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Abstract

Background—Human milk oligosaccharides (HMOs) shape the intestinal microbiota in term 

infants. In premature infants, alterations in the intestinal microbiota (dysbiosis) are associated with 

risk of necrotizing enterocolitis and sepsis and the influence of HMOs on the microbiota is 

unclear.

Methods—Milk, urine, and stool specimens from 14 mother-premature infant dyads were 

investigated by mass spectrometry for HMO composition. The stools were analyzed by next-

generation sequencing (NGS) to complement a previous analysis.

Results—Percentages of fucosylated and sialylated HMOs were highly variable between 

individuals but similar in urine, feces and milk within dyads. Differences in urine and fecal HMO 

composition suggest variability in absorption. Secretor status of the mother correlated with the 

urine and fecal content of specific HMO structures. Trends toward higher levels of Proteobacteria 
and lower levels of Firmicutes, were noted in premature infants of non-secretor mothers. Specific 

HMO structures in the milk, urine and feces were associated with alterations in fecal 

Proteobacteria and Firmicutes.

Conclusion—HMOs may influence the intestinal microbiota in premature infants. Specific 

HMOs, for example those associated with secretor mothers, may have a protective effect by 
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decreasing pathogens associated with sepsis and necrotizing enterocolitis while other HMOs may 

increase dysbiosis in this population.

Introduction

Human milk oligosaccharides (HMOs) are the third largest component of human milk. 

These complex carbohydrates are produced in a wide variety of structures that vary from 

woman to woman and within a given woman over time at great nutritional cost to the 

mother, and yet are not digestible by the infant(1). This observation prompts the obvious 

evolutionary question: what is the benefit to the mother-baby dyad of these structures? 

HMOs appear to have multiple functions. First, they shape the composition of the infant 

intestinal microbiota through selective consumption by commensal bacteria(2, 3). 

Bifidobacteria and Bacteroidetes become dominant intestinal bacteria in healthy breast-fed 

term infants due to their ability to digest and utilize HMOs via specific glycosidases, while 

most pathogenic Enterobacteriaceae lack these enzymes and are unable to utilize HMOs as a 

food source(4). Second, HMOs have structural homology to many cell surface glycans and 

thus act as decoys by binding to luminal bacteria that are then unable to bind to the surface 

of the enterocyte(5). Third, HMOs are absorbed into the vasculature(6) and excreted into the 

urine(7) potentially binding to and decreasing the capacity of invasive bacteria to cause 

sepsis and urinary tract infections(8). Fourth, sialic acid containing HMOs may be important 

in neurodevelopment(9).

Premature infants are at increased risk for necrotizing enterocolitis (NEC), sepsis, 

pneumonia, and neurodevelopmental delays due to immaturity and dysfunction of 

essentially every component of innate immunity. Premature infants who receive their 

mother’s own milk have lower rates of NEC and sepsis than those that receive formula(10). 

This is likely due to a variety of human milk components including immunoglobulins, 

lactoferrin, lysozyme and HMOs. Milk produced by women who deliver preterm differs 

from that of women delivering at term including the amounts and types of HMOs(11). 

Women delivering preterm have much wider variation (both between women and for a given 

woman over time) in the percentage of HMOs that contain fucose or sialic acid than women 

who deliver at term(12).

HMO structure is influenced in part by mutations in the maternal fucosyltransferase 2 

(FUT2) gene. Individuals who are homozygous for mutations in the FUT2 gene (historically 

referred to as “non-secretors”) are unable to produce α1,2 fucosylated glycans in their 

secretions including breast milk. Non-secretor individuals have lower levels of commensal 

bifidobacteria, are at decreased risk for infections with a variety of intestinal viruses, but 

have an increased risk for Crohn’s disease(13), celiac disease(14) and NEC(15). The 

influence of maternal secretor status on the infant microbiota has not been well 

characterized.

In this study, our objective was to determine the HMO composition of milk, urine, and feces 

from 14 premature infants receiving only human milk and their mothers and correlate these 

with the composition of the fecal microbiota. We hypothesized that ingested HMOs 

influence the intestinal microbiota.
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Results

Relative abundances of the measured HMOs in milk, urine, and feces for all 14 dyads are 

summarized in Table 1 (the 4-digit labels correspond to the number of hexose, fucose, N-

acetylhexosamine, and sialic acid residues, in that order. For example, the label 4120 

(M=1220.47) means that there are 4 hexose, 1 fucose, and 2 N-acetylhexosamine residues in 

the structure). Representative mass spectra of milk from one of the mothers are presented in 

Supplemental Figures 1–3 (online) with a schematic diagram of HMO structure. The high 

degree of inter-individual variability is evident from the standard deviations in Table 1. Most 

dyads showed similarity in HMO groups across specimen type (ie milk composition was 

similar to fecal and urine composition). Figure 1 presents relative abundance of HMO 

groups for each dyad and Table 2 presents the combined data for all dyads. Total 

fucosylated, sialylated, fucosylated-sialylated, and non-fucosylated/non-sialylated HMOs 

were similar across specimen type (Supplemental Figure 4 (online)) and correlations 

between milk and fecal HMO groups were strong (Supplemental Figure 5 (online)). 

Individual HMOs however showed considerable heterogeneity. Structures relatively more 

abundant in feces than in urine included F-LSTc (p<0.01), LNFP II, 5130a, 5130c, and the 

group of 5 structures with mass 1731 (p<0.05) and TFLNH and 6’SL (p=0.05–0.1). We 

hypothesize that these HMOs are not significantly absorbed from the gut into the 

bloodstream. Several structures were not present in milk but found in either urine (3’Sle), 

feces (TFiLNO, 5330a), or both (A-hepta, 3’SLN). The origin of these structures is unclear; 

it is possible that these structures were present in earlier milk samples or that they were 

constructed or altered in the gut lumen by gut microbial enzymes. The only structure 

significantly more abundant in urine than feces was 3’Sle (p<0.01), though other structures 

showed a similar trend (3’SL, 3’SLN, LNFP I, LNFP V p=0.1–0.2). We hypothesize that 

these HMOS are absorbed from the gut into the bloodstream and filtered by the kidneys. The 

difference between 3’SL and 6’SL is striking as both structures have the same molecular 

weight with the difference in linkage apparently influencing absorption from the gut.

The secretor status of the mothers was predicted based on the percentages of 2’FL and 

LDFT (16). Of the 14 mothers enrolled 8 were secretors and 6 were non-secretors. Urine and 

fecal HMOs suggested a similar pattern in the infant to that of the mother’s milk in all but 

infant number 13 (Table 3). The fecal microbiota was analyzed by terminal restriction 

fragment length polymorphism (TRFLP) in the original study (17). Based on the TRFLP 

data of all 14 specimens, infants of secretor mothers had lower γ-Proteobacteria (p=0.046) 

and higher Lactobacillaceae (p=0.02). For the current study, a more robust approach using 

next-generation sequencing (NGS) was performed on the 12 fecal samples for which 

sufficient sample remained and is summarized in Figure 2 and Supplemental Figure 6 

(online). Note that the major HMO consuming orders of bacteria (Bifidobacteriales and 

Bacteroidales) are present in small numbers as has been previously demonstrated in 

premature infants. In this small sample, the differences by NGS in overall microbial 

composition between infants of secretor mothers and non-secretor mothers did not reach 

statistical significance, however the following trends were noted at the phylum level: 

increased Firmicutes (p=0.08) in the feces of infants of secretor mothers, and at the order 
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level decreased Enterobacteriales (phylum Proteobacteria, p=0.06) in the feces of infants of 

secretor mothers.

Correlations between HMOs in milk and fecal bacteria by NGS are presented at the phylum 

level in Figure 3 (HMO groups), Supplemental Figure 7 (online) (HMO groups, top panel) 

and Table 4 (individual HMOs). For many HMOs, the associations for the dominant phyla 

(Firmicutes and Proteobacteria) are in opposing directions. Figure 4 (top panel) summarizes 

correlations at the order level with the strongest correlations between HMOs in the milk and 

fecal Enterobacteriales (phylum Proteobacteria, positive correlation with HMOs containing 

neither fucose nor sialic acid and negative correlation with fucosylated HMOs) .

HMOs in the feces must traverse the length of the GI tract without being absorbed into the 

bloodstream or consumed by intestinal bacteria. In a pilot study of term breast-fed infants, as 

HMO consuming bacteria increased in the feces over time, fecal HMOs decreased in a 

structure specific manner (i.e. structures that are able to be consumed by the dominant 

bacteria decrease while those HMOs that are not digestible by the dominant bacteria persist)

(18). In these preterm infants, correlations are noted between groups of HMOs in the feces 

(Supplemental Figure 7 (online), bottom panel) and individual HMO structures (Table 5) and 

fecal bacterial composition at the phylum level. At the order level, the persistence of 

fucosylated HMOs in the feces shows a positive correlation with Pasteurellales, 

Pseudomonales, and Burkholderiales and a negative correlation with Enterobacteriales 
(Figure 4, bottom panel). A detailed heat map summarizing Spearman’s correlations for 

milk and fecal HMO groups and fecal bacteria at the genus level as determined by NGS in 

the current study is included as Supplemental Figure 8 (online). While the determination of 

absolute abundances of HMOs in the milk and feces is beyond the scope of this paper, 

previous studies have demonstrated that HMO content in feces is about 50% of that in 

milk(7).

HMOs in the urine have been absorbed from the GI tract and filtered by the kidneys. Table 6 

presents associations between urine HMOs and fecal bacteria as determined by NGS. Note 

that Tables 4–6 include only structures correlated with changes in fecal phylum with p 

values < 0.1, ie the structures not listed did not demonstrate significant correlations. While 

the determination of absolute abundances of HMOs in the urine is beyond the scope of this 

paper, previous studies have demonstrated that HMO content in urine is about 20% of that in 

milk(7).

Discussion

Bifidobacteria and Bacteroidetes are the dominant fecal bacteria and the primary consumers 

of HMOs in healthy breast-fed term infants, but are generally rare in the feces of premature 

infants unless supplemented in the form of probiotics(19). In these infants, bifidobacteria 

and Bacteroidetes were present in very limited amounts confirming previous observations of 

the marked differences in the fecal microbiota between term and preterm infants(20). 

Bifidobacteria are associated with improved growth and vaccine responsiveness in term 

breast-fed infants in a developing country(21). In premature infants, administration of 

probiotics containing bifidobacteria leads to a decreased risk of NEC, a common and 
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devastating inflammatory disease of neonates(22, 23). In animal models and in vitro, 

bifidobacteria decrease inflammation and gut permeability(24, 25). In this small group of 

premature infants (none of whom received probiotic organisms), the numbers of 

bifidobacteria were low (< 1% of all bacteria).

Enterobacteriaceae (phylum Proteobacteria) include pathogens that are associated with NEC 

and sepsis in premature infants such as E. coli, Klebsiella, Enterobacter, Proteus, and 

Serratia. These organisms are rare in the healthy adult gut, but common and often dominant 

in the intestine of premature infants. Colonization with Klebsiella in the first week of 

life(26) and with Enterobacteriaceae in the second week of life(27) have both been 

associated with increased risk of later development of NEC (which generally presents at 2–6 

weeks of age). A bloom of these organisms has been demonstrated just prior to the onset of 

NEC in premature infants(28). Some of these bacteria are capable of inducing an 

inflammatory response in the host and then utilizing the products of inflammation to 

outcompete other intestinal bacteria(29, 30). The associations noted in these premature 

infants suggest that specific HMOs in human milk may decrease intestinal 

Enterobacteriaceae (e.g. fucosylated HMOs such as LDFT and LNFP V and structures that 

are both fucosylated and sialylated) while other HMOs in the milk are associated with 

increased intestinal Enterobacteriaceae (e.g. LNnH, 5031a and HMOs that contain neither 

fucose nor sialic acid). The mechanisms underlying these associations likely include both 

the host and interactions with other gut microbes as Enterobacteriaceae are unable to utilize 

HMOs as a food source(31).

The impact of host secretor status on susceptibility to various infections is well documented 

and somewhat balanced in the adult population such that both secretors and non-secretors 

have differing advantages against specific pathogens. Recent demonstration of rapid 

fucosylation of glycans on the luminal surface of the enterocyte in response to stimulation of 

Toll-like receptors 2, 4, and 9 suggest this response (possible only in the secretor individual) 

may be important in protecting and nourishing gut commensals in the midst of infection(32). 

In the premature infant, the inability of the non-secretor mother to provide key fucosylated 

HMOs appears to significantly influence the developing microbiota. The capacity of gut 

microbes to deconstruct specific linkages is a second promising mechanism underlying the 

observed associations. Recent studies have demonstrated marked differences between 

bacterial species in the capacity to consume specific HMOs(4) and marked differences at the 

species level in production of specific glycosidases(33).

Dysbiosis is often defined as alterations in the richness and diversity of the microbiota or 

more recently as delayed maturation of the microbiota of the infant(34). While increased 

diversity of the microbiota may be beneficial in the adult, limited data suggest that prior to 

weaning a less complex microbiota that is dominated by bifidobacteria is associated with 

improved health (e.g. growth, thymus size, and vaccine response)(21). Dysbiosis as a 

potentially alterable risk factor for NEC is based on several observations: increased risk of 

NEC with increased exposure to antibiotics(35) and acid suppressing agents(36) (both 

associated with dysbiosis), decreased risk of NEC with human milk(10) and probiotics(22) 

(both associated with less severe dysbiosis), and from direct observations(26). While human 

milk decreases the risk of NEC, it appears to have less of an impact on the microbiota of the 
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premature infant than other factors such as antibiotic exposure and environmental factors(20, 
37).

The observed differences in absorption of specific HMO structures is consistent with 

previous observations(7) and with the recent reports of HMOs in the plasma(6, 38). Further 

exploration of this area is needed to determine any effects of HMO in the systemic 

circulation and/or urinary tract. In addition, if these differences are consistent it may be 

possible to develop ratios of urine:fecal HMOs as a marker of gut permeability for the infant 

(similar to the lactulose:mannitol test in current use for children and adults).

The number of mother-infant dyads included in this study is too small to make any firm 

conclusions, but is reasonable to generate hypotheses for testing in future larger studies. 

Perhaps the most compelling hypotheses generated by these data include the following: 1) 

that human milk rich in fucosylated HMOs is protective against dysbiosis while human milk 

rich in HMOs without fucose or sialic acid increases the risk of dysbiosis, 2) that milk from 

non-secretor mothers may not be as protective against dysbiosis and NEC as milk from 

secretor mothers (this hypothesis is consistent with observations of increased sepsis and 

NEC in non-secretor babies who likely have non-secretor mothers(15)) and 3) that 

premature infant fecal HMO composition is a biomarker, with feces high in HMOs 

containing sialic acid (e.g. 3’SL) and HMOs with neither fucose nor sialic acid associated 

with dysbiosis and feces high in fucosylated HMOs (particularly LDFT) associated with less 

severe dysbiosis. Given the observation that fucosylation is an immature and inconsistent 

process in the mammary gland of the mother delivering prematurely, these data also suggest 

the hypothesis that premature infants may benefit from supplementation with fucosylated 

HMOs (e.g. through pooled donor human milk). Future studies to confirm these 

observations and to correlate milk HMO composition and fecal HMO composition with 

short term outcomes (e.g. NEC and sepsis) and long-term outcomes (e.g. growth and 

neurodevelopmental outcomes) would be valuable.

Materials and Methods

We collected specimens of stool and urine from 14 premature infants enrolled in a clinical 

trial of prebiotic supplementation(17) and milk from their mothers. The study was approved 

by the Institutional Review Board of the University of California Davis, informed consent 

was obtained prior to enrollment and the study was registered at clinicaltrials.gov 

(NCT00810160). Mean gestational age was 27 weeks at birth and 30 weeks at the time of 

enrollment. All infants were receiving enteral feedings of at least 100 ml/kg/d. Specimens 

described in this paper were obtained at baseline (prior to initiation of any supplement) from 

infants receiving exclusively their mother’s own milk (no donor human milk). Specimens 

were frozen at −40° C upon collection and transported on dry ice for analysis. Extraction 

and analysis of HMOs in milk, urine and feces was performed as previously described(7). 

The non-parametric Mann Whitney Rank Sum test was used to compare abundance of 

specific HMO structures in urine and stool and linear regression was used to correlate HMO 

abundance and fecal microbial abundance. As this study is predominantly a hypothesis 

generating exercise we reported all p values <0.1.
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Bacterial DNA was extracted from the stool specimens as described in the clinical trial(17), 

however in addition to the analyses by polymerase chain reaction and terminal restriction 

fragment length polymorphism (TRFLP) previously presented, the samples were analyzed 

by next generation sequencing for this paper. For these analyses, DNA library construction 

was carried out as previously described (39) and submitted to the UC Davis Genome Center 

DNA Technologies Core for sequencing on an Illumina MiSeq instrument (Illumina, San 

Diego CA). QIIME software package (University of Colorado. Boulder CO, version1.7.0) 

was used for quality filtering and demultiplexing the resulting sequencing data(40). OTUs 

were assigned using UCLUST (drive5.com, Tiburon, CA) based on 97% pairwise 

identity(41) and taxonomic classification was based on the Ribosomal Database Project 

classifier (Michigan State University, East Lansing, MI) against a representative subset of 

the Greengenes 16S rRNA database (Second Genome, South San Francisco, CA, 

gg_otus_12_10 release)(42, 43). Taxonomic relative abundance data from the QIIME data 

analysis was used to calculate correlations between HMO consumption and fecal bacteria 

abundance.

To visualize correlations between HMO consumption and fecal bacteria, custom R scripts 

were developed. HMO or bacterial populations with a maximum abundance less than 0.02 

were removed from further analysis. A Spearman’s correlation matrix was computed using 

the remaining HMO and bacteria features. The procedure was repeated at the phylum, order, 

and genus levels. We chose to use the Spearman's correlation because it is a nonparametric 

measure that is robust to outliers and does not require that the data be normally distributed.

Acknowledgments

Funding: This work was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human 
Development of the National Institutes of Health, Bethesda Maryland [grant numbers R01HD059127 and 
R01HD061923] and the National Center for Advancing Translational Sciences, National Institutes of Health, 
Bethesda Maryland [grant number UL1 TR000002]. DAM acknowledges support as the Peter J. Shields Endowed 
Chair in Dairy Food Science at UC Davis.

References

1. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the 
infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4653–8. 
[PubMed: 20679197] 

2. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk 
oligosaccharides. Trends Microbiol. 2010; 18:298–307. [PubMed: 20409714] 

3. Coppa GV, Gabrielli O, Zampini L, et al. Oligosaccharides in 4 different milk groups, 
Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr. 2011; 53:80–7. [PubMed: 
21478759] 

4. Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk 
oligosaccharides by isolated human gut microbes. Glycobiology. 2013; 23:1281–92. [PubMed: 
24013960] 

5. Coppa GV, Zampini L, Galeazzi T, et al. Human milk oligosaccharides inhibit the adhesion to 
Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr 
Res. 2006; 59:377–82. [PubMed: 16492975] 

6. Ruhaak LR, Stroble C, Underwood MA, Lebrilla CB. Detection of milk oligosaccharides in plasma 
of infants. Anal Bioanal Chem. 2014; 406:5775–84. [PubMed: 25059723] 

Underwood et al. Page 7

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. De Leoz ML, Wu S, Strum JS, et al. A quantitative and comprehensive method to analyze human 
milk oligosaccharide structures in the urine and feces of infants. Anal Bioanal Chem. 2013; 
405:4089–4105. [PubMed: 23468138] 

8. Lin AE, Autran CA, Espanola SD, Bode L, Nizet V. Human milk oligosaccharides protect bladder 
epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J Infect Dis. 2014; 
209:389–98. [PubMed: 23990566] 

9. Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development 
and cognition. Adv Nutr. 2012; 3:465S–72S. [PubMed: 22585926] 

10. Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of human milk in 
extremely low birth weight infants' risk of necrotizing enterocolitis or death. J Perinatol. 2009; 
29:57–62. [PubMed: 18716628] 

11. Gabrielli O, Zampini L, Galeazzi T, et al. Preterm milk oligosaccharides during the first month of 
lactation. Pediatrics. 2011; 128:e1520–31. [PubMed: 22123889] 

12. De Leoz ML, Gaerlan SC, Strum JS, et al. Lacto-N-tetraose, fucosylation, and secretor status are 
highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 
2012; 11:4662–72. [PubMed: 22900748] 

13. Maroni L, van de Graaf SF, Hohenester SD, Oude Elferink RP, Beuers U. Fucosyltransferase 2: A 
Genetic Risk Factor for Primary Sclerosing Cholangitis and Crohn's Disease-A Comprehensive 
Review. Clin Rev Allergy Immunol. 2015; 48:182–91. [PubMed: 24828903] 

14. Parmar AS, Alakulppi N, Paavola-Sakki P, et al. Association study of FUT2 (rs601338) with celiac 
disease and inflammatory bowel disease in the Finnish population. Tissue Antigens. 2012; 80:488–
493. [PubMed: 23075394] 

15. Morrow AL, Meinzen-Derr J, Huang P, et al. Fucosyltransferase 2 non-secretor and low secretor 
status predicts severe outcomes in premature infants. J Pediatr. 2011; 158:745–751. [PubMed: 
21256510] 

16. Totten SM, Zivkovic AM, Wu S, et al. Comprehensive profiles of human milk oligosaccharides 
yield highly sensitive and specific markers for determining secretor status in lactating mothers. J 
Proteome Res. 2012; 11:6124–6133. [PubMed: 23140396] 

17. Underwood MA, Kalanetra KM, Bokulich NA, et al. Prebiotic Oligosaccharides In Premature 
Infants. J Pediatr Gastroenterol Nutr. 2014; 58:352–60. [PubMed: 24135979] 

18. De Leoz ML, Kalanetra KM, Bokulich NA, et al. Human Milk Glycomics and Gut Microbial 
Genomics in Infant Feces Shows Correlation between Human Milk Oligosaccharides and Gut 
Microbiota: A Proof-of-Concept Study. J Proteome Res. 2015; 14:491–502. [PubMed: 25300177] 

19. Underwood MA, Kalanetra KM, Bokulich NA, et al. A comparison of two probiotic strains of 
bifidobacteria in premature infants. J Pediatrics. 2013; 163:1585–91.

20. Arboleya S, Binetti A, Salazar N, et al. Establishment and development of intestinal microbiota in 
preterm neonates. FEMS Microbiol Ecol. 2012; 79:763–72. [PubMed: 22126419] 

21. Huda MN, Lewis Z, Kalanetra KM, et al. Stool Microbiota and Vaccine Responses of Infants. 
Pediatrics. 2014; 134:e362–72. [PubMed: 25002669] 

22. Deshpande G, Rao S, Patole S, Bulsara M. Updated meta-analysis of probiotics for preventing 
necrotizing enterocolitis in preterm neonates. Pediatrics. 2010; 125:921–30. [PubMed: 20403939] 

23. Jacobs SE, Tobin JM, Opie GF, et al. Probiotic Effects on Late-onset Sepsis in Very Preterm 
Infants: A Randomized Controlled Trial. Pediatrics. 2013; 132:1055–62. [PubMed: 24249817] 

24. Ganguli K, Meng D, Rautava S, Lu L, Walker WA, Nanthakumar N. Probiotics prevent necrotizing 
enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. 
Am J Physiol Gastrointest Liver Physiol. 2013; 304:G132–41. [PubMed: 23139215] 

25. Bergmann KR, Liu SX, Tian R, et al. Bifidobacteria stabilize claudins at tight junctions and 
prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol. 2013; 
182:1595–1606. [PubMed: 23470164] 

26. Torrazza RM, Ukhanova M, Wang X, et al. Intestinal microbial ecology and environmental factors 
affecting necrotizing enterocolitis. PLoS One. 2013; 8:e83304. [PubMed: 24386174] 

27. Morrow AL, Lagomarcino AJ, Schibler KR, et al. Early microbial and metabolomic signatures 
predict later onset of necrotizing enterocolitis in preterm infants. Microbiome. 2013; 1:13. 
[PubMed: 24450576] 

Underwood et al. Page 8

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Mai V, Young CM, Ukhanova M, et al. Fecal microbiota in premature infants prior to necrotizing 
enterocolitis. PLoS One. 2011; 6:e20647. [PubMed: 21674011] 

29. Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron 
acceptor for Salmonella. Nature. 2010; 467:426–9. [PubMed: 20864996] 

30. Winter SE, Winter MG, Xavier MN, et al. Host-derived nitrate boosts growth of E. coli in the 
inflamed gut. Science. 2013; 339:708–11. [PubMed: 23393266] 

31. Marcobal A, Barboza M, Froehlich JW, et al. Consumption of human milk oligosaccharides by 
gut-related microbes. J Agric Food Chem. 2010; 58:5334–40. [PubMed: 20394371] 

32. Pickard JM, Maurice CF, Kinnebrew MA, et al. Rapid fucosylation of intestinal epithelium sustains 
host-commensal symbiosis in sickness. Nature. 2014; 514:638–41. [PubMed: 25274297] 

33. Sela DA, Mills DA. The marriage of nutrigenomics with the microbiome: the case of infant-
associated bifidobacteria and milk. Am J Clin Nutr. 2014; 99:697S–703S. [PubMed: 24452239] 

34. Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished 
Bangladeshi children. Nature. 2014; 510:417–21. [PubMed: 24896187] 

35. Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is 
associated with increased rates of necrotizing enterocolitis and death for extremely low birth 
weight infants. Pediatrics. 2009; 123:58–66. [PubMed: 19117861] 

36. Chung EY, Yardley J. Are there risks associated with empiric acid suppression treatment of infants 
and children suspected of having gastroesophageal reflux disease? Hosp Pediatr. 2013; 3:16–23. 
[PubMed: 24319831] 

37. Taft DH, Ambalavanan N, Schibler KR, et al. Intestinal microbiota of preterm infants differ over 
time and between hospitals. Microbiome. 2014; 2:36. [PubMed: 25332767] 

38. Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk 
oligosaccharides in the circulation of breastfed infants. PLoS One. 2014; 9:e101692. [PubMed: 
24999728] 

39. Bokulich NA, Mills DA. Facility-specific "house" microbiome drives microbial landscapes of 
artisan cheesemaking plants. Appl Environ Microbiol. 2013; 79:5214–23. [PubMed: 23793641] 

40. Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of 
millions of sequences per sample. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1):4516–22. 
[PubMed: 20534432] 

41. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 
26:2460–1. [PubMed: 20709691] 

42. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA 
sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73:5261–7. [PubMed: 
17586664] 

43. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene 
database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72:5069–72. 
[PubMed: 16820507] 

Underwood et al. Page 9

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Relative abundance of groups of HMOs in the milk, urine, and feces for each of the 14 

mother-infant dyads. White: fucosylated HMOs, black: sialylated HMOs, grey: fucosylated 

and sialylated HMOs, hatched: HMOs with neither fucose nor sialic acid. Panels A=patient 

4, B=patient 6, C=patient 9, D=patient 10, E=patient 13, F=patient 14, G=patient 16, 

H=patient 18, I=patient 20, J=patient 21, K=patient 22, L=patient 26, M=patient 27, 

N=patient 30. M=milk, F=feces, U=urine, NA=specimen not available.
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Figure 2. 
Composition of the fecal microbiota determined by Next Generation Sequencing in twelve 

of the infants (6 with secretor mothers and 6 with non-secretor mothers). A. Phylum level, 

White: Actinobacteria, black: Bacteroidetes, grey: Firmicutes, hatched: Proteobacteria. B 

Order level. White: Bifidobacteriales, black: Bacteroidales, grey: Bacillales, hatched: 

Lactobacillales, dots: Clostridiales, light grey: Enterobacteriales, double hatched: 

Pseudomonadales, vertical stripes: others.
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Figure 3. 
Linear regression associations between groups of milk HMOs and fecal microbes by phylum 

(n=12). A. R2=0.63, p=0.002. B. R2=0.31, p=0.06. C. R2=0.36, p=0.04. D. R2=0.48, p=0.01. 

E. R2=0.42, p=0.02.

Underwood et al. Page 12

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Heat map demonstrating correlations between milk HMO groups and fecal bacterial orders 

(top) and between fecal HMO groups and fecal bacterial orders (bottom). Colors represent 

strength of correlations with deep blue representing Spearman’s rho=1 and deep red 

representing Spearman’s rho=−1.
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Table 1

Mean percentage of HMO structures in the milk, urine, and feces.

Structure Mass Milk (N=14), Mean% (SD) Urine (N=12), Mean% (SD) Feces (N=13), Mean% (SD)

3’FL 490.1893 0.277 (0.647) 0.761 (1.65) 0.0546 (0.0988)

2’FL 490.1908 22.0 (22.3) 8.67 (11.4) 9.22 (12.9)

LDFT 636.2476 2.63 (3.73) 5.10 (6.64) 3.06 (3.40)

LNT/LNnT 709.2654/709.2655 22.6 (17.5) 29.6 (25.0) 25.0 (17.1)

LNFP II 855.3199 1.67 (2.46) 0.779 (1.91) 4.12 (5.15)

LNFP III 855.3225 0.614 (1.22) 0.201 (0.406) 1.17 (1.99)

LNFP I 855.3233 0.764 (1.64) 4.78 (9.15) 0.767 (1.87)

LNFP V 855.3223 7.24 (9.87) 12.3 (13.9) 4.63 (9.03)

LNDFH I/LNDFH II 1001.378/1001.3813 2.47 (5.90) 1.22 (2.09) 7.04 (11.7)

LNH 1074.4017 3.73 (2.77) 1.90 (3.16) 2.03 (1.55)

LNnH 1074.3946 2.20 (1.82) 1.75 (2.44) 1.48 (1.48)

pLNH 1074.3957 1.47 (1.79) 0.445 (0.497) 1.48 (1.99)

A-hepta 1204.468 0 (0) 0.0193 (0.0670) 0.116 (0.410)

6 structuresa 1220.455-1220.474 4.45 (4.12) 6.45 (7.63) 6.13 (3.41)

4 structuresb 1366.510-1366.522 2.42 (3.09) 3.30 (4.80) 3.53 (2.34)

TFLNH 1512.576 0.210 (0.233) 0.138 (0.265) 0.424 (0.517)

5130a 1585.583 0.566 (0.817) 0.0113 (0.0392) 0.611 (0.832)

5130b 1585.585 0.112 (0.173) 0.326 (0.417) 0.478 (0.382)

5130c 1585.585 0.150 (0.262) 0.0742 (0.156) 0.289 (0.326)

F-LNO 1585.588 0.550 (0.585) 0.183 (0.431) 0.338 (0.356)

6 structuresc 1731.642-1731.649 0.632 (0.757) 0.274 (0.584) 1.29 (1.00)

TFiLNO, 5330a 1877.699-1877.702 0 (0) 0 (0) 0.104 (0.260)

6140a 1950.719 0.224 (0.369) 0 (0) 0.178 (0.328)

6’SL 635.229 1.81 (2.35) 0.803 (2.78) 4.62 (6.43)

3’SL 635.227 1.01 (0.878) 4.62 (8.16) 0.865 (1.24)

6’SLN 676.254 0.0454 (0.0916) 2.31 (3.52) 0.823 (2.33)

3’SLN 676.252 0 (0) 1.68 (4.16) 0.00230 (0.00827)

3’Sle 822.314 0 (0) 0.085 (0.116) 0 (0)

LSTa/b/c 1000.362-1000.365 11.0 (10.8) 6.35 (5.39) 11.8 (12.2)

F-LSTc 1146.419 1.35 (2.08) 0.0654 (0.150) 1.36 (2.24)

DSLNT 1291.446 0.239 (0.457) 0.412 (0.543) 0.242 (0.618)

S-LNH 1365.495 0.490 (0.725) 0.484 (0.449) 0.296 (0.368)

4021a 1365.494 0.715 (0.980) 0.570 (1.97) 0.768 (0.979)

S-LNnH II 1365.494 1.97 (2.16) 0.962 (1.53) 1.08 (1.22)

4021b 1365.491 0.221 (0.287) 0.151 (0.284) 0.166 (0.213)

7 structuresd 1511.547-1511.554 3.13 (2.27) 2.68 (2.73) 3.38 (2.71)
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Structure Mass Milk (N=14), Mean% (SD) Urine (N=12), Mean% (SD) Feces (N=13), Mean% (SD)

DFS-LNH 1657.612 0.234 (0.214) 0.183 (0.279) 0.190 (0.295)

5031a 1730.622 0.203 (0.251) 0.113 (0.188) 0.230 (0.268)

FS-LNO/5131a 1876.682 0.108 (0.142) 0.0456 (0.745) 0.259 (0.368)

6041a 2095.76 0.0455 (0.0703) 0 (0) 0.0996 (0.179)

The structures underlined and highlighted in bold are found in milk and are more than 5 fold more abundant in urine than feces. The structures 
underlined and in italics are found in milk and are more than 5 fold more abundant in feces than urine.

The following structures were detectable in at least one specimen of milk, urine and feces with a mean of less than 0.1%: 4320a, Tetra-iso-LNO

The following structures were not detected in any milk or urine samples, but were detected in at least one fecal sample at a mean of less than 0.1%: 
6340a, 6340b, 6340c, 6440a, 5231a, 5231b, 5331a.

The following structure was not detected in any urine samples, but was detected in at least one milk and and one fecal sample at a mean of less than 
0.1%: 6240a

a
MFpLNH IV, 4120a, MFLNH III, MFLNH I, IFLNH III, and IFLNH I

b
DFpLNH II, DFLNHb, DFLNHa, DFLNHc

c
DFLNO I, DFLNnO II, 5230a, DFLNnO I, DFLNO II, 5230b

d
4121a, 4121b, FS-LNH III, FS-LNH, FS-LNH I, FS-LNnH I, FS-LNH II
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Table 2

Mean percentages of groups of HMOs in milk, urine and feces.

Structure Milk (N=14), Mean% (SD) Urine (N=12), Mean% (SD) Feces (N=13), Mean% (SD)

Fucose + Sialic acid 4.91 (3.81) 3.26 (3.32) 5.60 (5.52)

Fucose 46.9 (24.0) 40.3 (21.4) 41.5 (22.9)

Sialic acid 17.0 (13.6) 20.1 (13.0) 19.8 (20.2)

No Fucose or Sialic acid 31.2 (16.9) 36.3 (24.5) 33.1 (20.1)
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Table 4

Associations between milk HMOs and fecal bacterial phyla.

Milk HMO Fecal Bacteria Correlation R-squared P value

2’FL Proteobacteria negative 0.27 0.09

LDFT Proteobacteria negative 0.42 0.02

LNFP V Proteobacteria negative 0.37 0.04

LNnH Proteobacteria positive 0.37 0.04

5031a Proteobacteria positive 0.35 0.04

2’FL Firmicutes positive 0.40 0.03

LDFT Firmicutes positive 0.56 0.005

LNFP V Firmicutes positive 0.51 0.009

LNH Firmicutes negative 0.34 0.05

LNnH Firmicutes negative 0.34 0.05

4120 (six structures) Firmicutes negative 0.25 0.09

TFLNH Firmicutes positive 0.29 0.07

3’SL Firmicutes negative 0.28 0.08

5031a Firmicutes negative 0.32 0.05
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Table 5

Associations between fecal HMOs and fecal bacterial phyla.

Fecal HMO Fecal bacteria Correlation R-squared P value

LDFT Proteobacteria negative 0.40 0.03

LNH Proteobacteria positive 0.35 0.04

4120 (six structures) Proteobacteria positive 0.41 0.03

5130a Proteobacteria positive 0.63 0.002

5230 (five structures) Proteobacteria positive 0.45 0.02

6140a Proteobacteria positive 0.25 0.098

3’SL Proteobacteria positive 0.29 0.07

5031a Proteobacteria positive 0.27 0.08

6041a Proteobacteria positive 0.36 0.04

LDFT Firmicutes positive 0.55 0.006

4120 (six structures) Firmicutes negative 0.26 0.09

5130a Firmicutes negative 0.58 0.004

5230 (five structures) Firmicutes negative 0.36 0.04

6140a Firmicutes negative 0.25 0.099

6041a Firmicutes negative 0.31 0.06
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Table 6

Associations between urine HMOs and fecal bacterial phyla.

Urine HMO Fecal bacteria Correlation R-squared P value

Sialylated HMOs Proteobacteria positive 0.35 0.05

p-LNH Proteobacteria positive 0.34 0.06

5130b Proteobacteria positive 0.30 0.08

3’Sle Proteobacteria positive 0.29 0.09

Sialylated HMOs Firmicutes negative 0.39 0.04

2’FL Firmicutes positive 0.33 0.07

p-LNH Firmicutes negative 0.35 0.05

5130b Firmicutes negative 0.31 0.08

3’Sle Firmicutes negative 0.28 0.09
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