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Abstract

Post-transcriptional regulatory elements associated with transcript degradation or transcript

instability have been described at the 3’ untranslated region (3’UTR) of the HLA-G gene.

Considering that HPV infection and aneuploidy, which causes gene instability, are associ-

ated with cervical cell malignancy, as well as the fact that HIV infection and HLA-G may

modulate the immune response, the present study aimed to compare the frequencies of

HLA-G 30UTR polymorphic sites (14-base pair insertion/deletion, +3142C/G, and +3187A/

G) between 226 HIV+ women co-infected (n = 82) or not with HPV (n = 144) and 138 healthy

women. We also evaluated the relationship between those HLA-G 3’UTR variants and

aneuploidy in cervical cells. HPV types and HLA-G polymorphisms were determined by

PCR and sequencing of cervical samples DNA. Aneuploidy in cervical cell was measured by

flow cytometry. The HLA-G 3’UTR 14-bp ins/del was not associated with either HIV nor HIV/

HPV co-infection. The +3142G allele (p = 0.049) and +3142GG genotype (p = 0.047) were

overrepresented in all HIV-infected women. On the other hand, the +3187G allele (p =

0.028) and the +3187GG genotype (p = 0.026) predominated among healthy women. The

+3142G (p = 0.023) and +3187A (p = 0.003) alleles were associated with predisposition to

HIV infection, irrespective of the presence or not of HIV/HPV co-infection. The diplotype

formed by the combination of the +3142CX (CC or CG) and +3187AA genotype conferred

the highest risk for aneuploidy in cervical cell induced by HPV. The HLA-G 3’UTR +3142

and +3187 variants conferred distinct susceptibility to HIV infection and aneuploidy.
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Introduction

The human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex

molecule, characterized by low protein variability and restricted tissue distribution. HLA-G

was initially identified in cytotrophoblast cells and plays an important role in the modulation

of the immune response by inhibiting maternal NK and CD8+ T cytotoxic cells, and inducing

IL-10 producing T regulatory cells at the maternal-fetal interface, which are crucial events for

fetus survival [1,2]. Low level of placental HLA-G has been associated with the development of

eclampsia and repeated abortion episodes [3]. The immune checkpoint HLA-G molecule has a

well-recognized role on the inhibition of several functions of the innate and adaptive immune

responses [4].

HLA-G expression may be differentially modulated by variation sites especially those at the

regulatory regions of the HLA-G gene (promoter and 3’ untranslated sequence) [5–7]. Three

variation sites at the HLA-G 3’ untranslated region (3’UTR) are important for the post-tran-

scriptional regulation of HLA-G: the 14-base pair (14-bp) insertion/deletion variants influence

HLA-G mRNA stability [8,9], the +3142C/G variants regulate HLA-G expression mediated by

specific microRNAs [10,11], and the +3187A/G variants affect HLA-G mRNA degradation

[12]. Polymorphic sites observed at HLA-G 3’UTR have also been associated with risk to

develop cancer [13], autoimmunity disorders [14,15], and infectious diseases [11,16], among

other conditions.

HLA-G 3’UTR alleles have been associated with susceptibility to human immunodeficiency

virus (HIV) infection in adults [6,17] and in perinatal HIV transmission [18]. HIV+ women

have a higher risk of developing human papillomavirus (HPV) co-infection, which is the

major cause of human cervical cancer [19,20]. HPV infection [9,11,21–23] and HPV-associ-

ated cervical cancer [24–26] have also been associated with the presence of polymorphic sites

at the HLA-G gene, irrespective of HIV infection.

In a previous study, we reported a high frequency (47.5%) of HPV infection among HIV+

women from the state of Pernambuco, northeast Brazil, and 59% of those women harbored

high-risk HPV types. Despite the high frequency of HPV infection, we observed a low occur-

rence of cervical lesions in the HIV+ women, which was attributed to the high adherence to

antiretroviral therapy [27]. In addition, we observed an association between cellular intrae-

pithelial neoplasia and the presence of aneuploid cells, which causes genomic instability in cer-

vical cells of HIV+/HPV+ women [28].

Considering that, i) the HPV infection is associated with several stages of cervical cell differ-

entiation, ii) the HIV infection and HLA-G may modulate the immune response, iii) the

HLA-G 3’UTR segment has several post-transcriptional control elements for HLA-G expres-

sion, and iv) aneuploidy is one of the first events in cervical cancer development, the present

study aimed to compare the frequencies of HLA-G 30UTR polymorphic sites (14-bp ins/del,
+3142C/G and +3187A/G) between HIV+ women co-infected or not with HPV and healthy

women, and to evaluate the association of these HLA-G 3’UTR variants with aneuploidy in cer-

vical cells.

Methodology

Study design and ethical consideration

We performed a case-control study comprising 226 HIV+ women followed-up at the Correia

Picanço and the Integrated Health Centre Amaury de Medeiros (CISAM) Hospitals of Recife,

capital of the state of Pernambuco, northeast Brazil. Of the 226 HIV+ patients, 82 (36.3%) were

co-infected with HPV and 144 (63.7%) were not co-infected with HPV. In parallel, we studied
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138 HIV- healthy women followed-up at CISAM for routine examination. The study was

approved by the Research Ethics Committee of CISAM under the protocol CAEE:

0011.0.250.000–05. All women agreed to participate in the study and signed a free and

informed consent before any assessment.

Data collection

All women answered a questionnaire for clinical and epidemiological assessment, before

undergoing colposcopy and cytological examination. Colposcopy was performed according to

the criteria of the International Nomenclature of Colposcopy Aspects of Rome [27–28]. Endo-

cervical samples collected using cytobrush were used for cytological analysis, detection of HPV

co-infection and immunogenetic studies. Cervical biopsy was performed whenever colpo-

scopic alterations were present and the cervical tissue fragments were preserved in 10% forma-

lin for histopathological analysis. The clinical procedures and the analysis and interpretation

of the cervical cancer screening followed the recommendations of the Brazilian guidelines for

cervical cancer screening [29]. Details on clinical characterization of HIV+ infected patients

have been previously described [27]. Healthy women were not tested for HPV.

Detection of HIV/HPV co-infection

Genomic DNA was extracted from cervical samples using proteinase K (Invitrogen, CA,

USA) following the protocol described by Martins et al. 2014 [27]. Subsequently, the DNA

samples were amplified by polymerase chain reaction (PCR), using the human glyceralde-

hyde phosphate dehydrogenase (GAPDH) gene to evaluate sample quality. GAPDH-positive

samples were then subjected to another PCR using the degenerate primers, MY09 and

MY11, complementary to the L1 region of the HPV genome [30]. PCR products were visual-

ized on a 2% agarose gel stained with 0.5 μg/mL ethidium bromide. The presence of a 450 bp

DNA fragment confirmed HIV/HPV co-infection. HPV typing was determined by sequenc-

ing the HPV-amplified DNA using the Big Dye Terminator kit and the ABI3100 Genetic

Analyzer (Applied Biosystems, Foster City, CA). Sequencing chromatograms were visualized

using the MEGA 5.0 software [31] for evaluation of the sequence quality. Analysis of

sequence data and sequence similarity searches were performed using the Blast-N tool of

the National Center for Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/

Blast.cgi).

Aneuploidy in cervical cell

Cervical cells were lysed using Pharm Lyse lysing buffer (Becton Dickinson, New Jersey, USA)

for 30 minutes prior incubation with RNA solution (100 μg/mL) and propidium iodide. DNA

fluorescence was measured by flow cytometry (laser excitation at 488 nm and emission above

600 nm), and DNA index was estimated through by comparison the ratio of the DNA content

of cells analyzed with labeled blood diploid cells using the ModFitLT V3.0 software (Verity

Software House Inc., Topsham, USA). The presence of two peaks on a histogram with a DNA

index greater than 1.16 (hyperploidy) or less than 1.00 (hypoploidy), each with more than 10%

of the cell population analyzed in the area corresponding to G0–G1 of the cell cycle in the sam-

ple, was considered to be aneuploidy [28].

Polymorphism of the HLA-G 3’ untranslated region

Polymorphic sites between the +2945 and +3259 positions of the HLA-G gene were identified

as described by Castelli et al. (2010) [32]. Briefly, amplification was performed in a final
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volume of 25 μL containing 25 pmol of each primer (HG08F and HG08R), 50 ng of genomic

DNA, 1x PCR buffer (20 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2), 0.3 mM dNTP, and 1 U

Taq DNA polymerase (BioTools, Madrid, Spain). The cycling conditions included one cycle at

94˚C for 3 min, followed by 40 cycles at 94˚C for 30 s, 60˚C for 60 s, 72˚C for 30 s, and a final

extension step at 72˚C for 7 min. A 350 bp amplified fragment was sequenced with the reverse

primer, HG08R. All polymorphic sites were identified using SeqMan software version 7.0.0

(DNAStar Inc., Madison, USA) and individually annotated.

Data analyses

The clinical-epidemiological and laboratory data were analyzed using the Excel 2007 software.

HPV types were classified according to their phylogenetic characteristics, as previously

reported by de Villiers et al. (2004) [33]. Thirty (43.0%) viral isolates were classified as low-risk

(HPV 6, 11, 61, 54, 62, 71, 72, 81, 84, 85, 86) and forty (57.0%) were classified as high-risk

(HPV 16, 18, 31, 33, 45, 52, 53, 56, 58, 59, 66, 69, 70, 82). We were able to present the frequency

of virus types in only 70 patients. The lack of HPV genotype information for 14.6% of the cases

was due to the low quality of the sequencing chromatogram, including cases of mixed-HPV

subtype infection [27]. However, for the study of the frequencies of HLA-G 3’UTR variants, we

were able to evaluate 82 HIV+/HPV+ patients (not all HPV-typed). Data were analyzed using

the statistical software Stata 10.0 (Stata Corp LP, USA). Odds ratios (OR) and their respective

95% confidence intervals (CI95%) and p-values (χ2 test and the likelihood ratio) were esti-

mated in the univariate analysis. Associations with p< 0.05 were considered significant. Vari-

ables with p< 0.25 were included in the multivariate analysis. The non-parametric Mann-

Whitney U test was used when appropriate. The allele and genotype frequencies of the three

polymorphic sites 14-bp ins-del, +3142C/G, and +3187A/Gwere estimated by direct counting

using the GENEPOP software version 3.4 [34]. The two-tailed Fisher exact test was used to

compare the allele and genotype frequencies between HIV+ and healthy women, and between

HIV+ women co-infected with HPV or not. The association between diplotype frequencies

and aneuploidy were estimated by logistic regression. Results were considered significant at

p< 0.05. Bonferroni correction was performed when necessary. Contingency tables were ana-

lyzed using the software GraphPad Prism version 5.01 for Windows (GraphPad Software, San

Diego, CA, www.graphpad.com).

Results

Clinical features of the studied patients

In the present study, we evaluated 226 women from a HIV-infected cohort that had been pre-

viously studied by our research group and had shown low frequency of high-grade cervical

lesion and high adherence to antiretroviral therapy [27], which is provided at no cost to the

patient by the Brazilian government. Unfortunately, the research group did not have access to

the histological reports of all women that participated in the study because the program for

cervical cancer screening subsidized by the Brazilian Ministry of Health determines that histo-

logical evaluation must only be performed in women who had cytological abnormalities and

atypical colposcopy findings what was not the case for several of the studied patients. Details of

demographic and clinical features of HIV+ women co-infected or not with HPV are shown in

Table 1. HIV+/HPV+ women presented a 5.5-fold higher risk of altered cervical cytology

(p< 0.000) and a 2.0-fold higher risk of chromosomal aberration in cervical cells (p = 0.036)

than HIV+/HPV- women.
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HLA-G 3’ UTR polymorphisms

First, we compared the frequency of the HLA-G 3’UTR variants between all the HIV+ women

(n = 226) and the healthy women (n = 138). The +3142G allele (p = 0.049) and the +3142GG
genotype (p = 0.047) were overrepresented in the HIV+ women, while the +3187G allele

(p = 0.028) and the +3187GG genotype (p = 0.026) predominated among healthy women. No

significant differences were observed for the 14-bp ins/del polymorphism between HIV+ and

healthy women (Table 2).

Secondly, we compared the frequency of the same HLA-G 3’UTR variants between HIV+/

HPV+ women (n = 82) and healthy controls (n = 138), and no significant results were

observed. In contrast, when HIV+/HPV- women (n = 144) were compared to healthy controls,

several differences were observed: the +3142G allele (p = 0.023) and the +3142GG genotype

(p = 0.038) were associated with susceptibility to HIV infection, and the +3187A alleles

Table 1. Clinical and epidemiological characteristics of HIV-infected women according the HPV co-infection status attending three reference centers for HIV/

AIDS in Recife, northeast of Brazil.

HIV+

Characteristics HPV+ HPV- p OR 95% Cl

N = 82 (%) N = 144 (%)

Age (median = 35 years)

� 34 years 36 46.2 78 58.6 0.087 0.60 0.34–1.06

<34 years 42 53.8 55 41.4

Total 78 100.0 133 100.0

Presence of histological alterations

Yes 9 60.0 3 37.5 0.4003 2.50 0.42–14.61

No 6 40.0 5 62.5

Total 15 100.0 8 100.0

Presence of cytological alterations

Yes 20 29.9 9 7.1 < 0.000 5.53 2.35–13.03

No 47 70.1 117 92.9

Total 67 100.0 126 100.0

CD4+ T lymphocyte count

<200/mm3 10 16.4 7 6.5 0.0607 2.80 1.00–7.79

�200/mm3 51 83.6 100 93.5

Total 61 100.0 107 100.0

Use of anti-retrovirus treatment

No 16 25.4 19 17.0 0.237 1.67 0.78–3.53

Yes 47 74.6 93 83.0

Total 63 100.0 112 100.0

Cellular ploidy

Aneuploidy 22 31.4 24 18.2 0.036 2.06 1.05–4.03

Diploidy 48 68.6 108 81.8

Total 70 100.0 132 100.0

HIV+, women infected by Human Immunodeficiency Virus; HPV+, women infected by Human Papilloma Virus; (-) Not infected women; N, number of individuals;

OR, odds ratio; CI, confidence interval. P was estimated by Fisher’s exact two-tailed test. Cytological alterations: atypical squamous cells of undetermined significance

(ASCUS), atypical squamous cells-cannot exclude high-grade squamous intraepithelial lesion (ASC-H), low-grade squamous intraepithelial lesion (LGSIL), and high-

grade squamous intraepithelial lesion (HGSIL). Histological alterations: cervical intraepithelial neoplasia (CIN) I, CIN II, and CIN III.

Note: In most of HIV-infected patients, cervical biopsies were not performed, because the program for cervical cancer screening subsidized by the Brazilian Ministry of

Health determines that histological evaluation must only be executed in women who had cytological abnormalities and atypical colposcopy findings.

https://doi.org/10.1371/journal.pone.0204679.t001
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(p = 0.003) and +3187AA genotype (p = 0.036) were overrepresented in HIV+/HPV- patients.

The power of association between the +3142C/G and +3187A/G polymorphisms and suscepti-

bility to HIV infection increased when the HIV+/HPV+ women were excluded from the HIV+

group. The +3187G allele was overrepresented in HIV+/HPV+ women (p = 0.036). The +-
3187A/G allelic frequencies of HIV+/HPV- women and healthy women were significantly dif-

ferent (p = 0.018) even after correction for multiple comparison using the Bonferroni test,

considering three polymorphic sites and two alleles. No significant differences were observed

regarding the 14-bp ins/del polymorphism between HIV+/HPV- and control women. The

HLA-G +3142GG/+3187AAdiplotype showed a trend increase (p = 0.071) in the group of

HIV+ women compared to healthy women (Table 3).

Association of HLA-G 30 UTR polymorphisms with aneuploidy in cervical cell

We recently reported a lack of association between aneuploidy in cervical cells and HIV+/HPV+

co-infection (p = 0.22), low-risk (p = 0.43) or high-risk HPV (p = 0.17), and cytological alteration

(p = 0.35) in the HIV-infected women cohort [28]. However, aneuploidy was associated with

Table 2. Allelict and genotypic frequencies of HLA-G 3’ untranslated region (3’UTR) polymorphic sites of the HLA-G gene in the controls group and in HIV-

infected women stratified according to the presence of HIV/HPV co-infection.

Polymorphisms

sites

HIV+ HIV- aHIV+ vs. Control bHIV+ vs. Control cHIV+ vs. Control dHIV+

HPV- vs. HPV+

HPV+ HPV- Control HPV+ and

HPV-
HPV+ HPV-

N (%) N (%) N (%) p OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI

Alleles 14 bp ins/del 164 288 276

ins 68 41.5 116 40.0 109 39.5 0.756 1.05 0.77–1.43 0.689 1.09 0.73–1.61 0.864 1.03 0.74–1.45 0.842 0.95 0.65–1.41

del 96 58.5 172 60.0 167 60.5 0.756 0.95 0.70–1.30 0.689 0.92 0.62–1.36 0.864 0.97 0.69–1.36 0.842 1.05 0.71–1.55

Genotypes 82 144 138

ins/ins 15 18.3 25 17.3 21 15.2 0.566 1.20 0.67–2.13 0.575 1.25 0.60–2.58 0.633 1.17 0.62–2.20 0.858 0.94 0.46–1.90

ins/del 38 46.3 66 45.8 67 48.6 0.666 0.90 0.59–1.38 0.781 0.92 0.53–1.58 0.721 0.90 0.56–1.43 1.000 0.98 0.59–1.69

del/del 29 35.4 53 36.8 50 36.2 1.000 1.00 0.64–1.56 1.000 0.96 0.54–1.70 1.000 1.03 0.63–1.66 0.886 1.06 0.60–1.87

Alleles +3142C/G 162 276 276

C 64 39.5 92 33.9 119 43.1 0.049 0.73 0.54–0.99 0.484 0.86 0.58–1.28 0.023 0.66 0.47–0.93 0.215 0.77 0.51–1.14

G 98 60.5 184 66.1 157 56.9 0.049 1.37 1.00–1.86 0.483 1.16 0.78–1.72 0.023 1.52 1.07–2.14 0.215 1.31 0.87–1.95

Genotypes 81 138 138

CC 17 21.0 20 15.0 29 21.0 0.331 0.76 0.44–1.31 1.000 0.99 0.51–1.96 0.207 0.64 0.34–1.19 0.263 0.64 0.31–1.30

CG 30 37.0 52 37.9 61 44.2 0.223 0.76 0.49–1.16 0.322 0.74 0.42–1.30 0.327 0.76 0.47–1.23 1.000 1.03 0.58–1.81

GG 34 42.0 66 47.1 48 34.8 0.047 1.58 1.01–2.45 0.313 1.35 0.77–2.38 0.038 1.72 1.06–2.79 0.483 1.27 0.73–2.20

Alleles +3187A/G 158 276 264

A 111 70.3 219 79.5 180 68.2 0.028 1.48 1.05–2.09 0.665 1.10 0.72–1.7 0.003� 1.79 1.21–2.65 0.036 1.63 1.04–2.55

G 47 29.7 57 20.5 84 31.8 0.028 0.68 0.48–0.95 0.665 0.91 0.59–1.40 0.003� 0.56 0.38–0.82 0.036 0.61 0.39–0.96

Genotypes 79 138 132

AA 40 50.6 88 63.8 67 50.8 0.149 1.40 0.90–2.16 1.000 0.99 0.57–1.74 0.036 1.71 1.05–2.80 0.064 1.72 0.98–3.01

AG 31 39.2 43 31.2 46 34.8 0.908 0.97 0.61–1.52 0.556 1.21 0.68–2.15 0.605 0.85 0.51–1.41 0.237 0.70 0.39–1.25

GG 8 10.1 7 05.0 19 14.4 0.026 0.44 0.22–0.90 0.403 0.67 0.28–1.21 0.012 0.32 0.13–0.78 0.269 0.51 0.18–1.45

HIV+, women infected by Human Immunodeficiency Virus; HPV+, women infected by Human Papilloma Virus; (-) Not infected women; N, number of individuals;

OR, odds ratio; CI, confidence interval. Statistics used was Fisher’s exact two-tailed test. Bold values denote differences statistically significant with P< 0.05. (�) P-value

statistically significant after Bonferroni correction.
a Comparison of genetic frequencies between overall HIV-infected women and immunocompetent women (control group)
b Comparison of genetic frequencies between HIV-infected women with HIV/HPV co-infection and control group
c Comparison of genetic frequencies between HIV-infected women without HIV/HPV co-infection and control group
d Comparison of genetic frequencies between HIV-infected women without and with HIV/HPV co-infection

https://doi.org/10.1371/journal.pone.0204679.t002
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histological lesion (p = 0.03) [28]. Considering that aneuploidy is a phenomenon associated with

cervical cell transformation, and HLA-G is an immune checkpoint protein with inhibitory effect

on several immune cells, we hypothesized that women harboring HLA-G 3’UTR alleles associated

with high HLA-G expression may also have higher risk to develop aneuploidy.

Thirty four samples were excluded from HIV+ group (n = 226) because they either had no

data on cellular ploidy (n = 24) or lacked polymorphism information (n = 10). Comparing the

diplotype distribution of women with cervical cells presenting or not aneuploidy, we observed

that the +3142GG/+3187AAdiplotype was the most prevalent in both aneuploid (45.45%) and

diploid (43.92%) cervical cells. Considering the double heterozygous +3142CG/+3187AG
diplotype as reference and using the logistic regression model, we observed that: (i) diplotypes

defined by +3142CC/+3187GX,where X is either the G or A allele, showed no differences

related to ploidy (Table 4), (ii) the double heterozygous diplotype (+3142CG/+3187AG) was

the second most prevalent in the diploid group (29.05%) and was underrepresented in the

Table 3. Diplotypes frequencies of HLA-G 3’ untranslated region (3’UTR) polymorphic sites of the HLA-G gene in the controls group and in HIV-infected women.

HLA-G
+3142/+3187 diplotypes

aHIV+ HIV- aHIV+ vs. Control

HPV+ and HPV- Control HPV+ and HPV-

N (%) N (%) p OR 95% CI

+3142CC/+3187AA 8 03.0 2 01.5 0.330 2.50 0.52–11.96

+3142CG/+3187AA 25 11.0 21 15.9 0.257 0.69 0.37–1.29

+3142GG/+3187AA 94 44.3 44 33.3 0.071 1.54 0.98–2.42

+3142CC/+3187GG 14 06.4 16 12.1 0.078 0.50 0.24–1.07

+3142CG/+3187GG 0 00.0 3 02.2 NA NA NA

+3142GG/+3187GG 0 00.0 0 00.0 NA NA NA

+3142CC/+3187AG 15 06.9 9 06.8 1.000 1.02 0.43–2.40

+3142CG/+3187AG 57 27.1 37 28.2 0.804 0.92 0.56–1.50

+3142GG/+3187AG 3 01.3 0 00.0 NA NA NA

HIV+, women infected by Human Immunodeficiency Virus; HPV+, women infected by Human Papilloma Virus; (-) Not infected women; N, number of individuals;

OR, odds ratio; CI, confidence interval; NA, stands for not applicable.
a Comparison of genetic frequencies among overall HIV-infected women independent of the presence of HIV/HPV co-infection and immunocompetent women

(control group)

Statistics used was Fisher’s exact two-tailed test to compare each group with the others combined.

https://doi.org/10.1371/journal.pone.0204679.t003

Table 4. Linear regression between the HLA-G +3142/+3187 diplotypes and presence of aneuploidy in cervical cells from HIV-infected women.

HLA-G
+3142/+3187 diplotypes

Aneuploidy OR Overall risk OR Adjusted risk for HPV

Yes No 95% CI p 95%CI p
N (%) N (%) 2.5% 97.5% 2.5% 97.5%

CG+AG 7 15.91 43 29.05 1.00 1.00

CC+GG 3 6.82 10 6.76 1.84 0.35 8.01 0.4298 1.63 0.31 7.24 0.5307

GG+AA 20 45.45 65 43.92 1.89 0.76 5.17 0.1858 2.01 0.81 5.57 0.1506

CC+AA 3 6.82 3 2.03 6.14 0.97 39.74 0.0467 7.40� 1.14 49.36 0.0310

CC+AG 3 6.82 11 7.43 1.68 0.32 7.18 0.5018 1.52 0.29 6.65 0.5873

CG+AA 8 18.18 16 10.81 3.07 0.96 10.15 0.0592 3.21�� 0.99 10.80 0.0526

Adjusted risk for HPV 2.06 1.00 4.24 0.0486

N, number of individuals; p, significance; OR, odds ratio; CI, confidence interval. The presence of the HPV increases 20.5% (�) and 4.6% (��) the risk of aneuploidy in

women carrying the +3142C allele in homozygosis and heterozygosis, respectively.

https://doi.org/10.1371/journal.pone.0204679.t004
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aneuploidy group (15.91%), and (iii) the frequency of the +3142CX/+3187AAdiplotype was

significantly higher than the frequency of the double heterozygous haplotypes in the aneuploid

group, and this association was strengthened when HPV infection was considered in the

model. Unfortunately, we were not able to investigate the influence of HPV-risk classification

on the relationship between +3142CX/+3187AAdiplotype and aneuploidy using the logistic

regression model due to a small sample size after data stratification by HPV risk.

We also evaluated whether oncotic cytology was associated with HLA-G polymorphisms in

HIV+ women (Table 5). No significant differences were observed between the +3142/+3187
diplotypes and the presence of cytological alterations (p = 0.407), even after data stratification

by presence (p = 0.324) or absence (p = 0.639) of HPV infection. No association (p = 0.603)

was observed between the +3142/+3187diplotypes and CD4+ T lymphocyte count (Table 6).

Discussion

The role of HLA-G in HIV infection is controversial due to several reasons, including disease

diversity, presence of underlying disorders, patient ethnicity and treatment regimens.

Although there are eight well-known polymorphic sites in the HLA-G 3’UTR region, in our

study, the frequencies of only the +3142C/G and +3187A/G sites were statistically different

Table 5. HLA-G +3142/+3187 diplotypes, cytological abnormalities and stratified case analysis according to the risk of HPV infection in HIV-infected women.

HLA-G +3142/+3187 diplotypes Total Stratification by risk to HPV p–value2

Cytological alterations HPV+ HPV-

Cytological alterations Cytological alterations

Positive Negative Positive Negative Positive Negative

N (%) N (%) N (%) N (%) N (%) N (%)

CG+AG 0 0.00 8 5.19 0 0.00 2 4.55 0 0.00 6 5.45 0.1988

CC+GG 3 10.71 9 5.84 3 15.79 2 4.55 0 0.00 7 6.36

CC+AA 1 3.57 12 7.79 1 5.26 6 13.64 0 0.00 6 5.45

CC+AG 4 14.29 19 12.34 3 15.79 3 6.82 1 11.11 16 14.55

CG+AA 5 17.86 46 29.87 4 21.05 16 36.36 1 11.11 30 27.27

GG+AA 15 53.57 60 38.96 8 42.11 15 34.09 7 77.78 45 40.91

p—value1 0.4069 0.3238 0.6386

Positive, presence of cytological alterations; Negative, absence of cytological alterations; HPV+, women infected by Human Papilloma Virus; (-) Not infected women; N,

number of individuals; OR, odds ratio; CI, confidence interval.

p—value1 = Chi-square Test / Exact Fisher Test.

p—value2 = Mantel-Haenszel.

https://doi.org/10.1371/journal.pone.0204679.t005

Table 6. Frequency distribution of the HLA-G +3142/+3187 diplotypes in relation to the CD4+ T lymphocyte count values in HIV-infected women.

HLA-G
+3142/+3187 diplotypes

CD4+ T lymphocyte count

N (%) Minimum Maximum Mean Median Standard deviation Standard error p
CG+AG 45 25.71 9 1.379 481.96 450.00 340.53 50.76 0.6030

CC+GG 14 8.00 9 745.00 407.43 377.50 205.73 54.98

CC+AA 5 2.86 5 1.622 652.80 548.00 591.26 264.42

CC+AG 11 6.29 9 956.00 463.82 467.00 298.83 90.10

CG+AA 22 12.57 9 1.090 551.09 543.50 270.79 57.73

GG+AA 78 44.57 9 1.339 460.13 450.50 313.85 35.54

N, number of individuals.

https://doi.org/10.1371/journal.pone.0204679.t006
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between healthy controls and HIV+ patients. We believe that by including a screening step for

selecting only HLA-G polymorphic sites that contribute to susceptibility to viral infection, we

minimize the inclusion of genetic factors not related to it. These two polymorphic sites are tar-

get for microRNA, important post-transcriptional gene expression regulators, which expres-

sion profiles have been demonstrated to diverge according to cell type and stimulus [35].

Nevertheless, we also discussed the 14-bp ins/del allele and genotype frequencies, because of its

influence on HLA-G levels in HIV+ patients, as has been demonstrated in previous studies [6,

8, 17].

We also understand that environmental pressures may affect the evolution of the immune

system differentially and therefore the polymorphic sites we studied may not be representative

for other populations from different locations. In a previous study, we evaluated HLA-G
3’UTR polymorphic sites allele, genotype and haplotype frequencies in healthy blood donors

from a northeastern and southeastern Brazilian regions, and we found that the distribution of

the HLA-G 3’UTR 14bp-ins/del, +3142C/G, and +3187A/Gwere similar [36]. However, com-

paring these published data with the distribution frequency of these polymorphic sites

observed in healthy women group reported in the present study, no differences were found for

the alleles and genotypes regarding to the northeastern population; in contrast, we found a

higher frequency of +3187GG genotype (14.4% vs. 4.5%, respectively) in the healthy women

group of the present study than in healthy blood donors from southeast Brazil [32]. This find-

ings could be related to the contribution of different ethnic groups to the constitution of the

Brazilian populations [36]. It is noteworthy that a study on the Brazilian ancestry based on

mitochondrial DNA showed a major contribution of African ancestry in northeast Brazil [37].

There are few reports in the literature regarding the association between presence of

HLA-G 3’UTR polymorphisms to susceptibility to HIV and HPV infection, and the 14-bp ins/
del site is by far the most studied [8, 17, 18]. The frequency of +3187A allele in homozygosis

was found in only one study on HIV vertical transmission, and it was not appropriated for

comparison [38]. Future studies may confirm whether the presence of the +3142G and

+3187A alleles are associated with risk of HIV infection in different populations.

Nevertheless, HIV infection increases the production of HLA-G by naïve T CD8+ cells and

increases effector and memory cell lines [39]. The virus itself induces high levels of sHLA-G

[40] and the antiretroviral therapy, during the immunological reconstitution, down-regulates

HLA-G [41]. The HLA-G 14-bp ins allele, which is associated with low levels of sHLA-G in

healthy Caucasian individuals [7], has been associated with low levels of sHLA-G in African

HIV-infected individuals [6]. In contrast, the presence of the 14-bp del/del genotype, which has

been associated with high sHLA-G levels in healthy Caucasians [7], was associated with high

expression of HLA-G mRNA, high viral load, lower CD4+ T lymphocytes counts and low sur-

vival rate in HIV-infected Zimbabwean women [8]. The HLA-G 3’UTR 14-bp ins allele, the

ins/ins genotype, the 14-bp insertion/+3142G (insG) haplotype and the insG/insG diplotype

were overrepresented in African-derived patients HIV+ from Southern Brazil, irrespective of

the underlying disorders; but, the same was not observed in European-derived Brazilians [17].

In the present study, the associations with the 14-bp polymorphism was not observed in the

HIV+ women co-infected or not with HPV from the state of Pernambuco, northeast Brazil,

which have a higher African-ancestry than Southern Brazilians.

The role of HLA-G on HPV mono-infection has not been completely elucidated yet.

Gimenes et al. (2014) [42] recently reviewed studies correlating the association between

HLA-G polymorphisms and cervical carcinogenesis. The presence of high levels of HLA-G
mRNA in cervical lesion was reported to contribute to their progression in HPV 16/18 infected

patients [21,43,44]. The HLA-G 3’UTR diversity has only been evaluated in patients with HPV

mono-infection, including the 14-bpdel/+3142C haplotype in Italian women [9], and the
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+3142C allele in Taiwanese women [45], which were associated with increased risk for devel-

oping HPV cervical cancer. For the HIV/HPV co-infection, we observed that the +3142G and

+3187A alleles were associated with predisposition to HIV infection independent of the pres-

ence of HIV/HPV co-infection. In addition, the double doses, +3142GG and +3187AA, also

exhibited a trend increased risk for HIV infection, independent of the HIV/HPV co-infection.

Considering that the +3142G allele reduces HLA-G mRNA expression by the action of specific

microRNAs [10], and that the +3187A allele decreases the HLA-G mRNA stability due to the

proximity to an AU motif [12], our results indicate that susceptibility to HIV, irrespective of

HPV infection, may be favored by low HLA-G expression.

Since HIV and HPV present distinct biological behavior, we further analyzed the relation-

ship between the HLA-G 3’UTR polymorphic sites and aneuploidy, which may represent the

initial step for progression towards cervical malignancy [46]. In the present study, the +-
3142CX/+3187AAdiplotype was associated with aneuploidy of cervical cells; i.e., the presence

of +3142CC and +3142CG increased by 7.40-fold and 3.21-fold the risk for cervical lesion,

respectively. Noteworthy, the association with +3142C/G polymorphic site was only observed

when the +3187AA genotype was present as well.

Although the +3142C allele was underrepresented in the HIV+ patients compared to

healthy women, this allele was associated with aneuploidy in cervical cell in the HIV+ women.

Studies have shown that the +3142C allele and +3142CC genotype increase sHLA-G produc-

tion, which has been associated with HPV infection and risk to develop cervical cancer [9,45].

In this context, we showed that the presence of HPV infection increased the contribution of

the +3142C allele to the susceptibility of the +3142CX/+3187AAdiplotype to aneuploidy by

20.5% (in homozygosis) and 4.6% (in heterozygosis) (Table 4); however, it was not associated

with cytological abnormalities. We have previously shown the relationship between the pres-

ence of cervical tissue lesions and the DNA index, but cytological alteration was not predictive

of progression of cervical lesion [28].

In resume, we showed that the +3142G and +3187A alleles, which are related to low HLA-G

expression [10,12], were associated with predisposition to HIV infection independent of the

presence of HIV/HPV co-infection, but HIV induces the production of HLA-G in untreated

patients through unclear mechanisms [41]. Perhaps, the increased HLA-G level dependent of

HIV infection is one of the mechanisms behind the association between HIV infection and

high-risk of HPV co-infection [47,48], and increased risk of cytological abnormalities and cervi-

cal cancer [49,50]. Indeed, we showed that in HIV+ women the +3142C allele and the +3142CC
genotype, which are related to increased sHLA-G production, were associated to the presence

of aneuploidy in cervical cells in an allele dose-dependent effect. Our results corroborate previ-

ous studies that showed that the +3142C allele is associated to HPV infection and to a higher

risk to develop cervical cancer in HIV- women [9,45]. Taken together, we conclude that aneu-

ploidy, one of the first steps towards the development of cervical malignancies [46], is favored

by HLA-G alleles related to high HLA-G production, because the inhibitory effect of the HLA-G

on immune cells modulates the immune cellular response, which then contribute to replication

and persistence of HPV infections, and increases the chance of cervical lesion progression.

Our study dealt with limitations: we did not quantify the HLA-G levels, as well as, the fact

that histological reports were not available for all women that participated in the study because

the Brazilian Ministry of Health’s protocol for screening cervical cancer, defines that histologi-

cal evaluation must only be performed in women who had cytological abnormalities and atypi-

cal colposcopy findings. In addition, unfortunately, some women did not return to the

ambulatory clinic for the histological exams or reassessment, and, consequently, their exam

results could not be provided to the research group, including seven patients with altered

cytology for whom the histology results were not recorded.
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39. Lozano JM, González R, Luque J, Frias M, Rivero A, Peña J. CD8 + HLA-G + Regulatory T Cells Are

Expanded in HIV-1-Infected Patients. Viral Immunol. 2009; 22: 463–465. https://doi.org/10.1089/vim.

2009.0041 PMID: 19951184

40. Huang J, Burke P, Yang Y, Seiss K, Beamon J, Cung T, et al. Soluble HLA-G Inhibits Myeloid Dendritic

Cell Function in HIV-1 Infection by Interacting with Leukocyte Immunoglobulin-Like Receptor B2. J

Virol. 2010; 84: 10784–10791. https://doi.org/10.1128/JVI.01292-10 PMID: 20702625

41. Murdaca G, Contini P, Setti M, Cagnati P, Lantieri F, Indiveri F, et al. Behavior of non-classical soluble

HLA class G antigens in human immunodeficiency virus 1-infected patients before and after HAART:

Comparison with classical soluble HLA-A, -B, -C antigens and potential role in immune-reconstitution.

Clin Immunol. Elsevier Inc.; 2009; 133: 238–244. https://doi.org/10.1016/j.clim.2009.08.002 PMID:

19762282

Effects of HLA-G 3’UTR on HIV/HPV co-infection and aneuploidy in cervical cell

PLOS ONE | https://doi.org/10.1371/journal.pone.0204679 October 2, 2018 13 / 14

https://doi.org/10.1038/modpathol.2009.67
http://www.ncbi.nlm.nih.gov/pubmed/19407850
https://doi.org/10.1002/ijc.27356
http://www.ncbi.nlm.nih.gov/pubmed/22095460
https://doi.org/10.1016/j.humimm.2012.11.025
https://doi.org/10.1016/j.humimm.2012.11.025
http://www.ncbi.nlm.nih.gov/pubmed/23228396
https://doi.org/10.1590/0074-0276140070
http://www.ncbi.nlm.nih.gov/pubmed/25317701
https://doi.org/10.1371/journal.pone.0104801
https://doi.org/10.1371/journal.pone.0104801
http://www.ncbi.nlm.nih.gov/pubmed/25144309
https://doi.org/10.1093/molbev/msr121
http://www.ncbi.nlm.nih.gov/pubmed/21546353
https://doi.org/10.1038/gene.2009.74
http://www.ncbi.nlm.nih.gov/pubmed/19798077
https://doi.org/10.1016/j.virol.2004.03.033
http://www.ncbi.nlm.nih.gov/pubmed/15183049
https://doi.org/10.1111/j.1471-8286.2007.01931.x
http://www.ncbi.nlm.nih.gov/pubmed/21585727
https://doi.org/10.1016/j.molimm.2015.01.030
http://www.ncbi.nlm.nih.gov/pubmed/25700346
https://doi.org/10.1111/j.1399-0039.2012.01842.x
http://www.ncbi.nlm.nih.gov/pubmed/22283419
https://doi.org/10.1086/303004
http://www.ncbi.nlm.nih.gov/pubmed/10873790
https://doi.org/10.1016/j.meegid.2014.12.021
http://www.ncbi.nlm.nih.gov/pubmed/25541520
https://doi.org/10.1089/vim.2009.0041
https://doi.org/10.1089/vim.2009.0041
http://www.ncbi.nlm.nih.gov/pubmed/19951184
https://doi.org/10.1128/JVI.01292-10
http://www.ncbi.nlm.nih.gov/pubmed/20702625
https://doi.org/10.1016/j.clim.2009.08.002
http://www.ncbi.nlm.nih.gov/pubmed/19762282
https://doi.org/10.1371/journal.pone.0204679


42. Gimenes F, Teixeira JJV, de Abreu ALP, Souza RP, Pereira MW, da Silva VRS, et al. Human leukocyte

antigen (HLA)-G and cervical cancer immunoediting: A candidate molecule for therapeutic intervention

and prognostic biomarker? Biochim Biophys Acta. 2014; 1846:576–89. https://doi.org/10.1016/j.bbcan.

2014.10.004 PMID: 25453366

43. Yoon BS, Kim YT, Kim JW, Kim SH, Kim JH, Kim SW. Expression of human leukocyte antigen-G and

its correlation with interleukin-10 expression in cervical carcinoma. Int J Gynecol Obstet. 2007; 98: 48–

53. https://doi.org/10.1016/j.ijgo.2007.03.041 PMID: 17490670
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