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The involvement of IL-17A in autoimmune and inflammatory diseases has prompted the
development of therapeutic strategies to block the Th17 pathway. Promising results came
from their use in psoriasis and in ankylosing spondylitis. IL-17A acts on various cell types
and has both local and systemic effects. Considering the premature mortality observed
during chronic inflammatory diseases, IL-17A action on vascular cells was studied. Both in
vitro and in vivo results suggest that this cytokine favors inflammation, coagulation and
thrombosis and promotes the occurrence of cardiovascular events. These observations
led to study the role of IL-17A in diseases characterized by vascular inflammation, namely
allograft rejection and vasculitis. Increased circulating levels of IL-17A and histological
staining reveal that the Th17 pathway is involved in the pathogenesis of these diseases.
Vasculitis treatment faces challenges while the use of steroids has many side effects.
Regarding results obtained in giant cell arteritis with IL-6 inhibitors, a cytokine involved in
Th17 differentiation, the use of anti-IL-17 is a promising strategy. However, lessons from
rheumatoid arthritis and multiple sclerosis must be learnt before targeting IL-17 in
vasculitis, which may be culprit, consort or both of them.

Keywords: interleukin-17, Th17 cells, cardiovascular system, allo-immune vascular inflammation, vasculitis,
IL-17 inhibitors
1 INTRODUCTION

Interleukin (IL)-17A is a pro-inflammatory cytokine involved in many autoimmune and
inflammatory diseases (1). Its identification in the pathogenesis of these disorders had led to the
development of therapeutics with a great success in psoriasis and in ankylosing spondylitis (2, 3).
Outside its local effects, IL-17A induces systemic manifestations playing a role in the premature
cardiovascular (CV) mortality observed in inflammatory diseases (4–6). IL-17A acts on all cell types
that make up the three layers of the vascular wall by promoting inflammation, coagulation and
thrombosis (7). These results suggest that IL-17A is involved in vascular inflammation and
particularly in allograft rejection and vasculitis.

Vasculitis are defined according to the size and the type of the vessels that are predominantly
affected (8, 9). From large to small vasculitis, histopathological lesions are different but evidence
hints that T-helper (Th)-17 cells and IL-17A are involved in their pathogenesis (1). In many cases,
the treatment relies on steroids which have short and long-term side effects and alternative
therapeutics are expected (10–13). Given the role of the Th17 pathway in these diseases, one can
org April 2022 | Volume 13 | Article 8887631
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expect that the inhibition of IL-17A could be of a great interest.
Indirect evidence came from the blockade of IL-6, a cytokine
required for Th17 differentiation, that is recommended in
selected cases of large vessel vasculitis (LVV) (14, 15).
However, disappointing use of IL-17 inhibitors in rheumatoid
arthritis (RA) and in multiple sclerosis, while the Th17 pathway
is clearly involved in the pathogenesis, must be understood
before going further into their application in vasculitis (16, 17).

In this review, the key effects of the Th17 pathway on blood
vessels will be detailed, after a brief overview of the Th17
pathway. Then, its involvement in vasculitis will be addressed.
Therapeutic implications are finally discussed.

2 EFFECTS OF IL-17 ON BLOOD VESSELS

2.1 Overview of the Th17 Pathway
2.1.1 IL-17 Cytokines
Six isoforms (IL-17A to IL-17F) compose the IL-17 family (18–
23). IL-17A has pleiotropic effects with a key role in host defense
against extracellular pathogens, including bacteria and fungi, but
also in chronic inflammation and autoimmunity (1, 16). IL-17A
and IL-17F bear the greatest homology and are secreted either as
homodimer or heterodimer (23, 24). Both IL-17A and IL-17F
drive inflammation, IL-17F being less potent than IL-17A (25).
In the presence of tumor necrosis factor (TNF)-a, they induce
rather similar expression profiles (26, 27).

IL-17E (or IL-25) has the lowest homology with IL-17A and
promotes Th2-cell mediated immune responses (28). Infection of
the lungs with an IL-25 expressing adenovirus or IL-17E protein
induces IL-4, IL-5, IL-13 production and then eosinophil
infiltration, mucus secretion and airway hyperreactivity (29).
IL-17E axis plays a role in asthma exacerbations and now
constitutes an attractive target for the development of new
therapies (30). IL-17E also modulates Th17 cell function by
acting as a receptor antagonist for IL-17A function (31–33).

2.1.2 IL-17 Receptor Family and Signaling
Five receptors (IL-17RA to IL-17RE) compose the IL-17 receptor
(IL-17R) family (32). IL-17RA interacts with other subunits to
form receptor complexes. IL-17A, IL-17F or IL-17A/F signal
through IL-17RA/RC. IL-17E binds to IL-17RA/RB and IL-17C
to IL-17RA/RE (28). IL-17RD is an alternate receptor subunit for
IL-17A but not for IL-17F (34).

IL-17 signaling activatesnuclear factorkappaB (NFkB),CCAAT/
enhancerbindingprotein (CEBP)-ß/dandmitogen-activatedprotein
kinase pathways. It activates inflammatory genes encoding cytokines
and chemokines (e.g., IL-6 and IL-8). IL-17 can also regulate genes
post-transcriptionally and mRNA half-life (34).

IL-17 function is regulated by different mediators. TNFa, IL-
1, granulocyte-macrophage colony stimulating factor (GM-CSF)
and interferon (IFN) g regulate positively IL-17 effects whereas
IL-17E/IL-25, anti-IL-17 auto-antibodies and soluble IL-17R
inhibit its function (17).

2.1.3 IL-17 Producing Cells
Th17 cells undergo differentiation following three steps. The first
step corresponds to the initiation of the differentiation and is
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mediated by transforming growth factor (TGF)-ß and IL-21.
Both cytokines induce the transcription of the lineage specific
transcription factor receptor-related orphan receptor (RORc).
Secondly, IL-6 and IL-1ß allow the amplification of the Th17
lineage. Finally, Th17 cells acquire their pathogenic role thanks
to IL-23. Th17 produce many cytokines as IL-17A, IL-17F, IL-21
and IL-22 (15, 35).

A balance exists between Th17 and Treg cells because their
developmental pathways are interconnected and reciprocally
regulated. TGF-ß is necessary for both Th17 and Treg
differentiation. The addition of IL-6 inhibits FoxP3, required for
Treg differentiation, and upregulates RORc. This induces a shift
toward the Th17 lineage (15). Moreover, mice deficient in exons 2
and7ofFoxP3 fail to repressRORc,have increased levelsofTh1and
Th17 cytokines and exhibit multi-organ inflammation with Treg
lacking their suppressive ability (36). In humans, a substantial
number of inflammatory diseases are characterized by an increase
of Treg lacking exon 2 of FoxP3, with Treg unable to control IL-17+

T cell proliferation. TheseDexon2 FoxP3Tregs but also someTregs
in inflammatory conditions can also produce IL-17. These results
highlight the plasticity between these two cell types (37–39).

Overall, the Th17/Treg balance plays a key role in
autoimmune and inflammatory diseases; Treg cells prevent
their development while Th17 cells promote them (15). These
dynamic changes illustrate the importance of the cytokine
environment but are also influenced by local interactions (35).

Other IL-17 sources include immune cells with gd T cells,
invariant natural killer cells, innate lymphoid cells, CD8+ T cells
or double-negative T cells (28, 40). Mast cells and neutrophils do
not produce IL-17 but engulf it (41, 42).

These elements are summarized in Figure 1.

2.2 Results on Isolated Cells
The vascular wall is composed of three layers: the intima, the
media and the adventitia. Briefly, endothelial cells (EC) are part
of the intima, vascular smooth muscle cells (VSMC) of the media
and adipocytes, fibroblasts and immune cells of the adventitia.
IL-17A alone, and even more when combined with TNFa, acts
on these cell types (Figure 2A).

2.2.1 Effects on Intima Cells
IL-17A induces the secretion of pro-inflammatory cytokines (e.g.,
IL-6) andchemokines (e.g., IL-8, chemokine (C-X-Cmotif) ligand1
CXCL1, C-CMotif Chemokine Ligand 2 CCL2) by EC (43). It also
increases the level of adhesionmolecules, especiallywhencombined
withTNFa, and thenpromotes leukocyte recruitment and invasion
of EC (7). IL-17A promotes thrombosis and coagulation by
activating tissue factor and reducing anti-coagulation mediators
(e.g., CD39 and thrombomodulin) (7, 44). Finally, IL-17A increases
EC apoptosis (45).

2.2.2 Effects on Media Cells
VSMC play a key role in atherosclerosis through their ability of
proliferation, migration and apoptosis. IL-17A increases the
production of pro-inflammatory cytokines and chemokines
and the expression of adhesion molecules, plaque destabilizing
proteins and tissue factor. VSMC apoptosis is also increased by
April 2022 | Volume 13 | Article 888763
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FIGURE 1 | Overview of the Th17 pathway. T-helper (Th) 17 cells undergo differentiation from Th0 cells. The first step involves transforming growth factor (TGF)-ß
and interleukin (IL)-21 that initiate the differentiation. Next, IL-6 and IL-1ß amplify the Th17 lineage and finally, IL-23 is required to maintain the lineage and to acquire
its pathogenic role. Th17 differentiation can be shifted towards regulatory T (Treg) cells depending on cytokine environment. Developmental pathways of both cells
are interconnected and reciprocally inhibited. Treg lacking exon 2 of FoxP3 impairs the Th17/Treg balance with increase amount of IL-17+ T cells. These Dexon 2
FoxP3 Treg cells, and some Tregs in inflammatory conditions, can also produce IL-17. Moreover, IL-17A/F/AF are produced by Th17 cells but also by other immune
cells. These cytokines bind the same receptor, activate different pathways and finally induce inflammation. IL-17 function is regulated positively or negatively by
different mediators.
A B

FIGURE 2 | Effects of interleukin (IL)-17A on the cardiovascular system. (A): In vitro effects: IL-17A, and even more when combined with tumor necrosis factor
(TNF)-a, affects all cell types of the vascular wall. IL-17A +/- TNFa induces inflammation with the release of pro-inflammatory cytokines (e.g., IL-6) and chemokines
(e.g., IL-8, chemokine C-X-C motif ligand 1 CXCL1, C-C Motif Chemokine Ligand 2 CCL2), that in turn enhances neutrophil and leukocyte recruitment. This
recruitment is also favored by the increased expression of adhesion molecules. IL-17A induces thrombosis, coagulation and apoptosis. The effects on adipocytes
participate to the inflammatory environment. (B): In vivo contribution of IL-17A results in accelerated atherosclerosis, aneurysm formation, myocardial infarction and
cardiomyopathy, stroke, hypertension and allo-immune vascular inflammation.
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IL-17A when combined with TNFa and/or IFNg, that in turn
promotes atherosclerosis (45, 46).

2.2.3 Effects on Adventitia Cells
IL-17A triggers inflammation through the production of pro-
inflammatory cytokines by the different cell types of the
adventitia but also by enhancing adipocyte lipolysis (7, 47).

IL-17 effects on isolated cells are summarized in Figure 2A.

2.3 Results From In Vivo Experiments and
Systemic Effects of IL-17A
2.3.1 Effects of IL-17 on the CV System In Vivo
IL-17A, alone or combined with IFNg, increases lesion size and
plaque instability by inducing inflammation and enhancing the
recruitment of myeloid cells. Other results show that IL-17A
favors aneurysm formation, myocardial infarction, stroke and
hypertension. However, some results are contradictory regarding
the protective or the deleterious effect of IL-17 on CV outcome.
This is particularly true for atherosclerosis where animal models
and protocols used are different across experiments (7).

2.3.2 Allo-Immune Vascular Rejection as a Paradigm
of IL-17 Vascular Pathology
Blood vessels in allotransplantation remain largely of graft origin
and are subject to host allo-immune responses. Vascular
pathology can contribute to graft inflammation, ischemia/
reperfusion injury and then allograft rejection. Mediators of
innate and adaptive immunity are involved in these processes
and support both hyper-acute, acute and chronic rejections (48).
Among adaptive immune cells, the Th17 subset contributes to
allograft rejection (49).

During acute rejection, IL-17 blockade significantly improves
cardiac graft survival in a rat model (50). The antagonism of IL-
17 decreases mononuclear infiltration and endothelial damage in
a murine aortic transplantation model (51). Allograft rejection,
partially mediated by IL-17, mainly relies on neutrophil
recruitment (49, 52).

Chronic rejection is made up of a parenchymal and a vascular
rejection. The latter is caused by a stenosis of vessels due to a
progressive immune mediated host response to graft blood vessels.
Different mechanisms contribute to stenosis including ischemia/
reperfusion, hypertension and immune activation (53). IL-17 and
Th17cells playa role in thesephenomenon(17).Amodelof chronic
allograft vasculopathy shows that, in absence ofTh1 response, Th17
cells induce severe accelerated allograft rejection and vasculopathy
(54). Reducing IL-17 production suppresses chronic allograft
rejection and vasculopathy (55). IL-17-/- mice do not develop
cardiac fibrosis after mismatched organ transfer, which is
considered as secondary to allograft vasculopathy (56). Also, in
IL-17 deficient mice, graft coronary artery disease after heterotopic
cardiac transplantations is reduced (57).

2.3.3 Circulating Levels of IL-17 in Human
Vascular Pathology
In addition to its local effects, IL-17A is circulating and has
systemic effects (4). As mentioned above, IL-17A function is
regulated by various mediators (17). To counteract these
Frontiers in Immunology | www.frontiersin.org 4
complex interactions, a bioassay was developed to study
specifically the bioactive fraction of IL-17A (58). This was
particularly well described in rheumatoid patients where
bioactive IL-17A is associated with joint destruction and CVE
occurrence (5, 59). Similarly, patients with myocardial infarction
show a peak of circulating IL-17A at admission (60). IL-17A
induces systemic effects by affecting various cell types: cells of the
liver, of skeletal and cardiac muscles and of the blood vessels (4).

In vivo contribution of the Th17 lineage is described
in Figure 2B.
3 ROLE OF THE TH17 PATHWAY
IN VASCULITIS

Regarding IL-17A effects on the CV system, this cytokine could
play a role in vasculitis pathogenesis which is characterized by
blood vessel wall inflammation, endothelial injury and
tissue damage.

Only noninfectious vasculitis of the 2012 International
Chapel Hill Consensus Conference (CHCC2012), partially
revised in 2018, are described (8, 9). Vasculitis are classified
according to the size and the type of vessels predominantly
affected. The effects of IL-17 and Th17 in large vessel vasculitis
(LVV), medium vessel vasculitis (MVV), small vasculitis (SVV)
and variable vessel vasculitis (VVV) are addressed.
3.1 Large Vessel Vasculitis (LVV)
LVVmainly affect large arteries including the aorta and its major
branches. The two major diseases are Takayasu arteritis (TAK)
and giant-cell arteritis (GCA) (8). Both disorders occur mainly in
females and share histopathologic features with a chronic
granulomatous inflammatory reaction (61). They differ by the
age of onset: TAK generally occurs before the age of 50 years old
whereas GCA after age 50 (62). Chronic inflammation within the
vessel wall can lead to aneurysm formation, rupture or dissection
where IL-17A and Th17 cells play a role (7, 63). Th17 cells are
identifiable both in the peripheral blood and in the vasculitic
lesions. It raises the possibility that inflammatory cells recirculate
(63). Figure 3A summarizes the results described below.

3.1.1 Takayasu Arteritis (TAK)
TAK is a rare disease that induces acute inflammation,
carotidynia, discrepant blood pressure between the arms,
absent or asymmetric pulsation, limb claudication and
angina (64).

Patients with TAK have significantly increased level of IL-17A
and circulating Th17 cells compared with healthy individuals
(65, 66). Similar results are obtained when comparing patients
with active TAK with those in remission (66–68). After anti-
CD3/CD28 stimulation, IL-17A-producing T cell frequency is
significantly increased in the presence of serum from TAK
patients with active disease compared with those in remission
(66). Anti-endothelial protein C receptor (EPCR) antibodies,
found in 34.6% of TAK patients, impair Th17 differentiation
(69). The imbalance that exists between Th1/Th17 and Treg cells
April 2022 | Volume 13 | Article 888763
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in TAK is driven by type I and II cytokines which signal through
the Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway (70). The differentiation of
Th1 and Th17 cells is impaired in TAK patients and mediated by
an overactivation of mammalian target of rapamycin complex 1
(mTORC1) (71). Recently, an increase in Th17.1 cells producing
both IL-17 and IFNg was observed in TAK patients compared
with healthy controls. Similar results were described for
PD1+Th17 cells (72). Finally, IL-17A and Th17-related
cytokines trigger neutrophil recruitment and activation that
could contribute to vascular lesions (73).

Among Th17-related cytokines (IL-6, IL-21, IL-23, IL-1ß,
TGF-ß), the role of IL-6 in TAK pathogenesis has been well
described while IL-6 is critically involved in Th17 differentiation
(15). Its level is increased in TAK patients compared with
Frontiers in Immunology | www.frontiersin.org 5
controls and linked to disease activity (66, 68). Similar trends
are described for IL-23 level in TAK (65, 66).

3.1.2 Giant-Cell Arteritis (GCA)
GCA affects older patients than TAK and typically induces
vasculitis of the extracranial branches of the aorta (62, 74). The
three layers of the arterial wall are affected by histopathological
lesions, especially the internal elastic lamina with multinucleated
giant cells, CD4+ T cells and macrophages organized in granuloma
(74). Recent understanding of the immunopathological model of
GCA has allowed to divide its pathogenesis into four steps. The
first corresponds to the activation of vascular adventitial dendritic
cells, the second is characterized by the recruitment, the activation,
and the polarization of CD4+ T cells, followed by the recruitment
of CD8+T cells and monocytes. Finally, vascular remodeling
FIGURE 3 | IL-17 and Th17 involvement in vasculitis. (A): Large vessel vasculitis (LVV) include giant cell arteritis (GCA) and Takayasu arteritis (TAK) and are
characterized by a chronic granulomatous inflammatory reaction. Vascular adventitial dendritic cells are activated and induce the recruitment, the activation and the
polarization of CD4+ T cells. Among CD4+ T cells, T-helper (Th)-17 cells and Th1 cells are involved in the local inflammatory process. Then, CD8+T cells and
monocytes are recruited and finally, vascular remodeling occurs. Th17 cells are also circulating and patients harbor increased frequency of them. IL-17A promotes
neutrophil recruitment. There is a decrease of regulatory T (Treg) cells at the expense of the Th17 lineage. (B): Medium vessel vasculitis (MVV) comprise polyarteritis
nodosa (PAN) and Kawasaki disease (KD). There are few data on Th17 involvement in PAN pathogenesis but patients harbor defective Tregs and increased
frequency of Th17 cells. KD is characterized by necrotizing arteritis with neutrophil infiltration. Lymphocytes, eosinophils and myofibroblastic proliferation participate in
KD arteriopathy. Th17 cells and their related cytokines are increased in KD and there is a dysregulation of the Th17/Treg balance. (C): Antineutrophil cytoplasmic
antibody (ANCA)-associated vasculitis (AAV) are composed of three variants: microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), eosinophilic
granulomatosis with polyangiitis (EGPA). They are characterized by fibrinoid necrosis, thrombus formation and immune cell infiltration. GPA and EGPA are associated
with granulomatous inflammatory reaction where Th17, Th1 cells and macrophages play a role. EGPA is characterized by the involvement of eosinophils, Th2 cells
and their related cytokines. GPA and MPA, and sometimes EGPA, are associated with ANCA. There is a loss of B and T tolerance toward MPO and PR3 antigens,
that are found primary in neutrophils. PR3 and MPO-specific Th17 responses occur in the course of the disease. IL-17A also favors the recruitment of neutrophils at
the site of injury. There is a dysregulated Th17/Treg cells balance. (D): Variable vessel vasculitis (VVV) can affect any type and any size of vessels. Enhanced innate
immune response, early tissue infiltration and late adaptive immunity are the different steps that occurred in Behçet’s disease (BD) pathogenesis. This results in
thrombosis, occlusion and aneurysms. Th17 cells are found at the site of tissue injury and interact with other immune cells. There is an hyperactivation of Th17 and
Th1 cells at the expense of Treg population.
April 2022 | Volume 13 | Article 888763
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occurs. Th17 cells are mainly involved in the second phase (75, 76).
Th17 pathogenic role in vascular remodeling is similar to the one
described in myocardial infarction (7).

Frequencies of circulating Th17 cells are increased up to 10-
fold in untreated GCA patients compared with healthy controls
(77–79). Immunohistochemical analysis of temporal artery
biopsy specimens from GCA patients show infiltration of
Th17 cells, mainly localized at the junction between the
adventitia and the media. Artery-infiltrating Th1 cells may
derive from local differentiation of Th17 cells in the presence
of IL-12. CD161+CD4+ T cells could be the common precursor
that links Th1 and Th17 cells (76, 78). As well as Th1 cells, a
population of IL-17/IFNg double producing cells is expanded in
untreated GCA patients to create granuloma and IL-17
regulates macrophage recruitment (63, 77, 78). IFNg+ CD4+ T
cell commitment involves JAK/STAT pathway and type I
interferon signature is upregulated in GCA aortas (80, 81).
Induction of both T-bet+-CD4+ and RORgt+CD4+ T cells
involves the AKT-mTORC1 signaling pathway and there is a
constitutive activation of the Notch-AKT-mTORC1 signaling
axis in T cells from GCA patients (82).

An imbalance between Th17 and Treg cells is observed in GCA
patients compared with healthy subjects. This balance is partially
modulated by IL-6 and IL-21, whose levels are correlated with
disease activity (78, 79, 83). GCA Tregs may increase vascular
inflammation by promoting Th17 polarization (37).

In a model of severe combined-immunodeficiency (SCID)
mice engrafted with normal human arteries, treatment with
dexamethasone inhibits both mRNA production of IL-17 and
Th17 density in the vessel wall (77). Similar results are observed
in patients with a decrease of IL-17 producing CD4+ T cells
after steroid therapy and the Th17/Treg ratio is significantly
reduced (78). However, it does not restore the Treg deficiency
observed in GCA and does not affect Th1 response (77, 78).
Moreover, in a chimeric mouse model of GCA, the inhibition of
JAK1/JAK3 activity reduces RORc expression and IL-17 level,
and finally suppresses T-cell invasion and proliferation into the
artery (80).

Results described for Th17 cells are confirmed at the cytokine
level. IL-17 and Th17-related cytokines (IL-1ß, IL-6, IL-21, IL-23)
levels are increased in serumfromuntreatedGCApatients and after
PBMCs stimulation with PMA/ionomycin from patients with
active disease compared with controls and those in remission (77,
79). After steroid therapy, the level of circulating IL-17 is decreased
(77). Similar observations apply for IL-17A, IL-1ß, IL-6 and IL-23
expression in inflamed temporal arteries (77, 79, 84, 85). IL-17 is
overexpressed when transmural inflammation and granulomatous
reaction occur (84).

Finally, studies of genetic background and epigenetic
modifications suggest a role of IL-17 and Th17 pathway in
GCA development or pathogenesis (75, 86, 87).

3.2 Medium Vessel Vasculitis (MVV)
Polyarteritis nodosa (PAN) and Kawasaki disease (KD) are the
two entities that constitute MVV. Figure 3B gives a brief
overview of Th17 involvement in the pathogenesis.
Frontiers in Immunology | www.frontiersin.org 6
3.2.1 Polyarteritis Nodosa (PAN)
PAN generally occurs in patients of 50 years old and can be
primary or secondary to viral infection with the example of
hepatitis-B-virus. It induces renal vasculitis with renovascular
hypertension, renal infarcts and microaneurysms (88).

Very few studies refer to the effects of IL-17 or Th17 cells in
PAN. IL-17 producing CD4+ T cells frequency is higher in PAN
patients compared with healthy controls. PAN patients also have
defective Tregs in suppressive ability (89). In PAN patients with
cutaneous mutations, trends toward a decrease of IL-17 level
after treatment are observed without significant difference (90).

3.2.2 Kawasaki Disease (KD)
KD is the leading cause of acquired heart disease in children and
primarily involves muscular arteries (91). Three pathological
processes have been identified to explain KD arteriopathy:
necrotizing arteritis characterized by neutrophilic infiltration,
subacute and chronic vasculitis with an inflammatory cell
infiltrate composed of lymphocytes, plasma cells and
eosinophils and luminal myofibroblastic proliferation. These
lesions can induce coronary artery aneurysm, thrombosis,
stenosis and myocardial infarction (92). Systemic inflammation
goes along with vascular lesions and could be mediated by
inflammatory cytokines, as IL-17.

Th17 cells and related cytokines (IL-17A, IL-6, IL-23, IL-21
and IL-22) are markedly increased in KD patients compared with
controls. These observations have been made both in the plasma,
in the serum and in the supernatants of cultured PBMCs after
stimulation with anti-CD3/CD28 (93–95). Some results suggest
that IL-17 level is correlated with disease activity (93, 96).
Moreover, myofibroblasts expressing IL-17 and IL-6 are
observed in the damaged arterial wall of KD autopsies (97).
Regarding the Th17/Treg balance, Treg frequency and FoxP3
expression are markedly lower in KD patients compared with
controls suggesting a shift towards Th17 differentiation, probably
mediated by IL-6 (93, 98).

Cytokine levels and Th17 frequency are decreased after one
week of combined therapy including aspirin and intravenous
immunoglobulin (IVIG) (94). IVIG-resistant KD have increased
plasma levels of IL-17A and IL-6 before treatment compared
with sensitive patients. Resistant patients maintain high levels of
these cytokines after treatment (93). To counteract this
resistance, plasma exchanges have been tested. It induces the
removal of IL-17 and IL-6 levels and could participate in
therapeutic mechanisms (99).

3.3 Small Vessel Vasculitis (SVV)
Small intraparenchymal arteries, arterioles, capillaries and
venules are mainly affected in SVV. Two categories of SVV are
described based on paucity or abundance of vessel wall
immunoglobulin deposits (8).

3.3.1 Antineutrophil Cytoplasmic Antibody (ANCA)-
Associated Vasculitis (AAV)
Results suggest that the Th17 subset is involved in AAV
pathogenesis as IL-17 serum level is increased in AAV patients
April 2022 | Volume 13 | Article 888763
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compared with healthy individuals. Similar observations apply for
IL-23. However, levels remain elevated in some patients and major
relapses occur suggesting that a Th17 memory cell populationmay
persist (100). The proportion CCR6+CD4+RORgt+ T cells is
increased in kidney biopsy samples compared to the peripheral
blood suggesting recruitment of these cells into the kidney. These
results support the role of Th17 in AAV pathogenesis (101, 102).
The conversion from Tregs to Th17 effector cells within the
inflammatory environment play a role in AAV pathogenesis and
the imbalanceofTh17/activatedTregcellsmarks renal involvement
(103, 104).Moreover, Treg cells harbor a defect in their suppressive
function (39).

Among other IL-17 cytokines, serum IL-17C level is increased
in AAV-patients with crescentic glomerulonephritis (GN)
compared with controls. Results from mice models confirm
that IL-17C promotes tissue renal injury in an IL-17A-
dependant manner. IL-17RE promotes Th17 response in
crescentic GN and is expressed on Th17 cells. The activation
of the IL-17C/IL-17RE axis increases renal expression of IL-17
target genes leading to neutrophil recruitment and then tissue
injury (105).

3.3.1.1 Microscopic Polyangiitis (MPA)
MPA belongs to AAV and affects mainly the kidneys with
progressive GN and the lungs with alveolar hemorrhage (106).
MPA is mainly associated with MPO-ANCA (107). IL-17A level
is increased in MPA patients compared with controls (108).
Th17 and Th1 cells promote macrophage activation at sites of
injury. Macrophages hasten disease progression through their
profibrotic properties (109). In murine model of anti-MPO
induced GN, IL-17 may enhance antigen deposition in the
glomeruli and mediates pathogenic effector functions (110).
Toll-like receptor (TLR)-2 ligand promotes Th17-induced
MPO autoimmunity (111). MPO-specific Th17 cells are
involved earlier in disease while Th1 cells are implicated later
(112). CD8+ T cells also cause experimental injury (113).

3.3.1.2 Granulomatosis With Polyangiitis (GPA)
GPA is characterized by a necrotizing granulomatous
inflammation and is predominantly associated with PR3-ANCA
(107). It usually involves the upper and lower respiratory tract and
kidneys. Almost all patients have sinonasal involvement (114).
Patients with GPA have an increased percentage of circulating IL-
17A+T cells compared with healthy controls (115, 116).
Involvement of the eye socket in GPA is rare but cytokine
staining for IL-17 and IL-23 are significantly greater in GPA
lesions compared with idiopathic inflammatory orbital diseases
and sarcoidosis lesions (114, 117). The increased production of IL-
17A could in turn enhances neutrophil recruitment and activation
that are involved in AAV pathogenesis (118). Stimulation with the
PR3 autoantigen increases Th17 cell frequency in ANCA-positive
GPA patients compared with ANCA-negative ones and healthy
individuals, suggesting the existence of PR3-specific Th17
responses (119, 120). Moreover, sustained remission is
characterized by an increase of Treg, Th2 cells and Th2-
cytokines levels (116, 121, 122). The increase of Treg cells is not
sufficient to confer enhanced suppression (122, 123). Among
Frontiers in Immunology | www.frontiersin.org 7
FoxP3+ cells, there is a marked increase of non Treg cell subtype
in GPA-patients in remission compared with healthy donors.
These cells produce significantly more pro-inflammatory
cytokines (e.g., IL-17) in ANCA-positive patients compared with
ANCA-negative ones and healthy controls (124). Finally, recent
results suggest an interaction between regulatory B (Breg) cells and
Th17 cells. There is a negative correlation between Th17 effector
memory cells and Bregs, and in vitro experiments show an
expansion of Th17 cells after Breg depletion (125).

3.3.1.3 Eosinophilic Granulomatosis With Polyangiitis
(EGPA)
EGPA is associated with asthma, peripheral blood and tissue
eosinophilia. This disease is classically considered as a Th2-
driven inflammatory response with a key role of IL-5 in
eosinophil recruitment (126). Activated eosinophils play a
pathogenic role and secrete IL-17E/IL-25 that in turn enhance
Th2 cytokine production. Patients with active EGPA have
increased levels of IL-25 and tissue staining of nerve tissue
specimens reveals the presence of IL-25 and IL-17RB+ T
cells (127).

The frequency of circulating IL-17-producing CD4+ T cells is
increased in active EGPA compared with inactive disease (128).
In a pathologic colonic submucosa from an EGPA patient, there
is a positive correlation between eosinophil count, crypt-to-crypt
distance, the basement membrane-to-crypt distance with the
percentage of Th17 cells (129). Finally, there is an inhibition of
Treg differentiation (128, 130).

Results on AAV are summarized in Figure 3C.

3.3.2 Immune-Complex-Mediated Vasculitis
3.3.2.1 Anti-GBM (Anti-Glomerular Basement Membrane)
Disease
Anti-GBMdisease is an autoimmune disorder characterized by the
presence of anti-GBM auto-antibodies bound to basement
membrane in glomerular and pulmonary alveolar capillaries. It
explains the rapidly progressive GN and alveolar hemorrhage that
occur. The main target of auto-antibodies is the non-collagenous
domain 1 of the a3 chain of type IV collagen (8, 131).

Many results came from different animal models (102). Mice
injected with Th17 cells exhibit a neutrophil signature with
increased neutrophil infiltration (132). The Th17 pathway
allows the recruitment of destructive neutrophils through the
expression of CXCL5 by kidney tubular cells which contribute to
renal tissue injury (133, 134). Moreover, the Th17 subset induces
GN with crescent formation and antigen-specific Th17 cells are
the main contributors to renal tissue injury (135). Additional
studies confirmed the pathogenic role of Th17 cells in anti-GBM
disease (136–138). The Th17/Th1/Treg balance also plays a role
in its pathogenesis (134, 139).

3.3.2.2 Cryoglobulinemic Vasculitis
Cryoglobulinemic vasculitis is characterized by cryoglobulin
immune deposits in small vessels that can affect skin, glomeruli
and peripheral nerves (8). To our knowledge, there are currently
no report on IL-17 involvement in vasculitis due to cryoglobulins.
Results from a paper on mixed cryoglobulinemia associated with
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chronic hepatitis C virus (HCV) show an elevation of IL-17-
inducing cytokines in patients with chronic HCV and mixed-
cryoglobulinemia compared with HCV patients without vasculitis
and healthy controls (140). This may suggest IL-17 involvement in
this disease.

3.3.2.3 Immunoglobulin A (IgA) Vasculitis (IgAV)
IgAV is a vasculitis more common in children characterized by
IgA1 deposits affecting small vessels. Clinical symptoms include
cutaneous purpura, arthralgias and/or arthritis, acute enteritis
and glomerulonephritis (8, 141).

Immunostaining of renal biopsies shows IL-17 expression in
all specimens studied with IL-17+CD3-CD4- cells in the tubules
and glomeruli, and IL-17+CD3+CD4+cells in the interstitium.
Compared to control patients, glomerular and tubular grades of
IL-17 expression are higher and IL-17 expression is correlated
with proteinuria (142). Tubular cells may be an extra-immune
source of IL-17 when triggered with injury (143). Moreover, the
proportion of circulating Th17 cells and serum IL-17A level are
increased in IgAV children compared with healthy individuals.
Once again, the Th17/Treg imbalance may play a role in IgAV
pathogenesis and is correlated with disease activity (144–146).

3.3.2.4 Hypocomplementemic Urticarial Vasculitis
HUV (Anti-C1q Vasculitis)
HUV is a leukocytoclastic immune complex vasculitis
accompanied by urticaria and hypocomplementemia with anti-
C1q antibodies. This disease can induce GN, arthritis,
pulmonary disorder and eye inflammation (147). To our
knowledge, no paper reports results on Th17 involvement
in HUV.

3.4 Variable Vessel Vasculitis (VVV) –
Behçet’s Disease (BD)
VVV can affect vessels of any size and of any type. Behçet’s
disease end Cogan’s syndrome are the two entities included in
CHCC2012 (8).

BD often refers to the Silk Route disease because of its
prevalence in the Middle-East and far-east Asia. Skin and
mucosa lesions are the most common clinical manifestations
but the prognosis mainly relies on vascular and neurological
involvement (148). BD is characterized by thrombosis,
aneurysms and occlusions (149).

The frequency of circulating Th17 cells and serum levels of IL-
17A are increased in BD compared with healthy controls and are
correlated with disease activity. Circulating Treg proportion is
decreased in BD and the Th17/Treg ratio is higher in BD patients
compared with controls (150–153). The Th17 and Th1
hyperactivation observed in BD is partially mediated by a
decreased in B and T lymphocyte attenuator (BTLA) expression
(154). SerumamyloidApromotesTh17differentiation inBD(155).
Immunostaining reveals that IL-17+cells infiltrate the erythema
nodosum-like eruption in the skin of BD patients. IL-17A
producing cells are found in the cerebrospinal fluid, in brain
parenchyma inflammatory infiltrates and in intracerebral blood
vessels from patients with active disease (156). Finally, IL-17A and
IFNg production are associated with enhanced innate immune
Frontiers in Immunology | www.frontiersin.org 8
response, early neutrophil tissue infiltration and late adaptive
immunity (149, 157, 158). Results concerning BD pathogenesis
are presented in Figure 3D.
4 TARGETING IL-17 AND TH17 CELLS IN
VASCULAR INFLAMMATION

Almost all studies described above only show an increased level
of IL-17 and/or of Th17 cells but results on their real pathogenic
roles are limited. IL-17A acts as a primer, or a consort, in a
complex network of cytokines and is looking for synergy, with
the typical example of TNFa. Lessons from RA and multiple
sclerosis, where IL-17 inhibitors do not work as expected, must
be learnt when considering new therapeutic strategies for
vasculitis (17, 159). The targeting of IL-17 alone may not be
sufficient to control these diseases and combined inhibition
should be considered. To potentiate an eventual benefit from
targeting this cytokine, the identification of patients with
bioactive IL-17A would be of interest (17). Nonetheless,
targeting IL-17 pathway could be part of new strategies to
control vasculitis and methods to target it are firstly described.
Then, approved biologics and on-going clinical trials are
presented. Finally, other treatments to inhibit IL-17 are detailed.

4.1 Tools to Target the IL-17 Pathway
4.1.1 Direct Modulation of the IL-17 Pathway
Two antibodies are now available for targeting directly IL-17A
(sekukinumab and ixekizumab) and constitute the more
straightforward option. Recently, bi-specific antibody directed
against both IL-17A and IL-17F (bimekizumab) was tested in
psoriasis and may be more effective than secukinumab, which
only inhibits IL-17A (160). These results were expected as IL-17A
and IL-17F act synergistically (27). In the same vein, bispecific
antibodies that block TNFa and IL-17A are currently developing.
Finally, the targeting of IL-17RA with brodalumab and the
inhibition of RORc constitute alternative strategies (6, 35).

4.1.2 Indirect Inhibition of the IL-17 Pathway
Th17 differentiation is a multi-step and a dynamic process.
Cytokines required to Th17 differentiation include IL-1ß, IL-6
and IL-23. In addition to these cytokines, low dose of IL-2 allows
a shift towardTreg cells at the expenseofTh17population (15, 161).
Conversely, targeting of IL-6 receptor in GCA increases Treg
population and reverts their pathogenic phenotype observed
during active disease (38). Regarding these elements, the
inhibition of a cytokine involved in these processes is a way to
interfere with the Th17 pathway. Many biologics are available to
target these cytokines but only the ones tested in vasculitis are
described here (Figure 4). Statins and metformin, that are widely
used, are also described, as in vitro inhibitors of the IL-17 pathway.

4.2 Approved Biologics in Vasculitis and
On-Going Clinical Trials
Biologics that have been tested in vasculitis are described with
the idea that the inhibition of the Th17 pathway could modulate
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disease’s activity. However, the cytokine itself that is inhibited
could also play a role in the pathogenesis. The discussion below
only provides some elements for thought.

4.2.1 Inhibition of IL-17
To date, very few trials have been conducted in vasculitis. A trial
is on hold with secukinumab in patients naïve to biologics and
with newly diagnosed or relapsing GCA (162).

Some results suggest that secukinumab could be efficient in
BD as promising results come from patients with non-infectious
uveitis (163). Trials to modify the Th17/Treg balance have been
performed with low dose IL-2 administration and even more are
on-going (NCT01988506, NCT04065672, NCT04387942) (161).

4.2.2 Inhibition of IL-6
The inhibition of IL-6 in vasculitis could have a therapeutic effect
in different manner, notably in an IL-17 dependent fashion. First,
IL-6 is required for Th17 differentiation. This cytokine also plays
a role in the Th17/Treg imbalance and IL-17A up-regulates IL-6
expression through NFkB pathway (1, 15, 16).

Tocilizumab is an IL-6 receptor inhibitor that was firstly used in
RA(164).As IL-6pathway is absolutely central inGCApathogenesis,
its targeting through tocilizumab was firstly tested (75). Tolicizumab
was shown to restore abetterTreg function thanglucocorticoids (37).
Trials were conducted in GCA and allowed for reductions in steroid
doses and maintain remission (165, 166). Recent EULAR guidelines
recommend the use of Tocilizumab as adjunctive therapy in selected
GCApatients (14). Sirukumab efficacy, an IL-6 production inhibitor,
is currently testing in GCA (167).

Tocilizumab can be considered in relapsing or refractory TAK
when conventional disease modifying anti-rheumatic drugs
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(DMARDs) or TNF blockers are not sufficient to control
disease activity (14, 168–170). Apart from LVV, Tocilizumab
was also tested in BD with promising results and clinical trials are
on-going (NCT03554161) (171, 172). In AAV, some case reports
have been published but larger clinical trial are required (173).

4.2.3 Inhibition of IL-1ß
IL-1ß is required for Th17 differentiation and enhances Th17
cell differentiation, as shown in BD (174). Different tools are
available to block this pathway, either with IL-1 receptor antagonist
(anakinra) or by targeting directly the cytokine itself (canakinumab,
gevokizumab) (175). Clinical trials are on-going to test anakinra in
addition to corticosteroids in GCA (NCT02902731). Anakinra is
currently testing in KD (NCT02179853, NCT02390596). In BD,
canakinumab (NCT02756650), anakinra and gevokizumab were
tested and results suggest a mixed effect depending on clinical
manifestations (176–181). Canakinumab was also tried in HUV
and results are expected (NCT01170936).

4.2.4 Inhibition of IL-23
Asmentioned above, IL-23 is required forTh17differentiation (15).
Different biologics were developed to target this cytokine with the
example of ustekinumab, that targets p40 subunit and thus
potentially inhibits both Th1 and Th17 pathways (182). Precisely,
ustekinumab was tested in a GCA patient and inhibited Th1 and
Th17polarization (183).A recent trial showeddisappointing results
but they must be analyzed carefully for several reasons
(uncontrolled trial, time of analysis) (184, 185). Other trials
displayed promising results and this treatment is currently testing
in relapse or refractory GCA (NCT03711448) (186). Among LVV,
ustekinumab was also tested in three TAK patients with promising
FIGURE 4 | Tools for targeting the IL-17/Th17 pathway in vasculitis. T-helper (Th) 17 differentiation is a multi-step process with different cytokines involved. Their
inhibitions could act on Th17 differentiation and modify the course of vasculitis. The first step of Th17 differentiation is mediated by interleukin (IL)-1ß and IL-6.
Inhibitors of IL-1ß (canakinumab, gevokizumab) or IL-1 receptor antagonist (anakinra) are available and some were tested in vasculitis. Inhibitors of IL-6 (sirukumab)
or of its receptor (tocilizumab) were approved in selected giant-cell arteritis (GCA) patients. IL-6 inhibition also acts on the Th17/regulatory T cells (Treg) dysregulation
that occurs in vasculitis. Another way to modulate the Th17/Treg balance is to use low-dose of IL-2. Receptor-related orphan receptor (RORc) inhibition also
suppresses Th17 lineage. Then, IL-23 is required for Th17 differentiation and ustekinumab is an inhibitor of the IL-12/IL-23 axis, guselkumab specifically targets
IL-23. Promising results in Behçet disease (BD) are described. After their differentiation, Th17 cells produce IL-17A which could be inhibited by secukinumab or
ixekizumab. Bispecific antibodies against IL-17A/IL-17F are currently developing with bimekizumab. brodalumab is an IL-17 receptor antagonist. All biologics
targeting directly the IL-17 pathway are represented but secukinumab was the only one tested in vasculitis.
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results (187–189). Recently, guselkumab, that specifically binds
to the p19 subunit of IL-23, is currently tested in GCA
(NCT04633447). Concerning VVV, ustekinumab was tried in
BD; at week 12, 70% of patients fulfilled criteria for complete
response. As compared to baseline values, IL-17A levels were
significantly decreased at week 12 (190). These observations were
subsequently confirmed but results from other trials are expected
(NCT02648581) (191).

4.3 Other Treatments to Target the
IL-17 Pathway
Outside biologics, some treatments currentlyused incardiovascular
prevention and in diabetes can target the IL-17 pathway. For
instance, statins are shown to reduce the pro-inflammatory and
pro-thrombotic effects of IL-17A and TNFa on EC (192).

Indirect evidence of metformin’s effect on the IL-17 pathway
comes from cancer. Metformin is an agonist of Sirtuin-1 whose
activation reduces Th17 frequency in patients (193). A Chinese
trial tested metformin in thirty BD patients. In terms of clinical
manifestations, the overall favorable response rate was almost
90% and partial remission was obtained in the rest of patients.
Inflammatory parameters were lowered by the treatment. FoxP3
and TGF-ß protein levels were increased while IL-17 expression
was lowered suggesting that metformin mediates the Th17/Treg
imbalance (194).

Other treatments used in RA or in chronic inflammatory
diseases were shown to decrease Th17 response, as
glucocorticoids suppress Th17 responses in GCA patients (77).
JAK inhibitors were tested in TAK patients with a response in
two of three patients treated with a decrease in Th17 cells and an
increase of Treg ones (70). Recently, tofacitinib (TOF), which
preferentially inhibits JAK1 and JAK3, was compared with
methotrexate (MTX) in TAK. TOF and MTX were associated
with glucocorticoids, the study included 53 patients (26 in MTX
group, 27 in TOF group) and showed the advantages of TOF
regarding complete remission induction, the prevention of
relapse and the tapering of steroid dose compared with MTX.
No serious side effects were observed in the TOF group during 12
months of treatment but results must be confirmed in larger
cohort with longer follow-up (195). Similarly, baricitinib, which
inhibits JAK1/JAK2, has been tested in GCA. Fifteen relapsing
GCA patients were enrolled in an open-label pilot study and
preliminary results demonstrated evidence of both efficacy and
safety. Discontinuation of glucocorticoids was allowed in the
majority of patients with relapsing GCA but larger trials are
Frontiers in Immunology | www.frontiersin.org 10
needed to confirm these results (196). Finally, the inhibition of
the complement pathway with avacopan (anti-C5a receptor) in
AAV showed promising results but its effects on the Th17
pathway have to be characterized (197).

Overall, more clinical data are needed to conclude on the
potential benefit to specifically target IL-17 in these diseases.
5 CONCLUSION

It is now well established that IL-17A is involved in autoimmunity
and in chronic inflammation. This demonstration came from both
in vitro and in vivo experiments and was confirmed by the efficacy
of IL-17 inhibitors in various articular and cutaneous diseases.
The effects of IL-17A on the CV system were described locally and
then at a systemic level. Interacting in a complex network of
cytokines, IL-17A promotes inflammation, thrombosis and
coagulation. Regarding these effects, results suggest that
this cytokine is involved in various diseases ranging from
atherosclerosis to vasculitis. Vasculitis treatment faces challenges
as steroids constitute the cornerstone of care. The indirect
modulation of the Th17 pathway through different biologics has
shown efficacy, particularly in LVV with tocilizumab which is now
recommended in selected cases. As an extension, IL-17A could
constitute an attractive target in inflammatory CV diseases if the
cytokine is considered in its complex network. Disappointing
expectations from the use of IL-17 inhibitors in RA and in
multiple sclerosis must be considered before going further into
their application in vasculitis where the Th17 pathway may act as a
culprit and a consort. Given that, the thoughtful use of these drugs
could be of great benefit to patients.
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