1 enhancers in Mki67 + -β cells are specifically
enriched inmultiple TF bindingmotifs that are known to be related to
β cell proliferation, such as FoxO146, PITX247, STAT548, and VDR49

(Supplementary Fig. 5F).
Lastly, we examine sexual dimorphism in gene expression in

mouse islets. Sex differences have profound effects on islet function
and gene expression50. Our analysis revealed that cells do not separate
into sex-specific clusters (Supplementary Fig. 6A), indicating that
overall gene signatures for each cell type are similar in both sexes.
When comparing the male and female β cells at 0, 8, and 16 weeks, we
found a total of 84 genes that are differentially expressed in male or
female β cells (adj. p < 0.05, fold>1.25). As expected, this list includes
X-linked (Tsix, Xist, Gm26992) or Y-linked (Uty, Eif2s3y) genes (Sup-
plementary Fig. 6B–E). For the other autosomal genes, Ins1 and Ins2 are
expressed at a higher level in male β cells, consistent with previous
scRNA-seq results51.
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Integrated enhancer-RNA trajectories revealed loss of β cell
function and elevated inflammatory and ER stress along the
trajectories of β cell dysfunction
To further investigate enhancer dynamics in islets, we integrated
multimodal single-cell datasets of H3K27ac+RNA or H3K4me1+RNA
using Seurat (Fig. 2A, B). The integrated datasets successfully classify
similar cell types as defined solely by RNA (Fig. 2A, B), and themajority
of cells retained their identities defined by RNA (Supplementary

Fig. 7A, B). To explore the link between gene expression and cell type-
specific enhancers, we first pooled H3K27ac or H3K4me1 reads by
individual endocrine cell types. As anticipated, both H3K27ac and
H3K4me1 displayed highly specific enrichment at loci of cell type-
specific genes, such as Gcg, Ins1, Sst, Mki67, and Ppy (Fig. 2C). To fur-
ther quantify the coupling between H3K27ac/H3K4me1 and target
gene expression, we used the FigR package52 to compute the DORC
(domain of regulatory chromatin) value, a measurement of
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accumulated H3K27ac or H3K4me1 signals corresponding to each
gene locus. Globally, the DORCs of both H3K27ac and H3K4me1 clus-
tered coherently with gene expression (Supplementary Fig. 7C, D).
Moreover, for the top 50 cell type-specific genes defined by RNA, both
H3K27ac and H3K4me1 DORCs of these loci are also highly cell-type
specific (Fig. 2E, F, Supplementary Data 2 & 3). Beyond identifying cell-
type specific enhancers, we were also able to quantify the strength of
correlations between individual H3K4me1+ or H3K27ac+ enhancers and
target expression at both bulk and single-cell level (Fig. 2G, H). Our
previous analysis pinpointed a set of heterogeneous genes that align
with the latent time of β cell dysfunction trajectory (Fig. 1F). Never-
theless, it is not clear whether these heterogeneous gene expression
patterns correlate with local enrichment of H3K27ac or H3K4me1. To
identify genes displaying concordant dynamics of RNA and H3K27ac/
H3K4me1 levels,wegeneratedpseudotimeprofiles ofH3K27ac+RNAor
H3K4me1+RNAmultiome fromhealthy (beta-hi) to dysfunctional states
(beta-low) using ArchR53 (Fig. 2I, J). We subsequently ranked individual
cells based on dysfunction pseudotime and identified genes of which
the dynamics of RNA and H3K27ac/H3K4me1 are coupled (Fig. 2K, L).
Among the genes identified, those elevated during β cell dysfunction
are notably associated with excessive ER stress and inflammatory
responses (Fosb, Pdia3, Ddit3, Hspa5, Hsp90b1,Manf, etc.), while the β
cell function genes (Slc2a2, Tcf7l2, Vdr, Abcc8, Glp1r, Neurod1, etc.) are
repressed (Fig. 2K, L, Supplementary Fig. 8). Taken together, these
findings identified genes of which the H3K27ac and/or H3K4me1
enhancer activities are coupled with gene expression.

Identify H3K27ac- and H3K4me1-specific gene regulatory net-
works (GRN) in β cells
To infer GRN based on H3K27ac and H3K4me1, we first employed
ArchR53 to compute the enrichment of TF motifs in individual β cells.
Consistent with the heterogeneous transcriptome and H3K27ac/
H3K4me1 in single cells, themotif activities for individual TFs involved
in β cell function (FoxA2) or stress response (FOS, IRF1, NFKB2) are
highly heterogeneous with relative enrichment in beta-hi or beta-low
subpopulations (Fig. 3A). To discern putative TFs that may regulate β
cell dysfunction, we correlated TF expression withmotif activity along
the trajectories of β cell dysfunction (Fig. 3B, C, Supplementary
Data 4). This approach identified several known TFs associated with
identity and function of β cells (FOXA2, FOXO1, HNF1β, NR4A1),
nuclear hormone signaling (RARα/β, RXRα/γ, ERα, PPARδ, RORα), and
UPR/inflammatory stress (FOS/FOSB, IRF1/7, ATF3/6, RELA/B)
(Fig. 3B, C, Supplementary Data 4). To distinguish activators from
repressors, we utilized FigR52 to rank the mean regulation scores of all
TFs, revealing those that predominantly act as activators (IRF1, FOXA3,
RARB) versus those function mainly as repressors (JUN, NR3C1, TBX1)
at H3K27ac or H3K4me1 enhancers (Fig. 3D, E). Next, we aggregated all
GRNs based on the clustering of TFs and target genes. The analysis
uncovers that inflammationmodulators (e.g., RELA, RELB, IRF1, NFKB1,
STAT1) tend to coactivate downstream proinflammatory targets
(Fig. 3F, G). Conversely, TFs known to repress inflammatory responses,
such as glucocorticoid receptor (NR3C1) and vitamin D receptor

(VDR), cluster together and counteract stress-induced targets
(Fig. 3F, G). The resemblance between H3K27ac or H3K4me1 GRNs
highlights that the transcriptional responses to inflammation in HFD
islets are coupled with concordant H3K27ac and H3K4me1 dynamics.
Furthermore, GRNs reveals putative H3K27ac- or H3K4me1-associated
TF regulators for individual targets (Supplementary Fig. 9). For
instance, NR4A1, an orphan nuclear receptor that regulates β cell
proliferation54, emerged as a prominent activator for Itgb1, a gene
required for β cell expansion and maturation55–57(Supplementary
Fig. 9A, B). Meanwhile, other activators of Itgb1 were specific to either
H3K27ac or H3K4me1 GRNs (Supplementary Fig. 9A, B). Taken toge-
ther, the inferred GRNs from H3K27ac or H3K4me1 demonstrate that
many pro- and anti-inflammatory TFs synergize to co-regulate down-
stream transcriptional responses in metabolically stressed β cells.

Pharmacological perturbation reveals gene-specific contribu-
tion of H3K27ac/H3K4me1 to β cell GRNs
The GRNs of NF-κB pathway TFs (NFKB1/2, RELA/B) suggest a robust
correlation between H3K27ac/H3K4me1 enhancers and inflammation-
driven dysfunction of β cells. However, whether the H3K27ac/
H3K4me1 enhancer activities are required for individual NF-κB down-
streamgene expression in β cells remains undetermined. Based on the
in silico H3K27ac/H3K4me1 GRNs (Fig. 3F-G), we selected a number of
NFKB1/RELA target genes of which the expression is significantly
linked to H3K27ac and/or H3K4me1, and tested the causality between
H3K27ac/H3K4me1 enhancer activities and gene expression by per-
turbing the epigeneticmodulator of H3K27ac/H3K4me1 (CBP, HDACs,
or LSD1) with HDACs inhibitor SAHA58, CBP inhibitor GNE78159, and
LSD1 inhibitor GSK-LSD160. In MIN-6, a mouse β cell line, the global
H3K27ac is significantly increased upon SAHA treatment, and
decreased by GNE-781 (Supplementary Fig. 9E, left). Global H3K4me1
level is increased by GSK-LSD1 (Supplementary Fig. 9E, right). Next, we
applied IL-1β to activate NF-κB signaling, and found that many of our
selected genes, such as Itgb1, Tgfbr1, Jak2, Il1r2, and Ezh2, are sig-
nificantly elevatedwhen treatedwith SAHA (Fig. 3H).Conversely, when
usingGNE781 to inhibit CBP and specifically reduceH3K27ac,we found
that the expression of NF-κB targets such as Traf3ip2, Nr1h4, and
Hdac9, are significantly reduced (Fig. 3I). Lastly, we boosted H3K4me1
by inhibiting H3K4me1 demethylase LSD1 and found that the expres-
sion of NF-κB targets (Ntrk2, Nr1h4, Itgb1, and Trafip2) are elevated
(Fig. 3J). Collectively, results from these pharmacological perturba-
tions provide strong evidence that the NF-κB mediated inflammatory
responses within β cells depend on the dynamics of H3K27ac and
H3K4me1 enhancers.

The coupling of enhancer activity and transcription is highly
variable
In a simplifiedmodel of gene regulation, the activationof a gene froma
silent state is concomitantly “coupled” with the increase in both
H3K27ac and H3K4me1 enhancer activities. However, gene expression
heterogeneity in islets is mostly quantitative rather than binary. Whe-
ther the heterogeneity of gene expression is associated with

Fig. 1 | Define heterogeneous β cell states in islets fromnormal chow and high-
fat diet mice. A Schematic experimental design. Created in BioRender. Wei, Z.
(2022) BioRender.com/n56g182. B Uniform manifold approximation and projec-
tion (UMAP) embedding showing the clustering of 56,748 single nuclei by single
nuclei RNA profile. C Row-normalized expression of top enriched genes for each
islet cell type (MPs: macrophages, FBs: Fibroblasts, ECs: Endothelial cells). Color
bars in ID represent individual biological samples.D RNA velocity flow projected in
the UMAP space. E RNA velocity-based latent time of the nuclei shown in D.
F Smoothed gene expression trends of the top 1,000 genes whose expression
values correlate bestwithβ cell stateprobabilities (frombeta-hi tobeta-low), sorted
according to peak in pseudotime. G The RNA velocity (upper panel) and the
expression (lower panel) for representative genes (Iapp, Slc2a2, Hspa5, Ddit3) in

each cluster by scVelo. Positive velocity: up-regulated; negative velocity: down-
regulated. H UMAP of 3 states of mouse β cells (high, low, and proliferating
(Mki67+)) density from NC or HFD mice, showing the relative proportion of beta-
low cells are increased in HFD islets. I The percentage of cells in each state (high,
low, and Mki67+) in NC and HFD β cells. J Venn diagram of HFD-repressed (upper
panel) and HFD-induced (lower panel) genes in high, low, and Mki67+ β cells.
KHeatmap showing the odds ratio of the top GO terms calculated by enrichR124 for
up and downregulated DEGs within each cell type (*adjusted p <0.05). Top panel:
GO terms for genes repressed by HFD. Lower: GO terms for genes upregulated by
HFD. Adjusted p-values were calculated using Fisher-exact test and Benjamini-
Hochberg method for correction.
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simultaneous changes in H3K27ac and H3K4me1 at a single-cell level
requires further investigation. We first plotted the correlation coeffi-
cient of RNA-H3K27ac and RNA-H3K4me1 for each individual gene
(Fig. 4A, Supplementary Data 5). The H3K27ac-RNA coefficient corre-
lates with the H3K4me1-RNA coefficient (r = 0.51) (Fig. 4A, Supple-
mentary Data 5). This is best demonstrated by a group of 182
“concordant genes” (coefficient r > 0.7 for both H3K27ac and

H3K4me1, green dots in Fig. 4A), of which bothH3K27ac andH3K4me1
are highly correlated with gene expression dynamics. For the majority
of genes (Ddit3, Manf, Fos, Atf6, and G6pc2) in this category (Fig. 4A,
Supplementary Data 5), the expression and H3K27ac/H3K4me1 levels
are elevated in dysfunctional β cells (Fig. 4B, C). In contrast, we also
found a substantial number of outliers that are “discordant” between
H3K27ac and H3K4me1 dynamics (group 2 and 3 in Fig. 4A). For group
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2 genes (95 in total), transcription is coupled with H3K27ac but not
H3K4me1 (Fig. 4A, red dots). For group 3 genes (607 in total), tran-
scription is coupled with H3K4me1 but not H3K27ac (Fig. 4A, yellow
dots). Interestingly, the 3 groups of genes are associated with distinct
gene ontology (GO). Group 1 genes are highly induced in a stressed
state (Fig. 4B, C) and are mostly related to UPR/ER stress (Fig. 4D). In
contrast, group 2 genes are enriched in the calcium signaling pathway
(Fig. 4D), whereas group 3 genes are enriched in secretion, inflam-
matory response, and to a less extent, ER stress pathways (Fig. 4D). For
individual discordant genes, this divergence can simply be demon-
strated by comparing the trajectories of H3K27ac and H3K4me1 side-
by-side (Fig. 4E). For group 2 genes such as Sik3, Ate1, and Sec24d,
H3K4me1 levels decrease along with the dysfunction trajectory, which
correlates with the RNA dynamics. The H3K27ac level, on the other
hand, remains largely constant and therefore are decoupled from the
RNA changes (Fig. 4E). For group 3 genes such as Dusp10, Lrp11, or
Kcmb2, it is the H3K27ac, rather than H3K4me1, that is coupled with
gene expression (Fig. 4E). As the majority of H3K27ac and H3K4me1
peaks are located in the proximal/distal enhancer regions, the con-
tribution of H3K27ac at promoters to this discordance is likely limited
(Supplementary Fig. 10). The concordance and discordance of two
enhancer marks with RNA dynamicsmay be attributed to the dynamic
equilibrium between histone acetyltransferases (HATs) to histone
deacetylases (HDACs) for H3K27ac, and histone methyltransferases
(HMTs) to lysine demethylases (KDMs) for H3K4me1, and is likely
governed by the preference of epigenetic cofactors by local TFs.
Indeed, while some TF modulators are enriched in both H3K27ac and
H3K4me1 enhancers (ATF3, ATF6, ZFP148), a large number of TFs are
exclusively associated with either H3K27ac (YY1, FOS, FOSB, NR4A1,
RREB1, HNF4α) or H3K4me1 (FoxA2, FoxO1, HNF1β, MAFA, PDX1)
(Fig. 4F).Next,weperformedRNAsequencing (RNA-seq) on islets from
16 week HFDmice treated with vehicle, HDAC inhibitor (SAHA), which
increases H3K27ac61,62, or CBP/p300 inhibitor GNE-781 and C646,
which mildly decrease the global H3K27ac63,64, to determine tran-
scriptional changes. In MIN6 cells, the global H3K27ac is significantly
increased upon SAHA treatment, and decreased by GNE-781 and C646
(Supplementary Fig. 9E, left). In primary islets, exposure to SAHA
induced 2,255 genes, while GNE-781 or C646 repress 3,262 genes and
1,303 genes, respectively. When we compared the perturbed genes
with 855 genes of which RNA dynamics is coupled with H3K27ac
(group 1 and group 3 in Fig. 4A), we found that 94 H3K27ac-RNA
coupled genes are upregulated by SAHA, whereas 320 H3K27ac-RNA
coupled genes are downregulated by GNE-781 or C646 (Fig. 4G). Gene
ontology of these perturbed genes (412 genes in total) shows the
association with response to ER stress and insulin secretion (Fig. 4H).
The substantial overlap indicates that for amajority of genes in group 1
and 3, H3K27ac directly contributes to the heterogeneous gene
expression. Next, we evaluated the H3K27ac perturbation on β cell
heterogeneity by using a well-characterized cell surface gene, CD63, as
a surrogate marker for “healthy” β cells15. In our dataset, CD63 is
expressed at a higher level in beta-hi cells compared to beta-low cells
(Supplementary Fig. 11A). Interestingly, treatment ofGNE-781, C646, or

SAHA all reduced the CD63hi β cells% compared to vehicle (Supple-
mentary Fig. 11B), suggesting that any perturbation of the “optimal”
H3K27ac level may shifted the heterogeneity of β cells to a more
dysfunctional state. Lastly, we also found a significant overlap between
genes in Fig. 4A and H3K27ac/H3K4me1-associated genes in human
islets/progenitors defined by bulk ChIP-seq in previous studies65,66

(Supplementary Fig. 12), suggesting that the H3K4me1/H3K27ac-to-
RNA linkagemay be conserved in human β cells. Taken together, these
data suggest that the concordance between H3K27ac and H3K4me1 is
highly variable across individual genes. The coupling (or decoupling)
of H3K27ac/H3K4me1 to transcription appears to be determined by
the preferential (or lack of) engagement of HATs/HDACs or HMTs/
KDMs by local TFs.

HFD induces genome-wide loss of homeostatic primed
enhancers
When generating the multiome UMAPs of H3K27ac and H3K4me1
using the same pipeline, we noticed that β cells in H3K4me1-RNA
UMAPs are more diffused compared to H3K27ac (Fig. 2A, B). To
investigate the underlying cause of this discrepancy we labeled all β
cells by time points (NC, HFD 8 weeks, or HFD 16 weeks) in H3K4me1-
RNA UMAP. This revealed an obvious separation between NC and HFD
(8 or 16 weeks) (Fig. 5A). To further investigate the HFD-induced dif-
ferences inH3K4me1,wefirst pooledH3K4me1 andH3K27ac signals by
each point. We found that many H3K4me1 enhancers in NC are lost
after HFDand these enhancers are generally devoid ofH3K27ac signals
(Fig. 5B). In development, the H3K4me1+/H3K27ac- enhancers are
usually classified as poised or primed enhancers67,68 (Fig. 5C). These
enhancers are usually occupied by pioneer factors such as FoxA1/269 in
progenitors, which open up the chromatin and eventually lead to
activation inmature β cells70. However, the prevalence and function of
primed enhancers in terminal differentiated mature β cells are less
clear. We defined primed enhancers in NC islets and found that about
14% of all H3K4me1 peaks are H3K4me1 + /H3K27ac-. The pattern of
H3K4me1 and H3K27ac in these primed enhancers is consistent with
published ChIP-seq datasets (Supplementary Fig. 13). Interestingly, the
majority of these enhancers lose H3K4me1 upon HFD (Fig. 5E), sug-
gesting an overhaul of primed enhancers by HFD. The most enriched
motifs in the primed enhancers are for Fox family TFs (FoxA1/2/3,
FoxM1) (Fig. 5F), consistent with their known role as pioneer factors. In
postnatal β cells, FoxA2 is essential for regulating key β cell identity
genes71–73. The expression pattern of FoxA2 is associated with its motif
enrichment in H3K4me1+ enhancers, but not in H3K27ac+ enhancers
(Fig. 4F). Indeed, by comparing with previously published FoxA2 cis-
trome in mouse islets71, we found that the majority of the 14,116 NC
primed enhancers are occupied by FoxA2 (Fig. 5G). Primed enhancers
in development are usually associated with inactive genes. However,
many primed enhancers defined in this study reside within gene loci
which also harbors classic active enhancers (H3K4me1+/H3K27ac+) in
cis (Fig. 5B). In this case, the question is whether the loss of primed
enhancers could negatively influence transcription. To investigate this
possibility, we first identified primed peaks that are coupled with RNA

Fig. 2 | Integrative analysis of chromatin states and gene expression in lean and
obese mouse pancreatic islets revealed dynamic correlations between gene
expression andH3K27ac/H3K4me1 levels.UMAPembedding from single-nucleus
joint profiles of transcriptome and histone modification (H3K27ac (A) or H3K4me1
(B)). Total number of nuclei: 37,847 in A and 18,919 in B. Genome tracks of
aggregated normalized signals of H3K27ac (C) and H3K4me1 (D) of individual
endocrine cell types (α, β, δ, Mki67-beta, and PP cells) at Gcg, Ins1, Sst, Mki67, and
Ppy loci.Heatmaps of RNA expression (left) and the accumulated H3K27ac (E) or
H3K4me1 (F) signals (right). The top 50 differentially enriched genes for each cell
type were selected. Correlations between individual H3K4me1 (G) or H3K27ac (H)
enhancer activity and the expression of Glrx3, a gene involved in glutathione
metabolism and a marker for stressed β cells125. Top 3 panels: genome tracks of

pooled H3K4me1 (G) or H3K27ac (H) signals in α, β, and δ cells. Mid panel:
H3K4me1 (G) or H3K27ac (H) peaks. Bottom panel: spider plot represents the
strength of linkage between H3K4me1 (G) or H3K27ac (H) and Glrx3 expression. (I-
J) UMAP shows the trajectory of β cell dysfunction from β-high to beta-low states in
H3K27ac(I) and H3K4me1(J). Pseudo-time values were overlaid on the UMAP
embedding; the smoothed line and arrow represent the visualization of the tra-
jectory path from the spline fit. K Heatmaps showing the enrichment patterns of
H3K27ac (left) and expression (right) of 1,657 genes ofwhich the H3K27ac and RNA
are correlated along the pseudo-time order. L Heatmaps showing the enrichment
patterns of H3K4me1 (left) and expression (right) of 964 genes of which the
H3K4me1 and RNA are correlated along the pseudo-time order.
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and found that ~14% (2,044) of all primed enhancers are in this class
(Fig. 5H), of which 44% are occupied by FoxA2 (Fig. 5H). GO analysis of
the putative targets of the 2,044enhancers showed enrichment ofTCA
cycle and peptide hormone stimulus (Fig. 5I), including genes that are

known to be linked to β cell function in diabetes such asHnf1a74,75 and
Arap176,77 (Fig. 5J, K). Taken together, these data revealed a surprising
finding that the overnutrition stress caused a genome-wide loss of
H3K4me1+/H3K27ac-, FoxA2 occupied, primed enhancers. The
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Fig. 3 | Multiomic analysis of single-cell TF expression and motif activities
reveal H3K27ac- and H3K4me1-specific gene regulatory networks. A Feature
plot visualizationof Z-scorenormalizedTFmotif activities ofH3K27ac (FOS, FoxA2,
upper 2 panels), and H3K4me1 (IRF1, NFKB2, lower two panels) showing the single
cell heterogeneity of TF activities in β cells. B Heatmaps showing 76 TFs with a
highly correlating TF expression (left) and H3K27ac motif activities (right) over
pseudo-time. C Heatmaps showing 113 TFs with a highly correlating TF expression
(left) andH3K4me1motif activities (right) overpseudo-time.Mean regulation score
(signed, −log10 scale) shows TF activators(left) and TF repressors(right) based on

DORCs of H3K27ac (D) or H3K4me1 (E). Heatmap of DORC regulation scores for all
significant TF-targets pairs in H3K27ac (F) and H3K4me1 (H–J) qPCR of expression
of selected IL1β-induced NF-κB targets in MIN6 cells treated with or without SAHA
(5 uM) (H), GNE 781 (1 uM) (I), or GSK-LSD1 (5 uM) (J). Gene expression was nor-
malized to the expression of Gapdh (For Tgfbr1 (H), Ntrk2 (J), n = 3 biological
independent experiments; for rest genes, n = 4 biological independent experi-
ments). Data are shown as the mean + S.E.M. Analysis was done using two-tailed
Student’s t-test. *p < 0.05, **p < 0.01, and ***p < 0.001. Source data and exact p
values are provided as a Source Data file.
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reprogramming of these primed enhancers contributes to HFD-
repressed islet function genes.

Nerve growth factor (NGF) is a potent suppressor for β cell
ER stress
The extensive transcriptome and epigenome differences between NC
and HFD β cells are induced by dramatic changes in nutrient avail-
ability and the microenvironment of the islets. While the profound
impacts on islet function by hyperglycemia, hyperlipidemia, and

hyperinsulinemia in T2D have been extensively studied, many intra-
islet paracrine pathways remain less explored. We utilized NicheNet78

to infer the ligand-receptor relationship and specifically look for
ligands from non-β cells that account for the changes of target gene
expression between beta-hi and beta-low cells. We found multiple
ligands that are known to be essential for β cell functions, such as
GCG, IAPP, and FGF1 (Fig. 6A, Supplementary Fig. 14). We decided to
focus on the less characterized ligands that regulate ER stress tar-
gets, as elevated ER stress is a major phenotype in beta-low cells.
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MANF, a secretion factor known to repress ER stress in β cells79,
showed up in our list (Fig. 6A). Interestingly, we also found that NGF
has a high predicted ligand-target regulatory potential (Fig. 6A). NGF
is known for its variable functions in different tissues, including
regulating neuron survival and growth80. Previous studies showed
that NGF induced F-actin reorganization to regulate insulin secretion
in β cells81–83. However, its potential role in antagonizing β cell ER
stress and dysfunction has not been characterized. Expression pat-
tern of Ngf suggests that it is mostly produced in ductal and fibro-
blasts (Fig. 6B, left), which is in contrast with the widely expressed
Manf (Fig. 6B, right). This is further confirmed by an integrated islet
scRNA-seq atlas57 (Fig. 6C). Although the NicheNet does not differ-
entiate the direction of gene changes, previous studies in neuron cell
lines such as PC12 suggest potential repression of ER stress by NGF84.
NGF receptor TrkA is expressed in mouse islets81. Published RNA-seq
of purified α, β, and δ cells from DiGruccio MR et al.85 also showed
that Ntrk1 (TrkA) is enriched in β cells but not α or δ cells (Supple-
mentary Fig. 15). NGF can be detected in lysate from pancreas, and
the protein concentration is reduced in HFD-fed mice (Fig. 6D),
which is consistent with scRNA-seq results (Fig. 6C). Exposure to NGF
(100 ng/ml81,86) led to decreased expression of ER-stress related
genes (Ddit3, Ppp1r15a, and Atf3) in islets fromHFDmice (Fig. 6E). To
further confirm that NGF directly repress excessive ER stress in β
cells, we treated MIN6 cells with thapsigargin (TG) to induce dra-
matic transient ER stress. Consistent with previous reports, MANF is
able to significantly reduce several UPR genes such as Atf3 (Fig. 6F).
Importantly, we found that NGF is able to repress the expression of
various TG-induced ER stress markers such as Atf3, Ddit3 (Chop),
Hspa5, Herpub1, Ppp1r15a, etc. (Fig. 6G). This is consistent with the
protein level changes of CHOP (Fig. 6H). The effect of NGF can be
reversed by TrkA antibody (Fig. 6H), suggesting that the beneficial
effect of NGF is mediated by the TrkA receptor.

In mouse islets, CHOP is a central mediator for β cell apoptosis.
The fact that NGF is able to reduce CHOP protein level in MIN6 cells
suggests that administration of NGF may be able to rescue β cell
dysfunction induced by UPR stress. To test this, we administered
recombinant NGF to Ins2WT/C96Y (Akita) mice, a genetic mouse models
for severe diabetes87. These mice carry Cys96Tyr mutation in Ins2
gene, which caused a conformational change of insulin, resulting in
severemisfolding stress, and eventually led to a significant reduction
of total insulin (both WT and mutant) level and β cell apoptosis87.
Genetic deletion of CHOP ameliorates the hyperglycemia of Akita
mice88, suggesting repression of CHOP by NGF could reduce the β
cell stress in this model. We injected recombinant mouse NGF
intraperitoneally at a dose of 1mg/kg89,90 daily (Fig. 6I). After 2 weeks
of treatment, we found a significant reduction of fasting blood glu-
cose in treated mice (Fig. 6J). In addition, we found that the serum
insulin, as well as the total insulin content in pancreata, are increased
in NGF-treated mice (Fig. 6K, L). Altogether, these data suggest that
NGF is able to antagonize excessive ER stress in β cells and ameliorate
β cells dysfunction.

Discussion
A number of recent studies of scRNA-seq, scATAC-seq, and multiome
have revealed the heterogeneity states of β cells at transcription and
chromatin accessibility levels13–23. However, due to technical limita-
tions, the contribution of individual cis-element states, defined by
combinatory histone codes and DNAmodifications, to the target gene
expression has not been characterized. In this study, we take advan-
tage of Paired-Tag, which is able to quantify histone modification
instead of accessibility, to define the contribution of two related yet
distinct enhancer marks, H3K4me1 and H3K27ac, to heterogenous
gene expression in beta cell dysfunction. Though both marks are
enriched at enhancers, each of them is separately regulated by a dis-
tinct set of epigenetic machinery. While our study has confirmed
several principal discoveries of previous single-cell islet studies, it also
reveals unexpected discrepancies of H3K27ac and H3K4me1 in reg-
ulating gene expression dynamics in beta-cell dysfunction, as further
discussed below.

Concordant and discordant dynamics of H3K27ac andH3K4me1
enhancers
GRNs are used to study the interplay between TFs, transcription, and
chromatin environment. Recent scRNA-seq and scATAC-seq datasets
enable inference of GRNs in diabetic islets and differentiating β
cells13,91,92, which reveals extensive links between CREs and target gene
expression. In this study, we infer the GRNs from single nuclei
H3K27ac/H3K4me1 and RNA. GRNs here reflect the specific linkage
between the H3K27ac/H3K4me1 activity and gene expression.
Although active enhancers are enriched for both H3K4me1 and
H3K27ac67,68, the two modifications have distinct localization patterns
and dynamics, which are determined by TF binding and the balance
betweenHAT/HDACs andHMT/KDMs, respectively. Therefore, it is not
surprising that for many HFD-induced genes, such as Atf3 and Ddit3,
both H3K27ac and H3K4me1 levels are coupled with transcription
dynamics along the trajectories ofβ cell dysfunction. However, we also
identified a substantial number of genes of which the heterogeneous
gene expression is only coupled with either H3K27ac or H3K4me1.
Although a few published bulk ChIP-seq studies93,94 have revealed the
discrepancy of H3K4me1 and H3K27ac at the bulk level, the data in our
study suggest that the discordance may contribute to the hetero-
geneous gene expression rather than the “all-or-none” activation in the
development setting. This discrepancymay be a result of the local TFs
that preferentially engage in HAT/HDACs or HMTs/KDMs. For exam-
ple, FoxA2 expression is highly correlative with its motif enrichment in
H3K4me1 CREs but not H3K27ac CREs (Fig. 4F), suggesting that the
change of FoxA2 binding ismore correlatedwith local H3K4me1 levels,
which is consistent with a previous study showing its ability to deposit
H3K4me1 during pancreatic differentiation95.

The observed correlation between H3K27ac/H3K4me1 to tran-
scription does not automatically establish causality between enhan-
cer activity and transcription. Various research findings suggest that
alterations in H3K27ac or H3K4me1 often lead to changes in selective

Fig. 4 | Concordant and discordant patterns of H3K27ac-RNA and H3K4me1-
RNA correlations suggest divergent regulatory mechanisms in metabolic
stress-induced β cell stress and dysfunction. A Scatter plot showing the corre-
lation coefficients of H3K27ac-RNA (y-axis) or H3K4me1-RNA(x-axis) for all genes.
Group 1 (green): Genes showing a concordant pattern of H3K27ac-RNA and
H3K4me1-RNA correlations. Group 2 (yellow): Genes showing only significant cor-
relations between H3K4me1 and RNA. Group 3 (red): Genes showing only sig-
nificant correlations between H3K27ac and RNA. Group 4 (grey): Other genes that
do not fit into the above correlation patterns. B Pseudo time heatmap of the
H3K4me1 gene score (left) and gene expression (right) for all group 1 genes.
C Pseudo time heatmap of the H3K27ac gene score (left) and gene expression
(right) for all group 1 genes. D Gene ontology for group 1-3 genes showing
enrichment indistinct enriched categories. Adjustedp-valueswerecalculated using

Benjamini-Hochberg correction. EH3K4me1 (left) and H3K27ac (right) gene scores
of representative genes in group 2 (Sik3, Ate1, Sec24d) and group 3 (Dusp10,
Kcnmb2) showing the discordant patterns of H3K4me1 and H3K27ac over the β cell
dysfunction trajectory. Dots represent gene scores of an individual pseudotime-
ordered histone modifications profile. The smoothed line and arrow represent the
visualization of the trajectory path from the spline fit. F Heatmap showing the
correlation between TF expression and motif activity (left: H3K4me1, right:
H3K27ac).G Pie chart showing the H3K27ac-coupled genes (group 1 and 3 from A)
that are significantly suppressed by CBP inhibitor GNE-781 or P300 inhibitor C646
(red), or induced byHDACs inhibitor SAHA (green), in primarymouse islets treated
with SAHA (5 uM), GNE-781 (1 uM) or C646 (5 uM) for 24h. H Gene ontology
categories of 414 overlapped genes in G.
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targets rather than globally interfering with gene expression31,59,65. In
islet cells, the correlation between CRE activities and gene expres-
sion varies widely among genes. Notably, genes with the most sig-
nificant RNA-H3K27ac/H3K4me1 coupling are functionally distinct.
This is supported by the enrichment of stress response and β cell
function pathways in concordant and discordant genes (Fig. 3H–J,
Fig. 4D), as well as the clustering of TF regulators (Fig. 3F, G).

Furthermore, transient perturbation of global H3K27ac/H3K4me1
disrupted target stress-related expression (Fig. 3H–J, Fig. 4G), sug-
gesting that the dynamic NF-κB and ER stress signaling in dysfunc-
tional β cells depend on epigenetic heterogeneity. Together, these
data support the model that the enhancer activity in individual cells
is a significant contributor to the heterogeneity of β cell dysfunction
in metabolic stress.
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It is worth noting that the levels of H3K27ac and H3K4me1 at
individual loci reflect the local equilibrium between HAT and HDACs,
or HMT and KDMs. The transcriptional output is ultimately deter-
mined by the epigenetic complexes and TFs at specific loci in indivi-
dual cells and to a lesser extent, byH3K27 acetylation itself96. However,
given that the dynamics of H3K27ac and H3K4me1mirror the dynamic
balances of p300/CBP/HDACs59 and MLL3/4/LSD197, these modifica-
tion levels can serve as a reliable indicator for CREs activity.

Primed enhancer in islet dysfunction
Primed enhancers are typically described in the context of develop-
mental processes. The “priming” of these enhancers is initiated by
pioneer factors such as FoxA1/2 and GATA, which localize at inacces-
sible nucleosomes and initiate chromatin remodeling, recruitment of
secondary TFs, and eventually gene activation69. The initial stage of the
primed enhancers is usually positive for H3K4me1 but not H3K27ac69.
Unlike their conventional role ingene activation, the dynamicsof these
primed enhancers in mature islets, especially under nutritional stress,
are less defined. Here we found that about 14% of H3K4me1 regions in
NC islets are primed enhancers and are enriched for FoxA2 binding.
Unexpectedly, these primed enhancers are largely lost under HFD
stress. FoxA2 is also identified as a top TFmodulator in H3K4me1-RNA
multiome, but not in H3K27ac-RNA dataset, suggesting its role in
regulating the heterogeneity of the primed enhancers. Nuclear FoxA2
level is significantly reduced after HFD98, which may contribute to the
reduction of primed enhancers. An alternative explanation would be
the redistribution of FoxA2 binding after nutritional stress. The exact
mechanismsof FoxA2 in reprogrammingH3K4me1 enhancers inHFDβ
cells will require further investigation.

What is the functional consequence of losing these primed
enhancers in response to HFD? The majority of primed enhancers in
islets do not significantly correlate with gene expression. The loss of
H3K4me1 at these sites may signify a reallocation of the HMT to
stress-induced enhancers and therefore indirectly contribute to
stress-induced transcription. However, a substantial subset (14%) of
primed enhancers is correlated with gene expression, specifically
enriching gene categories tied to essential metabolic functions
and β cell identity within the islets (Fig. 5I-K). The loss of these
primed enhancers may present a distinct mechanism of cellular
dysfunction.

Identifying NGF as a potent suppressor for ER stress in islets
Excessive ER stress, induced by inflammation and glucolipotoxicity,
causes β cell dysfunction and contributes to the development of
T2D99–102. In this study, wedemonstrated that the increased expression
ofUPRgenes in response to excessive ER stress is a consistent theme in
the multiomic trajectories leading β cells to a dysfunctional
state. While the adaptive UPR is beneficial to the β cell adaptation to
nutrition stress, maladaptive UPR eventually leads to the reduction
of β cell function genes99–102, as shown in the most stressed/dysfunc-
tional cells in our multiomic trajectories. Chronic excessive ER stress
can be reversible, offering a potential avenue for pharmacological

intervention. However, currently, there is a lack of pharmacological
approaches to effectively mitigate damage from excessive ER stress in
β cells. Through an investigation of cell-cell communication, we
identified several secretory factors, including nerve growth factor
(NGF), that repress ER stress markers in β cells. While NGF is well-
characterized in neurite growth, our data indicate it can also act on β
cells to specifically repress ER stress genes. NGF expression in fibro-
blasts and ductal cells within islets suggests a local paracrine signaling
mechanism that may protect β cells from excessive ER stress. We
demonstrated that recombinant NGF effectively blocks ER stress in
HFD islets or inMIN-6 cells stressed by synthetic inducers thapsigargin
(TG), and this action required the TrkA receptor (Fig. 6G, H, Supple-
mentary Data 6). Most importantly, when treated with recombinant
NGF, Akita mice which are highly diabetic due to excessive ER stress,
showed reduced blood glucose, increased serum insulin, and
increased pancreatic insulin content (Fig. 6J–L). Mechanistically, this
may partly be due to NGF’s ability to suppress CHOP (Ddit3), which is a
key factor inducing hyperglycemia in the Akita mouse model88. While
classic paracrine hormones such as glucagon, somatostatin (SST), and
urocortin-3 (UCN3) are extensively studied103, other cell-cell commu-
nications specific to β cell dysfunction are less explored. Given NGF’s
potent ability to repress ER stress in β cells, further investigation into
themechanistic insights and potential pharmacological modulation of
this paracrine pathway may prove valuable.

Defining heterogenous β cell states
Defining the heterogenous beta cell states has been challenging, as
previous literature suggests numerous ways of biological distinct
subpopulations exist in healthy and dysfunctional islets. Our initial
classification by Seurat reveals up to 6 potential subpopulations in the
main beta cell clusters (Supplementary Fig. 3B). However, the chal-
lenge is to determine the biological characteristics for individual
clusters. In addition, it is challenging to define the trajectories of 6
clusters in beta cell dysfunction. Therefore, we considered the defini-
tion in multiple published single cell studies13–17,45, and merged 6
populations into two major β cell states. It should be noted that this
dichotomy is very likely an oversimplification of the complex beta cell
heterogeneity. Future studies, especially with spatial-omics, single-cell
electrophysiology, and lineage tracing, will be needed to further define
the potential substates of beta cells.

In conclusion, we presented a comprehensive analysis of enhan-
cer dynamics in islets from lean and obese mice. We identified both
shared and distinct gene regulatory mechanisms by H3K27ac and
H3K4me1 enhancers. Our results suggest that β cells exhibit sub-
stantial heterogeneity not only in their transcriptional profile but also
at the enhancer level. The heterogeneity is partly driven by the
inflammatory and ER stress, contributing to the dysfunction of islets.
Interestingly, although both H3K27ac and H3K4me1 are enhancer
marks and correlated to gene activation, our study reveals unique
dynamics and dependencies for these twomarks in regulating specific
gene subsets. Surprisingly, the primed enhancers in lean islets are
globally lost under HFD stress. The loss is connected to the decreased

Fig. 5 | Loss of H3K4me1+/H3K27ac- primed enhancers is a key feature of
metabolic stress-induced epigenomic changes in dysfunctional islets. A The
integrated H3K4me1-RNA UMAP of β cells at NC (0 weeks) and HFD (8 and
16 weeks) shows a distinct pattern of NC β cells. B The pseudo-bulked
H3K4me1(red) and H3K27ac(blue) at Fam210b, Ptpn1, and Slco3a1 show the com-
plete loss of H3K4me1+H3K27ac- primed enhancers (grey) in HFD islets.
C Schematic demonstration of the conventional model of primed
(H3K4me1+H3K27ac-) and active (H3K4me1+H3K27ac+) enhancers.D Pie chart of the
percentage of primed enhancers in all H3K4me1 enhancers. E Heatmap of all
K4 + K27- primed enhancers in NC andHFD (8 and 16weeks), showing amajority of
theprimedenhancers inNCare lost inHFD. Theproportionofprimerpeaks relative
to the total number of H3K4me1 peaks. FMotif enrichment of the primed enhancer

in E. P-value were calculated using HOMER’s default method. G Heatmaps of
pseudo-bulked H3K4me1, H3K27ac, and mouse islets FoxA2 ChIP-seq (from GSM
1306337) show the extensive occupancy of FoxA2 at primed enhancers.H Pie chart
of the percentage of primed enhancers (2,044 peaks, 14%) that correlate with gene
expression (left) and the percentage (44%) of 2,044 peaks that are occupied by
FoxA2. I Top enriched GO terms for genes associated with the 2,044 peaks in H.
Linkage plot for Hnf1a (J) and Arap1 (K) loci. Top left: pseudo-bulked H3K4me1 in
NC and HFD β cells, grey regions indicate primed enhancers associated with Hnf1a
gene expression. Top right: violin plot of Hnf1a expression in NC and HFD β cells.
Middle: FoxA2 ChIP-seq, FoxA2 motif, and H3K4me1 peaks. Bottom: spider plots
showing significant enhancer(H3K4me1)-RNA links.
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Fig. 6 | Cell-cell communication analysis reveals the role ofNGF in ameliorating
excessive ER stress in β cells. A Heatmap showing NicheNet predicted ligand-
target pairs between beta cells and other cell types. B UMAP shows restricted
expression patterns of Ngf and Manf. C Published single-cell gene expression data
ofManf in β cells (left), Ngf in ductal cells, and fibroblasts (right two) from normal
and diabetic mouse islets. D Pancreatic NGF content in male mice (B6) fed with
normal chow (NC) and HFD for 16 weeks (n = 4 (NC) or 5(HFD) biologically inde-
pendent samples). Data shown asmean ± S.E.M. Analysis was done using two-tailed
Student’s t-test. E RT-qPCR ofDdit3, Ppp1r15a, and Atf3 expression in HFD-fedmice
islets treated with or without NGF. Data are shown as mean ± S.E.M. (n = 6 biolo-
gically independent experiments). Analysis was done using two-tailed Student’s t-
test. *p < 0.05, **p < 0.01, and ***p < 0.001. F RT-qPCR of Atf3 expression in TG-
stressed MIN6 cells treated with or without MANF (100ng/ml). Data are shown as
mean ± S.E.M. (n = 3 biologically independent experiments (MANF + TG), n = 4
biological independent experiments (Ctrl, MANF, TG)). Analysis was done using

two-tailed Student’s t-test. *p < 0.05, **p < 0.01, and ***p < 0.001.G RT-qPCRof Atf3,
Ddit3, Hspa5, Herpub1, and Ppp1r15a in TG-stressed MIN6 cells treated with or
without NGF (100 ng/ml). Data shown as mean ± S.E.M. (n = 4 biological indepen-
dent experiments). Analysis was done using two-tailed student’s t-test. *p < 0.05,
**p <0.01, and ***p < 0.001. H Western blotting (top) and relative band intensity
(bottom) showing CHOP (Ddit3) protein levels in TG-stressed MIN6 cells treated
with or without NGF. I Schematic of experimental design for NGF administration in
Akita mice. Created in BioRender. Wu, J. (2023) BioRender.com/a64z386. J 16-hour
fastingbloodglucose level of Vehicle orNGF-treatedAkitamice. (n = 5 (control) or 5
(NGF) animals per group). K Ad lib serum insulin level measured by ELISA. (n = 5
(control) or 6(NGF) animals per group). L Whole pancreas insulin content mea-
sured by ELISA. All data are shown as mean ± S.E.M. (n = 5 (control) or 4 (NGF)
animals per group). Analysis was done using two-tailed Student’s t-test. *p < 0.05,
**p <0.01. Source data and exact p values are provided as a Source Data file.
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expression of genes vital forβ cell function, indicating a significant role
for primed enhancers and pioneer factors in β cell dysfunction. Lastly,
we combined cell-cell communication analysis and pharmacological
perturbation to identify paracrine factors regulating HFD-induced
stress in β cells, and discovered that NGF is able to potently suppress
the ER stress in β cells and ameliorate hyperglycemia in Akita mice.
NGF, previously uncharacterized in islets, could be a target for ther-
apeutic interventions to alleviate ER stress-related β cell dysfunction.
Taken together, our results suggest distinct epigenetic regulatory
modes, defined by combinations of TFs and epigenetic modulators,
orchestrate β cell dysfunction. Future investigations will be needed to
further dissect the heterogeneous enhancer states in cellular
dysfunction.

Methods
The Institutional Animal Care and Use Committee (IACUC) at Mayo
Clinic Arizona deemed that this research complies with all relevant
ethical regulations (Protocol no. A00005200-20-R23).

Materials
SAHA (T1583), GNE781 (T15405), GSK-LSD1 (T2315), Thapsigargin
(TQ0302) were fromTargetmol (Boston, MA, USA). NativemouseNGF
protein (N-100) was from Alomone Labs. Murine IL-1β (211-11B) and
human MANF recombinant protein (450-06) were purchased from
PeproTech (Cranbury, NJ, USA).

Antibodies
Rabbit monoclonal anti-H3K4me1 (D1A9), rabbit monoclonal anti-
H3K27ac (D5E4), mouse monoclonal anti-CHOP (L63F7), rabbit
monoclonal anti-α/β-Tubulin, HRP-linked anti-rabbit IgG (#7074), and
HRP-linked anti-mouse IgG (#7076) antibodies were from Cell Signal-
ing Technology (Danvers, MA, USA). Mouse monoclonal anti-TrkA
antibody (clone MNAC13) was from Sigma (St Louis, MO, USA).

Cell lines
MIN6 cells were maintained in Dulbecco’s modified Eagle’s med-
ium (DMEM) (Corning, 10-013-CV) containing 1 mM sodium pyr-
uvate (Corning, 25-000-CI), 15% fetal bovine serum (Corning, 35-
015-CV), 1% penicillin-streptomycin (Gibco, 15140-122), and 55 uM
2-mercaptoethanol (Gibco, 21-985-023). For experiments in
Figs. 3 and 4, MIN6 cells were pretreated with GNE 781 (1 uM),
SAHA (5 uM), or GSK-LSD1 (5 uM) respectively for 24 h. For IL-1β
stimulation, MIN6 cells were pretreated with GNE 781 (1 uM),
SAHA (5 uM), or GSK-LSD1 (5 uM) respectively for 24 h, followed
by treatment of IL-1β (5 ng/ml) for 5 h. For experiments in Fig. 6,
MIN6 cells were pretreated with NGF (100 ng/ml) for 3 h or MANF
(200 ng/ml) for 24 h, followed by treatment of TG (0.5 uM)
for 12 h.

Animals
All mice were housed in a 12-h light-dark cycle at an ambient tem-
perature of 23 °C. Mouse experiments were approved by the Institu-
tional Animal Care and Use Committee (IACUC) at Mayo Clinic
Arizona. C57BL/6J mice were from Jackson laboratory (cat. no.
000664). For Paired-tag, ten femaleormalemice (n = 10) onpostnatal
week 12 were used for islet isolation. For high-fat diet treatment, mice
were fed with 60% fat diet paste (BioServ, S1850) for 8 weeks and
16 weeks before tissue was collected. Akita mice (male) were from
Jackson Laboratory (Cat. no. 003548). Akita mice (male) on postnatal
day 84 (week 12) were randomly grouped and received NGF (1mg/kg/
mouse) or vehicle (Control) (PBS) daily via intraperitoneal injections
for 16 days. For fasting blood glucose, Akita mice were fasted for 16 h
before monitored blood glucose levels. Serum insulin levels were
measured via the Mouse Ultrasensitive Insulin ELISA kit (ALPCO,
Catalog 80-INSMSU-E10). For pancreatic insulin content, insulins

were extracted via acid-ethanol extraction from the whole pancreas
isolated from Akita mice, and measured by Mouse Ultrasensitive
Insulin ELISA kit (ALPCO, Catalog 80-INSMSU-E10). Insulin content
was normalized by the total protein amountmeasured byBCAprotein
assay kit (Pierce, 23225).

Isolation of mouse pancreatic islets
Mouse pancreatic islets were isolated as previously described104.
0.5mg/ml collagenase P (Sigma, 11249002001) diluted in HBSS buffer
(Fisher, 14170161) and injected through the common bile duct. The
perfused pancreas was collected and incubated at 37 °C for 21min.
Digested exocrine cells and intact islets were separated via cen-
trifugation over Histopaque-1077 (Sigma, 10771), and intact islets were
manually selected.

Paired-Tag
We followed the published protocol35,105 with minor modifications.
Briefly, after nuclei isolation with nuclei isolation buffer: 0.2% IGEPAL
CA-630 (Sigma #I8896), 5% BSA (Roche #03117057001) and 1mMDTT
(Sigma # D9779) in PBS (Thermo Fisher Scientific #10010-23), sup-
plemented with 1× Proteinase Inhibitor (Roche #05056489001), 0.5 U/
µL SUPERaseIn (Invitrogen # AM2694), and 0.5 U/µL RNase OUT
(Invitrogen #10777019), each 300,000 of nuclei were aliquot into the
12 1.5mL low-bind tubes. Nuclei were spin-down and resuspended in
30 µL MED#1 buffer: 20mM HEPES (Gibco #15630106), 300mM NaCl
(Sigma #S7653), 0.5mM Spermidine (Sigma #85558), 1× Proteinase
Inhibitor, 0.5 U/µL SUPERase In, 0.5 U/µL RNase OUT, 0.01% IGEPAL-
CA630, 0.01% Digitonin (Sigma #D141), 2mM EDTA (Invitrogen
#AM9261)) and keep on ice.

2 µg of H3K4me1 antibody (Cell Signaling #5326S) or H3K27ac
antibody (Cell Signaling #8173S) were added into 12 of 200 µL tubes
containing 20 µL MED#1 buffer, and pA-Tn5 protein (purified in
house) with 12 DNA barcodes were added and incubated at room
temperaturewith gentle rotation for 1 h. The 12 tubes of antibody-pA-
Tn5 mix were then mixed with each tube of nuclei, respectively and
the incubation was carried out in 4 °C with gentle rotation overnight.
The nuclei were then spun-down and washed two times with MED#2
buffer (20mM HEPES, 300mM NaCl, 0.5mM Spermidine, 1× Protei-
nase Inhibitor, 0.5U/µL SUPERase In, 0.5 U/µL RNase OUT, 0.01%
IGEPAL-CA630, 0.01% Digitonin) and resuspended in 50 µL MED#2
buffer. Tagmentation reaction were activated out by adding
2 µL of 250mMMgCl2 (Sigma #63069), carried out in a ThermoMixer
set at 37 °C, 550 rpm for 60min and quenched by adding
16.5 µL of 40mM EDTA. Nuclei were then spin-down and reverse
transcription was carried out with Maxima H minus reverse tran-
scriptase (Thermo #EP0751). Nuclei were then barcoded by ligation-
based combinatorial barcoding with T4 DNA Ligase (NEB #M0202L),
aliquoted into 3.5k nuclei sub-libraries, and lysed. Library prepara-
tion were then carried out and sequenced with read cycles 150
(read1) + 6 (index1) + 6 (index2) + 150 (read2) on a NovaSeq 6000
platform.

Flow Cytometry
Isolated C57BL/6J HFD-fedmice islets were treated with SAHA (5 uM),
C646 (5 uM), or GNE 781(1 uM) for 24 h. Treated islets were washed
with Versene (Gibco, 15040-066) and dissociated using TrypLE
Express (Gibco, 12605-010) for 10min at 37 °C. Dead cells were gated
and removed using DAPI staining (1:3000, Cayman Chemical) on a
BD LSRFortessa flow cytometer with FacsDIVA software (version 9.0).
Beta cells were isolated based on their granularity and auto-
fluorescence of FAD/FMN (FITC) at wavelength 488 nm. Cell popu-
lations were identified with CD63-APC monoclonal antibody (1:50,
eBioscience) where 50% of CTL beta cells set the relative benchmark
for differentiating high from low. Data was analyzed using FlowJo, BD
Biosciences).

Article https://doi.org/10.1038/s41467-024-53717-0

Nature Communications |         (2024) 15:9361 13

www.nature.com/naturecommunications


ELISA
ELISA were performed per manufacturer’s instructions: mouse insulin
(Alpco, 80-INSMS-E01), mouse NGF(RayBiotech, ELM-bNGF-1).

Gene Expression analysis by qPCR
Total RNA was extracted as previously described106 with slight mod-
ification. Briefly, MIN6 cells (AddexBio, C0018008) in 96-well plates
were washed once with PBS (Fisher, SH30256.LS), and incubated with
20 ul/well of lysis buffer (10mMTris-HCl, 0.5%NP40, 150 nMNaCl) for
5min. 12 ul cell lysate was used for reverse transcription. Reverse
transcription was performed with AzuraFle cDNA Synthesis Kit (Azura,
AZ-1998). Real-time quantitative PCR with reverse transcription (RT-
qPCR)wasperformedusing Forget-Me-Not EvaGreenqPCRMasterMix
(Biotium, 31041). Data was normalized to the levels of the internal
controlGapdh and showed as themeanwith SEM error bars. Statistical
comparisons were made using Student’s t-test.

Western blotting
MIN6 cells seeded in 6-well plate were washed with ice-cold PBS and
lysed using ice-coldRIPAbuffer (Sigma,R0278)with protease inhibitor
(Sigma, 11836145001). Lysates were mixed with sample loading buffer
and denatured at 95 °C for 10min. Samples were analyzed with SDS-
PAGEon 4-20%Mini-PROTEANTGXprecast protein gels (Bio-Rad, 456-
1033) with equal amount of protein loading. Proteins were visualized
by transferring onto PVDF membrane and incubating with anti-CHOP
or anti-α/β-Tubulin primary antibodies and horseradish peroxidase
(HRP)-linked secondary antibodies.

Quantification and statistical analysis
Preprocessingof Paired-Tagdata. Preprocessing of datawere carried
out with the scripts available from Paired-Tag35. Briefly, cellular bar-
codes were extracted from Read2 and assigned to each sample bar-
codes (12 initial tubes for tagmentation and reverse transcription) and
combination of ligated barcodes.

Cellular barcodes and the linker sequences are read by Read 2.
The first bases of barcode (BC) no. 1, BC no. 2, and BC no. 3 should
locate within the 84th−87th, 47th−50th and 10th−13th bases of Read 2.
We identify the positions of barcodes by matching the linker sequen-
ces adjacent to the cellular barcodes. A bowtie reference index was
generated with all possible cellular barcode combinations
(96 × 96 × 12) and barcode sequences were mapped to the cellular
barcode reference using bowtie107 with the parameters: -v 1 -m 1 --norc
(reads with more than 1 barcode mismatch and can be assigned to
more than 1 cell were discarded). NextEra adaptor sequences were
trimmed from 3′ of DNA and RNA libraries, Poly-dT sequences were
further trimmed from 3′ of RNA libraries, and low-quality reads were
excluded from further analysis.

Cleaned reads were first mapped to a mouse GRCm38 reference
genome with STAR108 (v.2.7.3a) for RNA or bowtie2109 for DNA. Dupli-
cates were removed based on the mapped position, cellular barcode,
PCR index, and UMI. Before generating the cell-counts matrices, DNA
bam files were further filtered by removing high-pileup positions
(cutoff = 10) regardless of cellular barcode, PCR index, and UMI. RNA
alignment files were converted to a matrix with cells as columns and
genes as rows. DNA alignment files were converted to a matrix with
cells as columns and 5-kb bins as rows. In addition, the annotated DNA
bam files were converted to fragment files using scATACpro’s sim-
ply_bam2frags_singleEnd.pl script, which are bed-like matrices con-
taining chromosome, start, stop, cell ID, and number of fragments
contained in the region110.

scRNA-seq cell clustering, visualization, and annotation. Cells with
fewer than 200 features in RNA were removed. Seurat (v4.3.0)111 R
package was used to perform filtering, normalization, dimensionality
reduction, clustering, and differential expression analysis. The

following criteria were applied to each sample to remove low-quality
cells: genenumber between200 and 3000, andmitochondrial content
<10%. Doublets were predicted by the DoubletFinder (v2.0.3)
algorithm112. After filtering, a total of 56,748 cells were left. For inte-
gration, the 3000most conserved genes in all samples were identified
with SelectIntegrationFeatures function. Subsequently, the Pre-
pSCTIntegration function was used to identify conserved features for
integrating the datasets. Integration anchors were identified using
FindIntegrationAnchors function with a scTransform normalization
method. Seurat’s IntegrateData functionwas implemented to integrate
the datasets. DEG between conditions within each cluster were iden-
tified using the FindMarkers function. The first 20 principal compo-
nents were chosen to reduce dimensions. The first two uniform
manifold approximation and projection (UMAP) dimensions were
used to visualize cell clusters. Cell clusters were identified using
FindClusters (20 principal components and 0.3 resolution), and the
cell clusters expressing the same marker genes will be merged. The β
cell cluster was used for next-step pseudo- or latent time analysis.
Density plot, produced by the Nebulosa113 package.

Comparisons between selected cell populations were performed
using NicheNet78 functions and standard workflow.

CellRank trajectory inference. RNA velocity analysis wasbased on the
initial processing of the Paired-tag RNA sequencing data using scVelo
(v0.2.5)40 and further analysis using CellRank41. We used Velocyto114 to
generate a loom file from Paired-tag output data (‘velocyto run’, see
also http://velocyto.org/velocyto.py/tutorial/cli.html) that differ-
entiates between spliced, unspliced, and ambiguous gene counts. This
loom file was used for pre-processing and clustering via
Seurat(v4.3.0)111. scVelo(v0.2.5) was used to estimate trajectories based
on spliced vs unspliced RNA for each cell and gene. We used scVelo to
compute RNA velocity, then set up CellRank’s VelocityKernel and
computed a transition matrix based on RNA velocity. We have com-
bined the VelocityKernel with the ConnectivityKernel to emphasize
gene expression similarity and visualized the transitionmatrix in a low-
dimensional embedding (UMAP). CellRank41 computed terminal
states, the number of terminal states was defined by using the
cr.tl.terminal_states() function. Then, it defined initial states with the
cr.tl.initial_states() function. Next, fate maps were computed to define
the likelihood that an individual cell reaches a certain fate. Subse-
quently, the individual fate maps were aggregated to cluster-level fate
maps by calculating latent time and running PAGA115. Gene expression
trends along pseudo- or latent timewere calculated based on a general
additivemodel (GAM)with the cr.pl.gene_trends() function. Heatmaps
of top 1000 genes whose expression levels correlated best with the
probability of reaching the terminal stage were plotted using the
cr.pl.heatmap() function.

Joint Paired-Tag RNA and DNA profiles workflow. Paired-Tag data
for mouse islet cells was processed using Signac and Seurat. We
retained cells with total RNA counts >200 and total single-cell DNA
profiles bin counts >500. Functions within Seurat were used for
analysis. RNA counts were normalized with SCTransform with
mitochondrial percent per cell regressed out. Principal component
analysis (PCA) was performed on RNA, andUMAPwas run on the first
30 principal components (PCs). The optimum number of PCs was
determined to be 30 PCs using an elbow plot. The single-cell DNA
profiles peaks counts were normalized with term-frequency inverse-
document-frequency (TFIDF). Dimension reduction was performed
with singular value decomposition (SVD) of the normalized single-
cell DNA peaks matrix. The single-cell DNA profiles UMAP was cre-
ated using the second through the 30th LSI components. The
weighted nearest neighbor (WNN) graph was determined with
Seurat’s FindMultiModalNeighbors to represent a weighted combi-
nation of both modalities. The first 30 dimensions of the Paired-Tag
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RNA reduction and the second through the 30th dimensions from
the Paired-Tag DNA profiles reduction were used to create
the graph.

Differential expression. Differentially expressed genes (DEGs) were
determined for HFD versus control for each cell type. Within each cell
type, the gene expression data was log-normalized with a scale factor
of 1×105. Differential expression was assessed using MAST116 for genes
present in at least 25% of either HFD or control cells. Week and sex
were included as covariates in the MAST model. Genes with a
Bonferroni-adjustedp value <0.01 and an absolution log2(fold change)
>0.25 were determined to be significant.

Gene set enrichment. The R package enrichR117,118 was used for
all gene set enrichment analyses. Sets of DEGs were used as input to
look for enrichment in GO Biological Process 2021, GO Molecular
Function 2021, GO Cellular Component 2021, and KEGG 2021 data-
bases. Terms with an adjusted p-value < 0.05 were considered to be
enriched.

Peak-gene regulatory links. To infer peak-gene putative regulatory
links, we used FigR 0.1.052, restricted to the normalized and corrected
counts of the 10 Paired-tag samples with both RNA and DNA profiles
available. We take a default (10 kb) window around each gene’s TSS,
and compute the Spearman correlation across all cells between their
peak accessibility counts (mean-centered) and the normalized RNA
expression. For each peak-gene pair correlation, we use (default
n = 100) backgroundpeaksmatched for GC content and accessibility to
correlate to the same gene, so that we can test for significance (per-
mutation p-value). Downstream analyses were performed using gene-
peak pairs with a p-value < 0.05. To infer regulatory interactions, we
used the getDORCScores and runFigRGRN functions, on all genes with
more than 10 linked peaks. TF-gene pairs with an absolute regulation
score greater than the default (>1) are considered putative interaction.

Motif enrichment analysis. Known and de novo motif analyses of
H3K4me1/H3K27ac primed enhancer peaks were performed with
HOMER119.

Trajectory construction
We performed cellular trajectory analyses as previously described
using ArchR53. We ran the createArrowFiles and ArchRProject func-
tions to create the object in R required for analysis, followed by
addPeakSet and addPeakMatrix for quantification. Thiswas performed
using one core by setting addArchRThreads(threads = 1). We defined
the trajectory backbone of cell groups or clusters based on the beta
cell states, such as the order of beta-hi, and beta-low cells in the beta
cell trajectory. We then created a trajectory using the ‘addTrajectory’
function and plotted the pseudotime values on UMAP embedding
using the ‘plotTrajectory’ function. We next plotted pseudotime
heatmaps of TFs, gene scores, and peak accessibility using the ‘plot-
TrajectoryHeatmap’ function. To identify positive TF regulators, we
performed an integrative analysis of gene scores and motif accessi-
bility across pseudotime using the ‘correlateTrajectories’ and plot-
TrajectoryHeatmap functions.

ChIP-seq analysis
FoxA2 ChIP-seq data was obtained from the GEO (GSM1306337).
H3K4me1 ChIP-seq data was obtained from the NCBI SRA
(SRR9840908, SRR9840909). H3K27ac ChIP-seq data of mouse pan-
creatic islets was obtained from the NCBI SRA (SRR9840900,
SRR9840901). H3K27ac ChIP-seq data in EndoC-βH1 cells was obtained
from the NCBI SRA (SRR9336435, SRR9336436, SRR9336437,
SRR9336438, SRR9336439, SRR9336440, SRR9336441, SRR9336442).
Bowtie2 (v2.3.3.1) (-very-sensitive) was used to map ChIP-seq reads to

the mouse reference genome GRCm38 or human reference genome
GRCh38. Duplicate reads were filtered out using the MarkDuplicate
function from Picardtools v.2.17.0 (http://broadinstitute.github.io/
picard/). Reads per kilobase and million mapped read (RPKM)-nor-
malized bigWig files were generated with bamCoverage from deep-
Tools v3.3.2.

GWAS analysis
The GWAS data was obtained from the NHGRI-EBI GWAS Catalog120

using “gwasrapidd”121(v0.99.17) R package. We queried the GWAS
Catalog for studies on type 2 diabetes mellitus using the get_studies()
function. This search returned 226 GWAS studies related to type 2
diabetes mellitus. Function get_associations() was used to get asso-
ciation IDs, p-values, and odds ratio for every variant. Out of the 5438
associations found in the GWAS Catalog, 4871 meet the p-value
threshold of 1 × 10−6, leading to the identification of 678 genes. Next,
we compiled a list of genes associated with human islet function from
two recently published scRNAs-eq studies16,45.

RNA-seq data analysis
RNA-seq data from mouse islets and PP2 cells was obtained from the
NCBI SRA (SRR6159442, SRR6159443, SRR6159444, SRR6159445,
SRR6159446, SRR10708482). The reads were then mapped against
GRCm38 or GRCh38 reference genome using STAR (v 2.7.9a)108. Gene
counts were normalized using the variance stabilizing transformation
(VST) function of DESeq2 (v1.38.3) R package122. Heatmaps of gene
expressionwere generated from theZ-scores of VSTgene counts using
ComplexHeatmap (v2.15.4)123.

Statistics
Sample sizes were not predetermined by statistical methods. Investi-
gators were not blinded to allocation during experiments and out-
come assessment. GraphPad Prism was used for analysis and graph
plotting. The statistical methods are listed in figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data obtained in this study have been deposited at the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE241639) under accession number
GSE241639. This paper also analyses existing, publicly available data.
FoxA2 ChIP-seq data was obtained from the GEO (GSM1306337).
H3K4me1 ChIP-seq data was obtained from the NCBI SRA
(SRR9840908, SRR9840909). H3K27ac ChIP-seq data of mouse pan-
creatic islets was obtained from the NCBI SRA (SRR9840900,
SRR9840901). H3K27me3 ChIP-seq data was obtained from the NCBI
SRA (SRR6728238). H3K27ac ChIP-seq data in EndoC-βH1 cells was
obtained from theNCBI SRA (SRR9336435, SRR9336436, SRR9336437,
SRR9336438, SRR9336439, SRR9336440, SRR9336441, SRR9336442).
RNA-seq data from mouse islets and PP2 cells was obtained from the
NCBI SRA (SRR6159442, SRR6159443, SRR6159444, SRR6159445,
SRR6159446, SRR10708482). Ntrk1 RNA-seq data was obtained from
the GEO (GSE80673). Source data are provided with this paper.

Code availability
No new software was developed during this study. Code used for
processing mouse Paired-tag data sets is available at https://github.
com/256wangliu/Multiomics_diabetes.
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