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Abstract 

Objective:  Recently we demonstrated that amoeboid microglia in white matter regions are essential for proper oli‑
godendrocyte homeostasis and myelinogenesis in the first postnatal week. Amoeboid microglia in the mouse corpus 
callosum change their activation profile within few days after postnatal day (P)7 with microglia of the cerebellum 
showing similar features. Here we expanded our previous transcriptional analysis and performed detailed bulk RNA 
sequencing of microglia from corpus callosum, cortex and cerebellum at P7, P10 and P42. The goal of this study was 
to identify a specific gene profile for both, white matter and grey matter microglia during development.

Results:  Microglia in white matter regions display unique characteristics in the first postnatal week of murine life. In 
both the corpus callosum and cerebellum microglia show amoeboid morphology and a similar transcription profile 
during development including high expression of genes related to priming of microglia, phagocytosis and migra‑
tion at P7; characteristics which are already lost at P10. Together these data verify our previous transcriptional data 
obtained by microarray analysis and enable a more complete view into white matter and grey matter microglia at 
different developmental stages.
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Introduction
Microglia are the resident myeloid cells in the brain 
parenchyma with diverse functions during homeostasis 
and disease [1]. The accumulation of activated micro-
glia with an amoeboid morphology along the ventricles 
and white matter regions within the first postnatal week 
was described as early as 1932 [2, 3]. This phenomenon 
was not restricted to rodents; in 1939 Kershman coined 
the term “fountain of microglia” for hot spots of acti-
vated microglia during human embryogenesis [4]. Many 
decades later this phenomena was confirmed by several 
studies [5–10]. Their function, however, has remained 
unknown. Recently we identified an essential role for 
amoeboid microglia in murine white matter regions for 
oligodendrocyte homeostasis and myelinogenesis dur-
ing the first postnatal week [11], an observation which 
was replicated shortly after [12]. On the transcriptional 

level, microarray based analysis showed that microglia of 
the corpus callosum (CC) at postnatal day (P)7 are highly 
activated compared to cortical microglia. As we observed 
that the amoeboid phenotype rapidly changed within a 
few days after P7 and cerebellar microglia appeared to 
display very similar characteristics to callosal microglia, 
we proceeded here to analyze microglia during devel-
opment in a more detailed way, by assessing P7, P10 
and adult (P42) microglia from the CC, cortex (Cx) and 
cerebellum (Cb) with bulk RNA sequencing. Our data 
identify that the transcriptional profile of microglia in 
the CC and Cb at P7 and P10 is driven largely by age and 
much less by the specific brain region assayed and corti-
cal microglia show a transcriptional profile different from 
white matter microglia. Finally, at P42 microglia from all 
brain regions appeared to share a common transcrip-
tional pattern. These data suggest that early during post-
natal development white matter microglia in all brain 
regions possess a unique transcriptional profile com-
pared with grey matter that is lost during maturation.
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Main text
Materials and methods
Mice
Cx3cr1GFP/WT and wildtype (C57BL/6  J) mice were bred 
in-house under pathogen-free conditions. All animal 
experiments were approved by the Regierungspräsidium 
Freiburg, Germany, Section: Landwirtschaft, Ländlicher 
Raum, Veterinär- und Lebensmittelwesen. Application 
no. G17/55 and X-16/04.

Cell sorting and histology
Tissue samples were prepared as described before [11, 
13]. Briefly, mice were lethally anesthetized and perfused. 
Brain tissue was fixed in 4% PFA for immunohistochem-
istry or brain regions were separated and homogenized 
for cell sorting.

Cell sorting was done on a MoFlo Astrios (Beckman 
Coulter, Krefeld, Germany). Live/Dead stain: Fixable 
Viability Dye eFluor®506 (eBioscience, San Diego, USA). 
Fc block: Fc-receptor blocking antibody CD16/CD32 
(clone:2.4G2, BD Bioscience, Heidelberg, Germany). 
Antibodies used: anti-CD45 (clone:30-F11, eBioscience, 
San Diego, USA), anti-CD11b (clone:M1/70, eBioscience, 
San Diego, USA), anti-Gr1 (clone:RB6-8C5, Biolegend, 
Fell, Germany).

For immunofluorescence staining tissues were treated 
as described before [11]. Briefly, mouse brains were 
fixed overnight, dehydrated and embedded in Tissue-
Tek®O.C.T.TM Compound (Sakura Finetek Europ B.V., 
Netherlands). 12 µm cryosections were stained. Primary 
antibodies used: IBA-1 (1:500, Cat. No.: NB100-1028, 
Novus Biologicals, Wiesbaden, Germany), SPP1 (1:200, 
Cat. No.: ab8448, abcam, Berlin, Germany), CLEC7A 
(1:30, Cat. No.: mabg-mdect, InvivoGen, Toulouse, 
France) and CD206 (1:100, Cat. No.: MCA2235, Bio-
Rad, Munich, Germany). Secondary antibodies used: 
Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 488, Alexa 
Fluor 647 1:500 (Life technologies, Darmstadt, Ger-
many). Nuclei counterstaining: 4,6-diamidino-2-phe-
nylindole (DAPI, 1:10,000, Cat. No.: 236276, Boehringer, 
Mannheim, Germany). Imaging was performed on the 
BZ-9000 Biorevo microscope (Keyence, Neu-Isenburg, 
Germany). N = 3–4/timepoint. Quantification of micro-
glia (Fig.  1c) was performed on three parasagittal brain 
sections (every 10th section starting at the level of the 
rostral migratory stream) per animal (N = 3 mice).

RNA sequencing
FACS-sorted microglia were processed at the Genomics 
Core Facility “KFB-Center of Excellence for Fluorescent 
Bioanalytics” (University of Regensburg, Regensburg, 
Germany; http://www.kfb-regen​sburg​.de). Library prepa-
ration and RNA sequencing was performed as described 

before [13]. Quality control of Fastq Files was done using 
FastQC [14]. Using the Star aligner (version 2.5.2b), reads 
were mapped to the GRCm38 mouse genome [15]. Read 
counts were acquired by the featureCounts (version 
1.6.2) package with essentially standard settings. Specifi-
cally counts were combined at the gene level, multimap-
ping and multi overlapping counts were discarded and 
reads were required to overlap by at least 1 base with an 
annotated feature. Differential gene expression analy-
sis was done by the limma/voom (version 3.38) pipeline 
in R following the limma vignette [16–18]. Specifically 
genes with zero reads were discarded. Following counts 
were summarized for each gene over all samples and the 
lower third of genes were removed (averaging to about 
1.5 counts per sample). After prefiltering the limma/
voom pipeline was followed as described the vignette. 
Heatmaps were created using the ComplexHeatmaps 
R package [19]. Pathway Analysis was conducted using 
Ingenuity Pathway Analysis (IPA, Qiagen). For IPA analy-
sis all genes with an adjust p-value of < 0.01 were retained 
and IPA analysis was performed with standard settings 
except that only experimentally observed interactions in 
mouse datasets were queried.

Results
To investigate the expression profile of microglia during 
development in white and grey matter regions, we per-
formed bulk RNA sequencing of fluorescent activated 
cell sorted (FACS) microglia (CD45+, CD11b+, Gr−) of 
the CC, Cx and Cb at postnatal day P7, P10 and P42. By 
analyzing the gene expression of microglia at these differ-
ent ages and brain regions it became clear, that microglia 
of the CC and Cb display a similar expression profile. In 
these brain regions, the developmental stage had a higher 
impact on gene expression compared to brain region 
itself (Fig.  1a). In contrast, cortical microglia at P7 and 
P10 clustered separately from CC and Cb microglia at 
P7 and P10. This suggests that, in this instance, the brain 
region itself had higher impact on the gene profile of cor-
tical microglia than did age. Finally, at P42, microglia of 
all brain regions investigated were quantitatively similar 
at the gene expression level. Next, using Cx3cr1GFP/WT 
mice to assess microglia morphology using immuno-
fluorescent analysis, we observed that microglia of the 
CC and Cb at P7 had an amoeboid shape, indicative of a 
high activation state of these cells (Fig. 1b white arrow). 
In contrast, cortical microglia had a ramified -not acti-
vated-morphology (Fig. 1b yellow arrow). Moreover, cell 
dynamics during development were very similar in the 
CC and Cb showing higher cell numbers at P7 and P10 
compared to cortical microglia which decreased until 
P21 (Fig. 1c). Cortical microglia numbers increased up to 
P10 and showed a milder subsequent decline. Together 

http://www.kfb-regensburg.de
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these data indicate that developmental transcriptional 
profile, morphological phenotype, and cell dynamics are 
similar between microglia of the CC and Cb and different 
from cortical microglia.

To more closely assess differences in gene expression 
over time, we performed pathway analyses, which dem-
onstrated a higher expression of genes related to apopto-
sis at P10 compared to P7 in the CC, whereas at P7, genes 
related to phagocytosis and chemotaxis were highly 
upregulated compared to P10 (Fig.  2a). Interestingly, 
with further maturation (comparison of microglia at P42 
to P10) mainly genes related to apoptosis and necrosis 
were highly expressed in the CC (Fig. 2b). A similar pro-
file could be seen for microglia in the Cb and Cx related 
to apoptosis (data not shown), whereas genes related to 
phagocytosis (e.g. Gsn, Cd36, Abca1, Grk6 and Scarb1) 

were not expressed as highly as in the CC and were not as 
strongly altered over time (Fig. 3a).

Finally, we carried out hierarchical clustering of 
known priming genes as Axl, Mrc1, Gas7, Clec7a, Igf1, 
Spp1, Anxa5, Gpnmb, Itgax, Lgals3, Cd36 and F13a1, 
which suggested that these genes are highly upregu-
lated in P7 CC microglia. In contrast, Cb microglia at 
P7 showed a somewhat lower upregulation of these 
genes, while no expression was observed in corti-
cal microglia (Fig.  3b). At P10, upregulation of these 
genes was no longer observed in any of the three 
regions assessed. Finally, in agreement with the tran-
scriptional assessment we observed clear expression of 
SPP1, CLEC7A and CD206 (Mrc1) in IBA-1+ microglia 
at P7 in the CC by immunohistochemistry (Fig.  3c, d) 
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Fig. 1  a Heatmap of the most regulated genes (all genes with absolute log2fold-change ≥ 1 and adjust p-value ≤ 0.01) in the corpus callosum (CC), 
cerebellum (Cb) and cortex (Cx) at different ages [postnatal day (P)7, 10, 42]. b Representative immunofluorescent images of Cx3cr1GFP/WT mice at P7 
showing microglia (green) with a ramified morphology in the cortex (yellow error) and amoeboid microglia (white errors) in the CC and Cb. Scale 
bar 200 µm; blue = DAPI. c Quantification of CX3CR1+ microglia in the CC, Cx and Cb at P7, P10 and P21; N = 3 mice per timepoint
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which was not detectable in the CC at P10 (Fig. 3c, d). 
Interestingly, in the Cb CLEC7A and CD206 were not 
expressed in white matter microglia at any timepoint, 
however single positive SPP1+ microglia or patches 
of SPP1+ microglia could only be found in the central 
area of the white matter at P7 (Fig.  3c right (arrow), 
Additional file  1: Figure S1b). No expression of SPP1, 
CLEC7A and CD206 could be found in microglia of the 
cortex at any timepoint (Fig.  3e left; Additional file  1: 
Figure S1a). These data, again, demonstrate similar 
phenotype of white matter microglia early in develop-
ment and a strong transcriptional dynamic occurring 
over just a few days.

Discussion
Here we have demonstrated a detailed RNA sequenc-
ing analysis of murine microglia of white and grey mat-
ter regions over different developmental stages. This 
complements our previous data which identified spe-
cific properties of a microglia subpopulation which is 
only present in the developing CC and cerebral white 

matter. First, we could demonstrate here that micro-
glia of white matter regions, namely the CC and Cb, are 
closely related to each other at P7 and P10 compared 
to cortical grey matter microglia. Second, microglia in 
both CC and Cb undergo a change in their gene expres-
sion profile between P7 and P10, demonstrating rapid 
alterations specific to white matter microglia at these 
developmental stages. At P7, CC and Cb microglia dis-
play a distinct transcriptional profile, including genes 
related to phagocytosis and migration as well as prim-
ing of microglia described during aging and disease [20, 
21]. Genes related to apoptosis and necrosis, instead, are 
highly expressed at P10, and further increased at P42. 
The unique phenotype of P7 CC microglia was further 
confirmed in assessment of SPP1, CLEC7A and CD206 
protein immunoreactivity, which was uniquely present at 
this timepoint, while not present in the cortical microglia 
and only partly recapitulated (SPP1 expression) in micro-
glia of the Cb. Third, in contrast to white matter micro-
glia, gene transcription of cortical microglia was driven 
by the brain region itself and was therefore distinct 
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Fig. 2  Pathway analysis of the most regulated genes in the corpus callosum at postnatal day (P)10 versus P7 (a) and P42 versus P10 (b)
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Fig. 3  a Heatmap of regulated genes related to phagocytosis in the corpus callosum (CC), cerebellum (Cb) and cortex (Cx) at different ages 
[postnatal day (P)7, 10, 42]. b Heatmap of known priming genes in the CC, Cb and Cx at P7, P10 and P42. Asterisks highlighting genes confirmed on 
protein level; Representative immunofluorescence pictures of wildtype mice depicting SPP1 [red (c, e)], CLEC7a [white (c, e)] and CD206 [white (d)] 
expression in IBA-1+ microglia (green) in the CC (c, d), Cx (e left) and Cb (e right) at P7, P10 and P42. Scale bar 50 µm; blue = DAPI; arrow indicating 
IBA-1+/SPP1+ cell in Cb; N = 3–4 mice per timepoint
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from white matter microglia. Fourth, gene expression of 
microglia was similar across regions in the adult brain. 
These results indicate that white matter microglia, per-
haps by migration and phagocytosis, may play a special 
role in local tissue dynamics around P7, impacting oli-
godendrocyte homeostasis and myelination. This role is 
likely restricted to a brief window of time, after which cell 
numbers decline through apoptosis. As maturation con-
tinues into adulthood, resident microglial populations 
develop a common homeostatic role across white and 
grey matter regions. It will be of interest to understand 
the responsible molecular mechanisms and functional 
consequences in future studies.

Limitations

•	 Transcriptional data are presented without func-
tional analyses.

•	 Juvenile stages could have been included.

Additional file

 Additional file 1: Figure S1. Representative immunofluorescent images 
of wildtype or Cx3cr1GFP/WT mice presenting expression of SPP1 (red), 
CLEC7A (white) and CD206 (white) in IBA-1+ or CX3CR1+ microglia in 
the cortex (a) and cerebellum (b) at P7, P10 and P42. Scale bar 50 µm; 
blue = DAPI; arrow indicating IBA-1+/SPP1+ cell in Cb; N = 3–4 mice per 
timepoint.
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CC: corpus callosum; Cx: cortex; Cb: cerebellum; CNS: central nervous system; 
P: postnatal day; FACS: fluorescent activated cell sorting.
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