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Simple Summary: The Achilles tendon influences the running economy because of its ability to store
and release strain energy, and it remains one of the most vulnerable tendons among athletes and
recreational runners. Exercised-related mechanical loading appears to induce changes in the Achilles
tendon morphology and mechanical material properties. Both acute and relatively long-term exercise
induces tendon adaptation, although biomechanical changes, e.g., cross-sectional area, plantarflexion
moment, Young’s modulus, and stiffness, in response to exercise duration, type, and loading-regimes
differ widely. Furthermore, a strong Achilles tendon can be developed by chronic exposure to habitual
mechanical loading from daily exercise, which is associated with greater energy storage, release and
overall health.

Abstract: The morphological and mechanical properties (e.g., stiffness, stress, and force) of the
Achilles tendon (AT) are generally associated with its tendinosis and ruptures, particularly amongst
runners. Interest in potential approaches to reduce or prevent the risk of AT injuries has grown
exponentially as tendon mechanics have been efficiently improving. The following review aims
to discuss the effect of different types of exercise on the AT properties. In this review article, we
review literature showing the possibility to influence the mechanical properties of the AT from the
perspective of acute exercise and long-term training interventions, and we discuss the reasons for
inconsistent results. Finally, we review the role of the habitual state in the AT properties. The findings
of the included studies suggest that physical exercise could efficiently improve the AT mechanical
properties. In particular, relatively long-term and low-intensity eccentric training may be a useful
adjunct to enhance the mechanical loading of the AT.

Keywords: exercise; Achilles tendon; biomechanical properties; adaptation

1. Introduction

Modern human morphology has been proposed to reflect numerous features related to
the evolution, from walking to running, that occurred two million years ago [1]. Along with
features such as larger joint surfaces, shorter toes, and a medial longitudinal plantar arch,
the Achilles tendon (AT) lengthened significantly. This is significant as the tendon stores
significant elastic strain energy during the initial stance phase of running and then releases
the energy through recoil during the subsequent propulsion [2,3]. These reports suggested
that the external mechanical loads can be adapted by adjusting AT elastic modulus, stiffness,
and size based on the nature structure [4]. As the strongest and thickest tendon in the
human body, the mechanical loading of the AT is great because of the large internal plantar
flexor moment that occurs at the ankle during the stance phase of running [5]. Previous
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studies have shown that the AT can load up to four times the body’s weight when walking,
and 12.5 times the body’s weight when running and jumping [6–8].

As one of the most common sports injuries, Achilles tendinopathy accounts for 8–15%
of all running injuries [9], with a high lifetime risk of 52% among elite male runners [10].
This injury will compromise sports performance, may prevent active, athletic individuals
from participating in physical activities, can interfere with daily living, and may possibly
lead to tendon rupture [11,12]. Unfortunately, conservative treatment is not always success-
ful and can lead to surgical intervention (25–45% of patients) [13], with a cost ranging from
$10,000 to as much as $31,000 (https://www.howmuchisit.org/achilles-tendon-surgery-
cost/) (accessed on 26 November 2021). In 3–5% of cases, it can be career-ending for ath-
letes, resulting in a health and personal cost both immediately and in the future [7]. From
recreational to elite athletes, the reduction in physical activity can result in overall physical
deconditioning and can increase the risk of cardiovascular problems in time [14–16].

Achilles tendinopathy causes pain, swelling, and thickening in the AT, and ultimately
impairs health-promoting activities [17]. It most often occurs in the mid-substance of the
tendon (55–65%) and less commonly at the insertion (20–25%) [18]. The cause is not fully
understood but is essentially a maladaptive response to increased or excessive loading that
leads to progressive weakening and dysfunction of the specific tendon area and then to
disrepair and degenerative changes [7]. Previous Delphi studies [11,12] identified several
factors related to Achilles tendinopathy in an active, athletic population. These included
previous tendinopathy or injuries, advancing age, sex, and antibiotic treatment. Moreover,
training errors, hard running surfaces, poor ankle strength and flexibility are risk factors
for inducing Achilles tendinopathy [19]. It is worth noting that ultrasound is both specific
and sensitive enough for assessing the tendon structure, especially for the diagnosis of
Achilles tendinopathy [20,21]. Based on the ultrasound imaging technology, a more recent
study found that the cross-sectional area (CSA) of the AT could have the potential to be
an effective method for assessing the risk of high Achilles tendinopathy based on the
correlation between the CSA and height, sex, height, miles run per week, and BMI [5].

Considering that there are modifiable (e.g., running distance, duration) and unmod-
ifiable (e.g., age, sex) factors affecting the AT injuries, prevention strategies need to be
proposed and used. Both concentric and eccentric strengthening training have been ad-
vocated for improving AT function in the past [22–24]. Alfredson et al. [23] found that
12 weeks of eccentric training for the calf muscle could significantly reduce pain during run-
ning activity and increase the muscle strength for patients with chronic Achilles tendinosis.
Another study supports that this training method may improve clinical results for these
patients [24]. However, more recently, both isometric and functional strengthening have
been promoted. The purpose of this narrative review is to examine the effect of different
exercise regimens on the human AT. We begin by reviewing the acute effect of different
types of exercise on the tendon. We then assess the effect of differing training regimens on
the AT properties. This would be followed by a review of how different habituated states
influence the tendon. In the end, we identify gaps in our knowledge and make suggestions
for future directions. The overall aim of this paper is to increase awareness of the optimal
ways for sports enthusiasts to enhance their AT properties and maintain their healthy state
to reduce injury risk.

2. Methods

In this narrative review, databases including PubMed, EBSCOhost, Scopus, Web
of Science, and Google Scholar from October 1960 to October 2021 were searched for
the following terms: “Achilles tendon” OR “AT” AND “exercise” OR “training” AND
“mechanical properties” OR “material properties”. All articles searched in the databases
were imported into the EndNote (EndNote X7, Stanford, CA, USA). Then, full publications
and abstracts were screened and all relevant papers retrieved. The search was restricted to
full-text accounts written in English. Following this process, the authors manually searched
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the reference lists of all selected papers and used the “cited by” feature available in three of
the databases to check for additional papers not found in the initial search.

To limit the number of included studies, papers considered for this review needed to
satisfy one of the following inclusion criteria: (1) address the effect of acute exercise on
human AT mechanical properties; (2) address the effect of long-term training on changes in
human AT mechanical properties; (3) address the effect of a habitual state (sports activity,
footwear, etc.) on the human AT properties. In addition, the participants must be healthy
adults without any musculoskeletal injury or psychiatric disorders. All these procedures
were in line with published guidelines for writing a narrative review [25].

As shown in Figure 1, the selection process is visualized in the PRISMA flow diagram.
The electronic search yielded a total of 4375 studies, of which 53 (acute effect, 18; training
effect, 21; habituated effect, 14) were included. After the removal of duplicates, 1842 studies
were manually reviewed. A total of 1763 studies were excluded after assessing title and
abstract review, then full-text articles of the remaining 79 studies were screened based on
the eligibility criteria.
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3. Practical Considerations
3.1. Effects of Acute Exercise on the Achilles Tendon

A summary of the characteristics of five studies examining the AT biomechanical
response to the acute interventions can be found in Table 1. Previous studies have indicated
that adaptive changes in the mechanical properties of connective tissues, such as the AT,
are affected by external loads [26,27]. The average peak strain in the AT during walking,
running, and hopping were 4.6%, 5.8%, and 8.3%, respectively [28,29]. In addition, these
studies also found that the AT has high compliance under large external forces, and its
length changes considerably during movement. The external mechanical load imposed
externally to fibrous connective tissues could influence the length and stretching velocity
of the tendons, increasing the high compliance of the AT [30]. Previous investigations have
shown that the low braking forces, large vertical and propulsive forces [2], and increased
internal force [4] of the triceps surae during the stance phase of running are significantly
related to reduced AT injuries, given the superior mechanical and material properties of
the AT [31] and the basic factors of AT injury prevention.
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Table 1. Effects of plantar flexor acute exercise on the AT mechanical properties.

Study Information Participants Time of
Assessment

Outcome
Measure and

ResultsAuthors Design Exercise
Type

Exercise
Protocol N (M/W) Age

(Years)
Training

Status

Farris et al. [32] Parallel Running
A single

30-min at
12 kmph

12 (M) 27 ± 5 N/D

Before,
immediately

after the
intervention

AT stiffness-
andpeak AT

strain-

Joseph
et al. [31] Cross Jumping

Load
equalling
20% body

mass

31
(17M/14W) 24.1 ± 2 Active

Rest,
immediately

after
intervention
and a fatigue

protocol

AT
elongation↑,

stiffness↓ and
Young’s

modulus ↓(W)

Kay &
Blazevich [33] Cross MVIC

Passive and
active

concentric
trials

16
(8M/8W) 20.2 ± 2.6 Active

Before,
real-time,

immediately
after the

intervention

AT stiffness↓

Maganaris
et al. [34] Cross Cycling Increasing

load 6 (M) 23 ± 2 N/D

Before,
immediately

after each
intervention

AT length-

Morse
et al. [35] Cross

Passive
stretch-

ing

ROM at
deg s−1 for

1 min
8 (M) 20.5 ± 0.9 Active

Before,
immediately

after the
intervention

AT length-

Note: Cross, crossover design. MIVC, maximal isometric voluntary contraction. ROM, range of motion. M/W,
men/women. N/D, not described. ↑/↓, significant increase/decrease. -, no significant difference.

Changes in tendon mechanical behavior, e.g., an increase in tendon compliance, have
been shown to occur in response to acute intense exercise. A systematic review confirmed
that the mechanical and morphological properties of the AT were affected by acute exercise
patterns [36]. Previous studies suggested that for the AT specificity, it would be valuable
to know the time taken to return to baseline values in women compared to men, which
may explain the cause of the lower AT injury rates among women [31,37,38]. For instance,
passive stretching decreased stiffness of the medial gastrocnemius tendon acutely, with
women demonstrating a far greater increase in compliance (22.4%) compared with men
(8.8%) after 5 min of a passive dorsiflexion stretch [37]. It may be due to the woman’s
tendon being less stiff at baseline before intervention based on the relevant studies [38,39].
An increase in tendon compliance responds to an acute loading protocol, however, when
this acute response to load returns to baseline is not yet confirmed. The study of Zhou
et al. [40] reported that the distal, middle, and proximal regions of the AT stiffness increased
by 19.53%, 17.01%, and 25.73% after acute 5-minute static stretching, respectively. From
the perspective of mechanical properties, these results suggest that the AT has high com-
pliance through acute static stretching intervention, but that the tendon architecture was
independent of changes in tendon stiffness [40].

Isometric plantarflexion yields an immediate decrease in stiffness that quickly plateaus
with the addition of continued activity. Ten 4-s isometric plantarflexion contractions
resulted in decreased tendon stiffness after the first five contractions but did not increase
significantly thereafter in a sample of six men [34]. Similarly, a decreased tendon stiffness
(−10.9%) was observed after six 8-s MVIC of the plantar flexors with no further decrease
after an additional three 60-s of static stretching in eight men and women [33]. The stiffness
of the AT decreased in non-stretch-shortening circles (SSC) training, such as isometrics
contraction and static stretching training, but did not significantly change in SSC training,
such as running and hopping performances [32]. This result is similar to the results of
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in vivo animal experiments and suggests that the SSC effect is negligible in response to
tendon elongation in real life [41,42]. Furthermore, the mechanical behavior of tendons that
occurs in response to acute stimuli seems to have gender-specific effects. In general, the
tendons of women are less stiff at baseline before exercise intervention, namely, the higher
viscoelastic properties of tendon structures in women, which means that women have a
higher compliance compared to men [38]. One previous study investigated the effect of the
gender factor on the AT mechanical characteristics and metrical properties during 100 toe
jumps with 20% body mass, and reported the increased elongation (+32.2%), reduced AT
stiffness (−30.3%) and reduced Young’s modulus (−32.1%) after that isometrics contraction
exercise only in women; these responses for women may be a protective mechanism
against large loads in acute exercise [31]. These results, along with the above-mentioned
ones [37,38], indicated that a female’s tendon might be more compliant in response to an
intense bout of loading, which might effectively reduce the risk of AT injuries and, in part,
explain the large discrepancy in tendon disorders and rupture rates between genders. The
hormonal differences between genders have been indicated to affect tendonous tissue, as
estrogen has previously been shown to inhibit collagen synthesis, and thus affects tendon
tissue properties [43]. Thus, the fact that the tendon collagen fractional synthesis rate is
lower in women could, therefore, be responsible for the increased elongation and reduced
stiffness of the AT [37]. However, the more specific mechanisms that cause the differences
in mechanical properties of the AT between genders are unknown. This needs to be further
discussed in future studies.

On the other hand, past studies have suggested that the properties of the AT could
be affected by running strike patterns [6,44,45]. The plantarflexion torque exerted to resist
dorsiflexion torque during running with a forefoot strike pattern was larger than that
exerted to resist dorsiflexion torque during running with a rearfoot strike pattern and
is important for energy release and absorption by plantar flexors [46]. Lyght et al. [6]
reported that the strain and stress associated with a rearfoot strike pattern were lower
than those associated with a forefoot strike pattern because the large knee flexion angle
can be attributed to the short distance between the center of mass and the heel. A spring-
like running posture is beneficial for shock absorption. Therefore, the authors suggested
that the rearfoot strike pattern can reduce AT strain, stress, and strain rate compared to
the forefoot strike pattern. Besides, increasing the stepping frequency by 5%, namely
shortening the strike length, can reduce the peak AT stress and strain at a fixed speed of
3.5 m/s, regardless of foot strike pattern [6]. The muscle-tendon biomechanical differences
of plantar flexors between the forefoot and rearfoot striking have been taken into account.
Yong et al. [45] found forefoot striking can effectively reduce tendon energy storage of the
soleus and increase the gastrocnemius muscle activation compared to the rearfoot striking
running pattern. These results demonstrated that the increased eccentric contraction from
the progressive strengthening plantar flexors program can reduce the risk of injuries during
forefoot striking. However, Kubo et al. [47] failed to find significant differences after
investigating the relationship between foot strike patterns and the AT properties in long-
distance runners. Therefore, the properties of AT are largely affected by acute changes in
running strike patterns. Relationships among internal mechanisms should be studied in
the future.

Existing studies have ascribed reduced AT stiffness to a prolonged run [48], different
running strike patterns, or non-SSC training. Decreased stiffness could instantly increase
the risk of AT injuries and affect the properties of the AT complex. SSC training does
not exert an acute effect on AT properties [49]. Nevertheless, the acute effect of exercise
intensity on the mechanical properties of AT remains unclear. Additionally, whether
changes originate from muscle or the AT itself requires exploration.

3.2. Effects of Training Effects on the Achilles Tendon

Table 2 describes the studies relevant to this section. Although training has an acute
effect on the AT, over-exercising presents a high risk of injuries. Present studies emphasized
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the adaptive potential of tendons to increased mechanical loading applied repetitively
and statically, which was consistently shown despite the variety of long-term training
protocols [50,51]. Arampatzis’ group found that after 14 weeks of isometric (rep) with
90% MVC exercise intervention, an increase in (1) tendon-aponeurosis stiffness [30,52,53],
(2) tendon elastic modulus [30,52,53], (3) AT CSA [30,52,53], and (4) plantarflexion moment
(PF) and tendon force [54] were found at high strain magnitude (high strain) with a low
strain frequency (low reps). In addition, Fletcher et al. [55] did find an increase in the
AT stiffness (+18.6%) and PF moment (+21.6%) after 20 s isometric (static) training with
80% MVC. It is, however, noteworthy that the training week (8w) was reduced along with
only one repetition. A most recent study [50] also reported the adaptive change in the AT
properties (AT stiffness: +36.1% and CSA: +7.8%) following low-load resistance training
(20–35% of 1RM) with partial blood flow restriction.

Table 2. Effects of running training programs on the AT adaptation.

Author Participants (n) Age (Years) Training Program Instrument Area of
Measures

Outcome
Measure and

Results

Hansen et al. [56]

11 (7M/4W)
untrained

healthy
individuals

29 ± 1 (M);
26 ± 1 (W)

About 9 months of
habitual running

ultrasound;
MRI

Triceps surae
and AT AT CSA-

Joseph et al. [57]
22 (7M/15W)
traditionally
shod runners

21.1 ± 3.3 (M);
22.4 ± 6.4 (W)

12-week transition
with minimalist

shoe running
Ultrasound; AT

AT CSA↑;
AT force↑,

elongation↓
and stiffness↑;

Young’s
modulus↑

Milgrom et al. [58] 55 (M) new elite
infantries 19.7 ± 0.8 (M) 6-month military

training Ultrasound; AT AT CSA↑

Zhang et al. [51]
17 (M) habitual

recreational
runners

30.6 ± 6.8 (M)

12-week transition
training with the

minimalist in
habitual rearfoot

strike runners

Ultrasound; AT and ankle
joint

AT force↑;
AT CSA↑

Note: M/W, men/women. CSA, the cross-sectional area. N/D, not described. MRI, magnetic resonance imaging.
↑/↓, significant increase/decrease. -, no significant difference.

In contrast, the effect of plyometric training on tendon properties still seems ambigu-
ous [59], since the six plyometric training interventions [53,60–64] reported controversial
results. The changes in tendon stiffness and Young’s module ranged from +19.4% [64] to
−9.4% [63], and +23.9% [53] to −19.2% [63]. However, only the 27% increase in AT stiffness
reported by Fouré et al. [60–62] reached statistical significance. The different jumping
exercises, uncontrolled or comparably low (40% repetition maximum [64]) tendon load
magnitude and dissimilar intervention durations (8 to 14 weeks) might be the reason for the
inhomogeneous findings. Comparing dynamic (concentric-eccentric) and isometric training
with plyometric training, Kubo et al. [49,64] and Bohm et al. [53] reported a statistically
significant increase of the AT stiffness solely following the dynamic and isometric but not
after the plyometric training.

Overall, since only four studies using running as the type of training have been
involved, we cannot give a preliminary conclusion. One study’s [56] aim was to investigate
the effect of habitual exercise on the structural properties of the AT in sedentary participants,
the results showed that a total training stimulus of approx. 9 months of running (30–50 min
habitual running for 2–3 times per week) in previously untrained subjects did not result
in any significant changes in AT stiffness (+7.3%) and CSA (−0.3%). Meanwhile, another
study [57] was to determine the effect of transition of running style on the AT mechanical
properties over a 12-week intervention, its results seem to demonstrate an increase in AT
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properties (stiffness, module, CSA) in men after a 12-week minimalist running transition
program and 6-month follow-up. The viscoelastic property of the AT plays a crucial role
in improving stiffness and running economy while transitioning to the forefoot strike
pattern given the shortened contact time and contracting velocity of plantar flexors [57].
In agreement with the recent findings, Zhang et al. [51] investigated the effect of 12-week
transition training on the AT loading; they found the peak AT force could significantly
increase for habitual rearfoot strikers when they were switching to the forefoot strike
pattern with minimalist shoes compared with the control group who could choose the
strike pattern after 12-week transition training. In addition, a study reported that after
6 months of repeated 2 km runs, as one type of rigorous endurance training program, the
new elite infantries had a significant increase in the AT CSA [58] (see Table 2).

Lastly, regarding the duration of the exercise intervention, most of the above-mentioned
studies featuring an exercise duration of 12–14 weeks found significant adaptations of
AT properties [30,52,53,57,64–66], indicating that tendons already respond to increased
mechanical loading within 3 months. However, one study [49] showed that AT stiffness in-
creased significantly by 18.8 ± 10.4% for 8 weeks (4 days/w) con-ecc weight (reps) training
with 70% RM. These results suggested that resistance training can effectively improve the
stiffness of the tendon structures, as well as the strength and size of the muscles [49]. What
is more, another more recent study [67] showed that AT stiffness and Young’s modulus
improved by 25.0% (p = 0.004; ES = 1.73; CI 95% = 0.85–2.52) and 20.1% (p < 0.044; ES = 1.31;
CI 95% = 0.49–2.06) after 4 weeks of high-load voluntary plantarflexion training, respec-
tively; meanwhile a significant increased CSA (+14.7%) was observed after 8 weeks and
contributed to a further increase in the AT stiffness (+62.1%) and Young’s modulus (+26.1%).
The authors reported that the increased tendon stiffness may be due to the adaptations
in the AT properties after 4-week high-load training. In agreement with the speculation,
a literature review confirmed that the changes in tendon stiffness caused by the training
intervention seem to be attributed more to the adaptability of the AT material than to the
morphological properties [68].

Collectively, the AT can experience positive biomechanical adaptation when exposed
to mechanical loading within a specific training volume. However, such AT strain depends
on many factors known to differ between individuals [69] and seems to have a preferred
strain limit to maintain the increase in triceps surae muscle strength during muscle strength
training [70]. Further works are warranted to elucidate the specific mechanical loading
conditions (e.g., magnitude, duration, rate, frequency) by ensuring that AT strains occur
within the optimal range that elicit maximal positive (e.g., anabolic) adaptation.

3.3. Effects of Habituated States on the Achilles Tendon

As shown in Table 3, the differences in the AT properties (stiffness, Young’s Modulus,
CSA, and strength) between runners and non-runners are obvious. To enhance mechanical
properties of the AT (e.g., higher tendon stiffness, larger CSA, and Young’s modulus), a
variety of habitual physical activities and exercises have been adopted [27,71–73]. Current
studies posited that the homeostasis of connective tissues, such as tendons and ligaments,
were affected by the mechanism of force transmission due to cyclic strain, which adjusted
the adaptive progression and feedback of the AT during exercise under regulation by
mechanical stimulus [27,71–73].
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Table 3. The differences in the AT stiffness, Young’s modulus, CSA and strength between runners
and non-runners.

Author Participants (n) Age (Years) Test Methods Dependent Variables

Stiffness Young’s
Modulus CSA Strength

Arampatzis
et al. [54]

Non active (10);
endurance runners
(28); sprinters (28)

26 ± 5 (M);
Hold 2–3 s

isometric MVC
plantarflexion

Non active <
endurance
runners <
sprinters *

N/D N/D

Non active <
endurance
runners <
sprinters *

Magnusson
et al. [74]

Runners (6);
non-runners (6)

36 ± 7 (M);
34 ± 3 (M) MRI N/D N/D Non-runners

< runners * N/D

Rosager
et al. [75]

Runners (5);
non-runners (5)

34 ± 6 (M);
33 ± 8 (M)

graded
voluntary 10 s

isometric
plantarflexion

Non-runners <
runners

Non-runners >
runners

Non-runners
< runners *

Non-runners <
runners

Note: M/W, men/women. CSA, the cross-sectional area. N/D, not described. MRI, magnetic resonance imaging.
*, statistically significant differences between runners or sprinters and other group(s).

The influence of mechanical loading associated with exercise on the AT properties has
been assessed by comparing the AT between cohorts of individuals habitually exposed
to different activities. Male runners were shown to have a significantly larger CSA [75],
especially at the most distal part of the tendon (+36.0%) [74]; while the sprinters also had
higher AT stiffness and maximal tendon forces than the endurance runners and non-active
participants [54]. Furthermore, male athletes who frequently performed weight-bearing
exercises (e.g., running, jumping) were found to have a larger AT CSA than athletes in
non-weight-bearing sports (e.g., kayakers) [76]. This study reported that the increased
AT CSA would be subjected to intermittent high-tension tendon loading. However, the
effect of different training methods on tendon characteristics and injury risk needs further
study. Another study found that the AT in the jump leg of male collegiate-level jumpers
was much stiffer (17.8% and 24.4% greater stiffness and Young’s modulus, respectively)
compared to the non-jump leg [77]. From the perspective of pathology, the increased AT
stiffness can improve the transmission of muscle-generated forces [30,54] and reduce the
risk of accumulating damage and performance failing [78]. Thus, compared to non-runners,
habituated runners with high ankle plantar flexor strength may show improved adaptations
to high mechanical loads during graded voluntary 10-s isometric plantarflexion efforts
because of the increased AT stiffness, which would enable more direct transmission of
muscle force [75].

Not surprisingly, the greater AT CSA, Young’s modulus, and stiffness of the individ-
uals in the running, jumping, and sprinting events represent a favorable adaptation in
response to the habitual loading of running. Regarding running, among the runners with
different foot strike patterns (FSP: forefoot—FFS, midfoot—MFS, and rearfoot—RFS), Ker-
nozek et al. [79] found habitual FFS/MFS runners did not have greater CSA despite higher
AT loading according to a cross-sectional study that was conducted by recruiting female
runners. In addition, Kubo et al. [47] reported no significant differences in the CSA and
stiffness of AT by recruiting trained male long-distance participants. It is, however, note-
worthy that the FSP during shod running was determined at a velocity of 18 km/h which
was much higher than most of the other running studies. Being inconsistent with Kubo
et al., a previous study [80] showed the AT in minimalist shod runners (MFS/FFS) adapted
by increasing +9.2% CSA, +90.5% stiffness, and +89.8% Young’s modulus compared to
traditionally shod runners (RFS), which seems more in accordance with the understanding
of mechanical adaptation of the tendon to different AT loading patterns among runners
with different FSP [81]. This inspired us that multiple exercise and training modalities
combined with a step-by-step approach could lead to AT biomechanical adaptations, so
may do minimalist running.
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4. Conclusions

Firstly, high compliance of the AT was observed after the acute exercise intervention.
Moreover, there are gender-specific effects in response to the acute loading. Specifically, the
stiffness and Young’s modulus of the AT show significantly lower in women compared to
men, which may be an important cause of fewer AT injuries in women. Secondly, periodic
plyometric training can improve the morphological adaptability of the AT, but the exercise
type, intensity, and duration are the three key factors that restrict the effectiveness of
training. Finally, habitual running can effectively improve the mechanical properties of the
AT (e.g., greater stiffness, CSA, and Young’s modulus). In particular, the high stiffness of
the AT is conducive to enhancing the transmission of muscle strength, thereby improving
the running economy. Future research is required to explore more training methods to
improve the biomechanical adaptability of the AT from the perspective of mechanism and
multiple influencing factors and reduce the risk of AT-related injuries.
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