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Identifying disease-related microRNAs (miRNAs) is an essen-
tial but challenging task in bioinformatics research. Much
effort has been devoted to discovering the underlying associa-
tions between miRNAs and diseases. However, most studies
mainly focus on designing advanced methods to improve
prediction accuracy while neglecting to investigate the link
predictability of the relationships between miRNAs and dis-
eases. In this work, we construct a heterogeneous network by
integrating neighborhood information in the neural network
to predict potential associations betweenmiRNAs and diseases,
which also consider the imbalance of datasets.We also employ a
new computational method called a neural network model for
miRNA-disease association prediction (NNMDA). This model
predicts miRNA-disease associations by integrating multiple
biological data resources. Comparison of our work with other
algorithms reveals the reliable performance of NNMDA. Its
average AUC score was 0.937 over 15 diseases in a 5-fold
cross-validation and AUC of 0.8439 based on leave-one-out
cross-validation. The results indicate that NNMDA could be
used in evaluating the accuracy of miRNA-disease associations.
Moreover, NNMDA was applied to two common human dis-
eases in two types of case studies. In the first type, 26 out of
the top 30 predicted miRNAs of lung neoplasms were
confirmed by the experiments. In the second type of case study
for new diseases without any known miRNAs related to it, we
selected breast neoplasms as the test example by hiding the
association information between the miRNAs and this disease.
The results verified 50 out of the top 50 predicted breast-
neoplasm-related miRNAs.
Received 9 January 2019; accepted 11 April 2019;
https://doi.org/10.1016/j.omtn.2019.04.010.
6These authors contributed equally to this work.

Correspondence: Quan Zou, Institute of Fundamental and Frontier Sciences,
University of Electronic Science and Technology of China, Chengdu 610000, China.
E-mail: zouquan@nclab.net
INTRODUCTION
The first microRNA (miRNA) named lin-4 was discovered 20 years
ago by Victor Ambros.1 Since then, thousands of currently annotated
miRNAs have been discovered in various species of plants,
animals, and viruses.2 The expression of mRNAs is suppressed in a
sequence-specific manner by miRNAs that consist of small endoge-
nous noncoding RNAs.3,4 Many studies indicated that miRNAs are
important cell components and have vital roles in multiple stages of
biological processes, such as cell growth,5 cell development,5 cell cycle
regulation,6 cell apoptosis,7 stress responses,8 and tumor invasion.9
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Furthermore, the strong associations between miRNAs and diseases
have been verified by numerous biological studies.10,11 The accumu-
lating knowledge of disease-related miRNAs could contribute to
pathological classifications, individualized diagnoses, and disease
treatments.12–14 However, exploring the underlying miRNA-disease
associations still remains a challenge for biologists.15–18 Powerful
computational approaches that could effectively reveal miRNA-
disease associations must be urgently developed.

In recent years, many computational prediction methods have been
used to identify reliable disease-miRNA candidates for further exper-
imental studies19–30 and achieved excellent performance. Based on
the assumptions that miRNAs that have similar functions are more
likely associated with similar disease and vice versa, Jiang et al.31 esti-
mated the similarity between miRNAs by measuring the similarity of
their target genes. The miRNA network based on targets was com-
bined with a disease phenotype network to infer the correlation scores
between miRNAs and diseases. In addition, they improved the
score calculation by further integrating the similarities of miRNAs
with the phenotype similarities of diseases.32 Li et al.33 collected
miRNA targets and measured the function consistency score (FCS)
between the target genes and the disease-related genes. However,
this method ignored the topological structure when calculating the
FCS. Xu et al.34 focused on extracting features from the miRNA-
disease network data, which were constructed under two consider-
ations, namely, a feature set primarily related to miRNA information
and disease phenotype information. HDMP35 predicted disease-
related miRNAs by weighting the most similar neighbors.

In addition, Chen et al.36 presented the random walk with restart for
miRNA-disease association (RWRMDA) model to identify potential
miRNA-disease pairs by adopting random walks on the miRNA
functional similarity network. Shi et al.37 improved the RWRMDA
by considering miRNA-target associations, disease-gene associations,
uthor(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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and protein-protein interaction networks. Xuan et al.21 developed the
method miRNAs associated with diseases prediction (MIDP), which
utilizes the features of different nodes on the basis of random walks
with a restart. Afterward, an extension method, named MIDPE,
was proposed by constructing a miRNA-disease bilayer network.
This approach was developed because nearly all the previous methods
based on random walks could not be applied without any known
related miRNA.

Moreover, machine-learning methods have also been considered for
identifying miRNA-disease associations. Chen and Yan38 presented
regularized least-squares for miRNA-disease association (RLSMDA),
in which data from known miRNA-disease associations, disease-
disease similarity datasets, and miRNA-miRNA functional similarity
networks were integrated. Zou et al.26 introduced twomethods to pre-
dict miRNA-disease association. CATAPULT26 is a biased support
vector machine (SVM) that was trained to classify miRNA-disease
pairs. The other method, the KATZ method,26 denotes the associa-
tions on the basis of the paths of different lengths in the miRNA-
disease network. Based on transduction learning, Luo et al.39 adopted
a strategy of collective prediction based on transduction learning
(CPTL) to infer potential miRNA-disease associations. Yu et al.40 first
reconstructed the similarity matrices for miRNAs and diseases and
then used label propagation to predict the possible links between
miRNAs and diseases. The model of within and between score for
miRNA-disease association prediction (WBSMDA)41 uncovers
potential miRNA-disease associations according to the within and
between scores for many complex diseases, which could predict the
potential related miRNAs of new diseases and new miRNAs without
known association information. Chen and Huang42 presented a
computational model named Laplacian regularized sparse subspace
learning for miRNA-disease association prediction (LRSSLMDA),
which used Laplacian regularization to preserve the local structures
of the training data. Li et al.43 designed the matrix completion for
miRNA-disease association prediction model (MCMDA), which
could efficiently update the low-rank miRNA-disease matrix to iden-
tify their associations. Meanwhile, the path-based miRNA-disease
association (PBMDA)22 predictionmodel is an effective model to pre-
dict miRNA-disease association. This model adopts the depth-first
search algorithm by integrating the disease semantic similarity,
miRNA functional similarity, known human miRNA-disease associ-
ations, and Gaussian interaction profile kernel similarity for miRNAs
and diseases. inductive matrix completion for miRNA-disease associ-
ation prediction (IMCMDA)19 is a matrix computational algorithm
that could efficiently update the low-rank miRNA-disease matrix to
identify their associations. Chen et al.44 presented a computational
model of matrix decomposition and heterogeneous graph inference
for miRNA-disease association prediction (MDHGI) to find new
miRNA-disease associations by integrating the predicted association
probability obtained from matrix decomposition through sparse
learning method.

All mentioned methods have their own strengths, and these methods
can be categorized into five aspects: (1) neighborhood-based
methods, such as HDMP35 and CPTL;39 (2) random walk-based
methods, such as RWRMDA,36 Shi’s method,37MIDP, andMIDPE;21

(3) machine-learning-based methods, such as Xu et al.’s method34

and RLSMDA;38 (4) path-based methods, such as KATZ26

and PBMDA;22 and (5) matrix-based methods, such as MCMDA,43

IMCMDA,19 and MDHGI44.

Inspired by popular neural-network-based approaches45 and the
latest advances in network embedding technologies,46 we employ
NNMDA, which could accurately and efficiently predict miRNA-
disease associations by integrating neighborhood information based
on neural networks. Specifically, network embedding is an effective
approach that aims at converting the network into a low-dimensional
space while preserving the structural information of the network.46 In
this way, nodes and associations of the network can be represented as
compacted yet informative vectors in the embedding space.46 In the
experiment, we use two evaluation methods, namely, leave-one-out
cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV),
to verify the performance of our method. Compared with existing
approach, our method achieves an outstanding performance in
identifying potential miRNA-disease associations. For further verifi-
cation, we used case studies to analyze the performance of NNMDA.
Experimental results show that our method has reliable performance
on detecting novel associations. We also found that some special
associations and corresponding miRNAs require further attention.

RESULTS
In this section, we analyze the performance of NNMDA from several
aspects. Evaluation criteria and methods used in this paper are
introduced. The performance of NNMDA was compared with those
of other methods in identifying potential associations between
miRNAs and diseases. Finally, case studies were utilized to further
evaluate the reliability of NNMDA.

Evaluation Criteria and Methods

In this paper, area under the curve (AUC), precision (PRE), and
recall (REC) were used as evaluation criteria for the performance of
models.

AUC is the area under the receiver operating characteristic (ROC)
curve and is established by plotting the true positive rate (TPR)
against false positive rate (FPR) at various threshold settings.

PRE (also called positive predictive value) is the fraction of relevant
instances among the retrieved instances, whereas REC is the fraction
of relevant instances that have been retrieved over the total amount of
relevant instances. The equations are as follows:

PRE =
TP

TP + FP
(Equation 1)

where TP and FP are the numbers of true positive and false positive
samples, respectively, with respect to a specific disease. A large PRE
value indicates good prediction accuracy.
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Table 1. Comparison of Various Computational Approaches’ AUC Values through 5-Fold Cross-Validation

Method RWRMDA HDMP IMCMDA RLSMDA MIDP SPM NNMDA

Breast neoplasm 0.785 0.801 0.812 0.832 0.838 0.932 0.968

Hepatocellular carcinoma 0.749 0.759 0.744 0.794 0.807 0.918 0.966

Renal cell carcinoma 0.815 0.833 0.793 0.839 0.862 0.901 0.912

Squamous cell carcinoma 0.819 0.820 0.837 0.849 0.870 0.899 0.924

Colorectal neoplasm 0.793 0.802 0.766 0.831 0.845 0.885 0.927

Glioblastoma 0.680 0.700 0.781 0.714 0.786 0.840 0.911

Heart failure 0.722 0.770 0.924 0.738 0.821 0.950 0.945

Acute myeloid leukemia 0.839 0.858 0.861 0.853 0.915 0.957 0.916

Lung neoplasm 0.827 0.835 0.841 0.855 0.876 0.892 0.943

Melanoma 0.784 0.790 0.761 0.807 0.837 0.951 0.949

Ovarian neoplasm 0.882 0.884 0.875 0.909 0.923 0.949 0.928

Pancreatic neoplasm 0.871 0.895 0.894 0.887 0.945 0.954 0.954

Prostatic neoplasm 0.823 0.854 0.775 0.841 0.882 0.928 0.936

Stomach neoplasm 0.779 0.787 0.783 0.797 0.821 0.859 0.955

Urinary bladder neoplasm 0.821 0.850 0.813 0.845 0.897 0.898 0.920

Average AUC 0.799 0.816 0.817 0.826 0.862 0.914 0.937
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REC =
TP

TP + FN
; (Equation 2)

where FN is the number of false negative samples with respect to a
specific disease.

We evaluated the performance of NNMDA to predict potential dis-
ease-related miRNAs by using two evaluation methods (LOOCV
and 5-fold CV).

5-fold CV is often used to evaluate the ability of a model to
predict potential associations. For a specific disease d, d-related rela-
tionships are randomly divided into five subsets, four of which are
used as known information, whereas the remaining one is used for
testing.

LOOCV is also a widely used evaluation method. For the disease d(i)
in our experiment, each known miRNA-disease pair (take miRNA-
disease pair (m(j)-d(i)) as an example) was selected as the test sample,
whereas all the other known miRNA-disease pairs were considered as
training samples. First, we artificially changed the known miRNA-
disease pairs (m(j)-d(i)) into unverified miRNA-disease pairs d(i)
that were considered as candidate samples. We then ranked the
predicted score of the test miRNA-disease pair (m(j)-d(i)) with the
candidate samples. If the rank of the test miRNA-disease pair
(m(j)-d(i)) exceeded the given threshold, then the model successfully
predicted the miRNA-disease pair (m(j)-d(i)).
5-Fold CV

In 5-fold CV, we randomly divided the associations of each disease
into five subsets of equal sizes that were used as testing sets.
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We compared our method with the following widely applied miRNA-
disease prediction algorithms: (1) RWRMDA,36 (2) HDMP,35 (3)
IMCMDA,19 (4) RLSMDA,38 (4) MIDP,21 and (5) SPM.23 Table 1
shows the prediction performance measured as AUC for different
diseases.

Among the 15 algorithms, NNMDA achieved the best performance.
Table 1 shows that the average AUC scores of RWRMDA, HDMP,
IMCMDA, RLSMDA, SPM, and NNMDA were 79.9%, 81.6%,
81.7%, 82.6%, 86.2%, 91.4%, and 93.6%, respectively. The average
AUC score of NNMDA was higher than that of the other methods
by 13.8%, 12.1%, 12.0%, 11.0%, 7.5%, and 2.3%, respectively.

In terms of AUC score, NNMDA achieved the highest averaged value
but did not exhibit the best performance among all the diseases,
particularly in heart failure. Hence, we compared the performance
of NNMDA with those of PRE and REC. For a specific disease, we
ranked the related candidates according to their scores.

We measured the PRE and REC within the top 20, 40 ..., 80, and 100
candidates in the rank list because the top portion of the prediction
links is important. PRE indicates the ratio of positive samples in the
top-k samples, whereas REC measures how many positive samples
are correctly identified within the top-k.

Figures 1A and 1B plot the performance of the three methods that
achieved the top three AUC scores in heart failure. We found that
NNMDA outperformed the other two methods in terms of PRE
(Figure 1A) and REC (Figure 1B), indicating the competitiveness
of this approach. We also showed that with the increase in k,
REC increased but PRE declined. This finding reveals that the links



Figure 1. Performances on 5-Fold Cross-Validation

Precision

(A) Precision on disease heart failure. (B) Recall on disease

heart failure. (C) Average recalls for the 15 tested diseases

on four methods (NNMDA, IMCMDA, MIDP, and SPM),

which contain the diseases breast neoplasm, hepatocel-

lular carcinoma, renal cell carcinoma, squamous cell

carcinoma, colorectal neoplasm, glioblastoma, heart

failure, acute myeloid leukemia, lung neoplasm, mela-

noma, ovarian neoplasm, pancreatic neoplasm, prostatic

neoplasm, stomach neoplasm, and urinary bladder

neoplasm.
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ranked the top places have a high probability of being potential
associations.

Figure 1C shows the average REC for the 15 tested diseases.
Within the top 30, the average RECs of NNMDA, MIDP, SPM,
and IMCMDA for all 15 diseases were 49.5%, 43.5%, 49.4%, and
43.0%, respectively. This finding indicates that NNMDA performs
slightly better than the other three methods. With the increment
of k, the performance of NNMDA remarkably increased for the
top 60 to 120 predictions. NNMDA outperformed the other four
methods.

LOOCV

In this section, a ROC curve was plotted by using the results of
LOOCV. The x axis of the ROC graph is the TPR, whereas the y
axis is the FPR. The ROC curve based on LOOCV is plotted in Fig-
ure 2. On the basis of the ROC curve, AUC could be calculated as
an evaluation metric for the model.
Molecular T
Based on the LOOCV results, we compared
NNMDA with other four methods, namely,
IMCMDA, RWRMDA, HDMP, and RLSMDA.
The results showed that NNMDA, IMCMDA,
RWRMDA, HDMP, and RLSMDA had ob-
tained AUCs of 0.8432, 0.8034, 0.7891, 0.7702,
and 0.6953, respectively. NNMDA achieved
the best performance among all these models.
Therefore, we can intuitively observe the
improved performance of NNMDA in predict-
ing miRNA-disease associations.

Case Study

Two different types of case studies were
implemented to validate the performance and
evaluate the accuracy of NNMDA for miRNA-
disease association prediction.

In the first case study, all the associations
between miRNAs and diseases were used to
uncover potential associations. For a special dis-
ease, we extract the top 30 candidate associa-
tions of this disease to determine whether or
not these associations can be confirmed by miR2Disease and
dbDEMC V2.0 databases. The number of known miRNA-disease
associations that are not included in HMDD are used to estimate
the performance of NNMDA. Table 2 shows the prediction results
of the top 30 predicted lung neoplasm-related miRNAs.

As shown in Table 2, 9 out of the top 10 and 26 out of the top 30 pre-
dicted lung-neoplasm-related miRNAs were included. Therefore,
most of the potential associations were confirmed by the miR2Disease
and dbDEMC V2.0 databases.

An important criterion for evaluating the usefulness of a model is
whether or not it can be used to predict potential related miRNAs
for a new disease. In the second case study, we evaluated the perfor-
mance of NNMDA when it was implemented to the new disease
without any known related miRNAs. Breast neoplasms were used
as an example in our experiment. Therefore, we hid the association
information between miRNAs and breast neoplasms by setting all
herapy: Nucleic Acids Vol. 16 June 2019 569
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Figure 2. Comparison of Performance among NNMDA and Baseline

Methods (NNMDA, IMCMDA, RWRMDA, HDMP, and RLSMDA)

Table 2. PredictionResults of the Top 30 Predicted LungNeoplasm-Related

miRNAs Based on Known Associations in HMDD V1.0

miRNA Evidence miRNA Evidence

hsa-let-7g dbDEMC mir2disease hsa-mir-18b dbDEMC

hsa-mir-135b dbDEMC hsa-mir-17 dbDEMC

hsa-mir-133b dbDEMC hsa-mir-21 dbDEMC mir2disease

hsa-mir-200b dbDEMC mir2disease hsa-mir-148a dbDEMC mir2disease

hsa-let-7d dbDEMC mir2disease hsa-mir-18a dbDEMC mir2disease

hsa-mir-181b-1 unverified hsa-mir-30e dbDEMC

hsa-mir-29c dbDEMC mir2disease hsa-mir-101-1 mir2disease

hsa-mir-98 dbDEMC mir2disease hsa-mir-30c-2 unverified

hsa-mir-221 dbDEMC mir2disease hsa-mir-125a dbDEMC mir2disease

hsa-mir-186 dbDEMC hsa-mir-200c dbDEMC mir2disease

hsa-mir-142 unverified hsa-mir-126 dbDEMC mir2disease

hsa-mir-146a dbDEMC hsa-mir-31 dbDEMC mir2disease

hsa-mir-146b dbDEMC mir2disease hsa-mir-30c-1 unverified

hsa-mir-101-1 mir2disease hsa-mir-30a dbDEMC

hsa-let-7b dbDEMC hsa-mir-192 mir2disease dbDEMC

The first column contains the top 1–15 related miRNAs, whereas the third column
shows the top 16–30 related miRNAs.
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their known associations as unknown ones. We then implemented
NNMDA to obtain the ranking list of the association prediction
scores for miRNA-breast neoplasms. We analyzed in detail the pre-
diction accuracy on breast neoplasm and mainly focused on the top
50 miRNA candidates. The results for breast neoplasms are repre-
sented in Table 3.

DISCUSSION
Identifying potential disease-related miRNAs could provide new
insights into the role of miRNA for its impact on clinical measure,
diagnosis, and treatment. However, relying on traditional experi-
mental-based methods, predicting the associations between miRNA
and disease seems inefficient. Consequently, great numbers of
computational methods have been proposed to solve this challenging
problem in recent years. In this paper, we apply a neural-network-
based model to predict miRNA-disease associations, which aggre-
gates the neighbor information during the process and preserves
the topology of the original network at the same time. After that, to
comprehensively verify the performance of our method, 5-fold CV
and LOOCV are implemented to evaluate NNMDA in comparison
with other state-of-the-art approaches. Compared to the state-of-
the-art method, NNMDA performs better in terms of AUC values
on the dataset and is able to retrieve more correct associations. In
addition, case studies on two common diseases also gave a strong
confirmation to the prediction ability of our method. Results show
that NNMDA could be a useful tool for studying the miRNA-disease
relationship. The success of ourmethod is mainly due to the following
two reasons. First, the constructed similarity networks for both
miRNAs and diseases are well integrated in the neural network.
Second, the imbalance of datasets that we take into consideration
helped improve the efficiency. Nonetheless, more informative data
sources should be integrated into our model to further improve the
prediction performance. The future work may further take more
optimization methods into account to accurately uncover associa-
tions between miRNAs and diseases.
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MATERIALS AND METHODS
miRNA-Disease Network

Data of known human miRNA-disease associations used in this
paper were retrieved from the human miRNA-disease database
(HMDDv2.0) to construct the miRNA-disease network.47 If a disease
is associated with a miRNA, then an edge is added to link them. The
miRNA-disease association matrix is asymmetric and binary, i.e.,
each entry of the association matrix could only be 0 or 1. A total
of 6,441 associations between 577 miRNAs and 336 diseases were ob-
tained after duplications were removed.
Disease Functional Similarity

Functionally similar genes exhibit a great probability of regulating
similar diseases. Therefore, we used gene functional information to
construct a disease similarity network. The data can be downloaded
from the HumanNet database,33 which contains an associated log-
likelihood score (LLS) of each interaction between two genes or
gene sets. Similarity DSðdi; djÞ between diseases di and dj is based
on the gene functional information and was calculated as follows:

DS
�
di; dj

�
=

8>><
>>:

X
xeSðdiÞ

LLSðx; SðdiÞÞ+
X

yeSðdjÞ
LLS
�
y; S
�
dj
��

jjSðdiÞ jj + ����S�dj� ����
0; otherwise

; jjSðdiÞ jj

+
����S�dj� ����s0;

(Equation 3)

where SðdiÞ and SðdjÞ represent the gene sets that are related to dis-
eases ; di and dj, respectively. SðdiÞ and SðdjÞ are the cardinalities of



Table 3. Prediction Results of the Top 50 Predicted Breast Neoplasm-

Related miRNAsWhen the Known Associations of Breast NeoplasmsWere

Considered as Unknown Ones

miRNA Evidence miRNA Evidence

hsa-mir-155 dbDEMC HMDD hsa-mir-19b-1 HMDD

hsa-mir-21 dbDEMC HMDD hsa-mir-1-1 HMDD

hsa-mir-146a dbDEMC HMDD hsa-mir-145 dbDEMC HMDD

hsa-mir-29b-1 HMDD hsa-mir-29c dbDEMC HMDD

hsa-mir-125b-1 HMDD hsa-mir-199a-2 HMDD

hsa-mir-29b-2 HMDD hsa-mir-223 dbDEMC HMDD

hsa-mir-34a dbDEMC HMDD hsa-mir-126 dbDEMC HMDD

hsa-mir-15a dbDEMC HMDD hsa-mir-133a-2 HMDD

hsa-mir-125b-2 HMDD hsa-mir-19a dbDEMC HMDD

hsa-mir-20a dbDEMC HMDD hsa-mir-199a-1 HMDD

hsa-mir-16-1 HMDD hsa-let-7b dbDEMC HMDD

hsa-mir-16-2 HMDD hsa-mir-26a-1 HMDD

hsa-mir-221 dbDEMC HMDD hsa-let-7c dbDEMC HMDD

hsa-mir-29a dbDEMC HMDD hsa-mir-142 HMDD

hsa-let-7a-2 HMDD hsa-mir-146b HMDD

hsa-mir-26a-2 HMDD hsa-mir-150 dbDEMC HMDD

hsa-mir-1-2 HMDD hsa-mir-210 dbDEMC HMDD

hsa-let-7a-1 HMDD hsa-mir-196a-2 HMDD

hsa-let-7a-3 HMDD hsa-let-7i dbDEMC HMDD

hsa-mir-17 dbDEMC HMDD hsa-let-7d dbDEMC HMDD

hsa-mir-31 dbDEMC HMDD hsa-mir-195 dbDEMC HMDD

hsa-mir-92a-1 HMDD hsa-mir-222 dbDEMC HMDD

hsa-mir-18a dbDEMC HMDD hsa-mir-92a-2 HMDD

hsa-mir-122 dbDEMC HMDD hsa-mir-24-1 HMDD

hsa-mir-133a-1 HMDD hsa-mir-133b dbDEMC HMDD

The first column contains the top 1–25 related miRNAs, whereas the third column
shows the top 26–50 related miRNAs.
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gene sets ; SðdiÞ and SðdjÞ, respectively. LLSðx; SðdiÞÞ is the LLS be-
tween gene x and gene set SðdiÞ, where xε SðdiÞ. If DSðdi; djÞ > 0,
then it can be considered as the weight of the link connecting diseases
di and dj. Hence, we obtained a weighted disease similarity network
containing 112,896 similar associations among 336 diseases.

miRNA Similarity

The miRNA similarity network was constructed by employing four
main miRNA similarities, which are based on verified miRNA-target
associations, family information, cluster information, and verified
miRNA-disease associations. The verified miRNA-target associations
can be downloaded from the miRTarBase,48 a database of miRNA-
target interactions (http://mirtarbase.mbc.nctu.edu.tw/php/index.
php) validated by reporter assays and next-generation sequencing
experiments. Two miRNA nodes are considered as connected if
they share common targets. The edge weight, miRNA similarity
based on target, represents the number of shared targets between
miRNAs.
We can obtain the family information and cluster information from
miRBase.49 If two miRNAs belong to the same miRNA family, then
the value of miRNA similarity based on family would be set as 1,
otherwise 0. We obtained 153 clusters of miRNAs. In terms of
miRNA similarity based on cluster, the value would be set to 1 if
the two miRNAs belonged to the same cluster. These two matrices
were found to both be Boolean types. According to literature,50,51

functionally similar miRNAs tend to connect with similar diseases
and vice versa. We downloaded functional similarity data from
http://www.cuilab.cn/files/images/cuilab/misim.zip from a previous
study.50 With these data, we constructed matrix FMS to represent
the miRNA functional similarity. The element FMSðmðiÞ; mðjÞÞ de-
notes the functional similarity between miRNA mðiÞ and mðjÞ. After
a simple combination introduced in Zeng et al.23, a weighted miRNA
similarity network containing 332,928 similar associations among
577 miRNAs was obtained.

Gaussian Interaction Profile Kernel Similarity for Diseases and

miRNAs

Considering that similar diseases tend to be related to functionally
similar miRNAs and vice versa,50,52 we calculated Gaussian interac-
tion profile kernel similarities for the miRNAs and diseases’ similar-
ity. First, we used A(i, j) to represent the interaction between disease
d(i) and miRNAm(j), where A is the miRNA-disease association ma-
trix. Gaussian interaction kernel similarity between disease d(i) and
d(j) was calculated as follows:

GS
�
di; dj

�
= exp

 
� gd

Xk= nm

k= 1

ðAði; kÞ � Aðj; kÞÞ2
!
; (Equation 4)

where gd is used to control the kernel bandwidth that is obtained
by normalizing a new bandwidth parameter g’

d by the average
number of associations with miRNAs for all the diseases. gd is defined
as follows:

gd =g’
d

,"
1
nm

Xk= nm

k= 1

Xs= nd

s= 1

Aðk; sÞ2
#
: (Equation 5)

Gaussian interaction profile kernel similarity between miRNA m(i)
and m(j) is defined in a similar way:

GS
�
mi;mj

�
= exp

 
� gm

Xk= nd

k= 1

ðAðk; iÞ � Aðk; jÞÞ2
!
; (Equation 6)

gm =g’
m

,"
1
nd

Xk= nm

k= 1

Xs= nd

s= 1

Aðk; sÞ2
#
: (Equation 7)

Schematic Overview

As shown in Figure 3, the framework consists of four major steps:
(1; Figure 3A) construct a heterogeneous network based on three
miRNA similarity interactions, two disease similarity interactions,
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Figure 3. Flowchart of NNMDA

(A) NNMDA uses several individual miRNA-related or disease-related networks to construct a heterogeneous network (details of the used datasets are introduced inMaterials

andMethods). In a heterogeneous network, different types of nodes are connected by distinct types of edges. Two nodes can be connected bymore than one edge (e.g., the

solid link between diseases representing disease functional similarity and the chain line between them representing disease Gaussian similarity). (B) Each node adopts

a neighborhood information aggregation operation to extract information from the neighborhood. Each arrow represents a specific aggregation function with respect to a

specific edge type. Each node then updates its feature representation by integrating its current representation with the aggregated information. (C) NNMDA learns the

topology-preserving node features that are useful for miRNA-disease interaction prediction by enforcing the node features to reconstruct the original individual networks. (D)

Reconstruction of all individual matrices.
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and miRNA-disease associations. The similarity matrices are sym-
metric, whereas the miRNA-disease association matrix is asymmetric
and binary, i.e., each entry of the association matrix could be only
0 or 1. (2; Figure 3B) Integrate the neighborhood information of
miRNAs and diseases and further embed them into low-dimensional
representations in neural network. (3; Figure 3C) Reconstruct
miRNA-disease association matrix by using extracted feature vectors
and minimize the loss between the new reconstructed matrices
and the observed matrices. This step aims to enforce the learned
representations as much as it could from the original matrices. (4;
Figure 3D) Predict the miRNA-disease associations by ranking
and selecting the values in a decreasing order in the reconstructed
association matrix.

Heterogeneous Network

Given a heterogeneous network G = (V, E), V is a node set
that contains two kinds of node type, NT = {miRNA, disease},
and E is an edge set with edge types ET = {miRNA-miRNA,
miRNA-miRNA-Gaussian, disease-disease-functional, disease-dis-
ease-Gaussian, miRNA-disease}. In our framework, each node only
belongs to a single node type, whereas the same two nodes can be
linked by more than one edge, e.g., two diseases can be simulta-
neously associated to a disease-disease-functional edge and a dis-
572 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
ease-disease-Gaussian edge. For each matrix, normalization is first
implemented before further processing after data preparation. If A’

is the corresponding normalized matrix of the original matrix A,
then it can be formulated as follows:

A’ði; jÞ= Aði; jÞPk=ColðAÞ
k= 1 Aði; kÞ

; (Equation 8)

where Col(A) is the size of A column dimension. A heterogeneous
network can be generated using the normalized matrices as associa-
tion weight.
Neighborhood Information Aggregation and Node Embedding

To develop a network topology-preserving embedding model that can
be used to predictmiRNA-disease interactions, we adopted the neigh-
borhood information aggregation strategy. For each node u with type
t˛NT(each node only belongs to a single node type), its features could
be aggregated from its neighbors:

EM’
tðuÞ= concat

 X
s˛ET

X
e= ðu;vÞ˛Es

A’
sð; ; vÞ,ss; EMtðuÞ

!
; (Equation 9)

where EM ’
t is the embedding of node type t (miRNA or disease),

the initial representations of nodes ðEMÞ are randomly set, v is
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the neighbor of u with node type t’ ðt’˛NTÞ, and ss is defined as
follows:

ss =sðEMt’,Ws + bsÞ; (Equation 10)

where Ws ðWs˛Rd�dÞ and bsðbs˛RdÞ are the parameters trained in
neural network, Ws is the weights parameter, and bs is the bias term.
s ($) (implemented as RELU(x) = max(x, 0)) is activation function in
the neural network. In this step,we further learnednode representations
into lower dimensional vectors and implement normalization:

E’ðuÞ= sðEM’ðuÞ,W0 + b0Þ
jjsðEM’ðuÞ,W0 + b0Þ jj 2

; (Equation 11)

where EM’ðuÞ is the embedding of node u, W0 ðW0˛R2d�dÞ is the
weights, b0 ðb0˛RdÞ is the responding bias term, and s ($) (imple-
mented as RELU(x) = max(x, 0)) is activation function. Therefore,
the new embedding was normalized by its l2-norm. Through
neighborhood aggregation, the final neighborhood information is
the summation of neighborhood information aggregationwith respect
to every edge type. We then obtained the representation of each node
considering its neighbor information and its own features and learned
structural and topological information as the feature vectors.

Topology-Preserving Learning of the Node Embedding

Given the embedding of nodes E($), topology-preserving learning of
the node embedding is defined as:

minW;b;P;G

X
t˛ET

At � E
0
uPtG

T
t E

0T
v

� �2
; (Equation 12)

where P;G˛Rd + k functions are projection matrices that can be used
to extract the principle features from node representations. E’

u and E
’
v

are the embeddings of miRNA or disease with u;v˛NT . After projec-
tions of E’

u and E’
v by P and G, the inner product of the two projected

vectors should reconstruct the original edge weight. For a symmetric
matrix reconstruction (i.e., miRNA-miRNA or disease-disease
similarity matrix), matrix P = G was used to enforce symmetry of
the recovery. Here, the summation of the squared reconstruction
errors was minimized for all edges with respect to all unknown
parameters. Given that all operations are differentiable and subdiffer-
entiable, parameters can be trained in an end-to-end manner by per-
forming gradient descent.

After training, each interaction confidence score betweenmiRNA and
disease could be predicted by the reconstructed miRNA-disease
association matrix. A high score indicates a large probability for the
potential association:

RDreconstruct =E
0
rPRDG

T
RDE

0T
d ; (Equation 13)

where E
0
r represents miRNA feature matrix and E’

d represents
disease feature matrix. In this sense, we can consider our prediction
task as a matrix factorization or completion problem. However,
our method incorporates a deeper learning model to construct
the feature matrices by explicitly defining the construction pro-
cesses. Through these steps, our method incorporates the prior
knowledge of network topology, after which the loss minimization
procedure is implemented to prevent the network from arbitrarily
factorized.

To further improve the performance of NNMDA, the imbalance
of datasets is also taken into consideration. In the process of
recovering the associations between miRNAs and diseases, we
calculated the loss between prediction matrix and original matrix.
To our intuition, the loss obtained from incorrectly predicting a
verified entry as an unverified entry (FN) should be different
from the loss obtained from wrongly indicating an unknown entry
as an verified entry (FP). Because the unknown entries should be
considered as unlabeled instead of negative, we redefine loss as
follows:

Loss= LossFN +aLossFP: (Equation 14)

In our experiment, labeled data are regarded more important than un-
labeled. To balance the datasets, in the process of recovering the
miRNA-disease matrix, we set parameter a to the ratio of number
of entries to size of the matrix, which was finally set to be
a= 6441O577O336= 0:03 for the experiments. As a result, the
method obtained performance improvement in identifying miRNA-
disease associations.
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