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The anti-angiogenic soluble fms-like tyrosine kinase 1 (sFLT1) is one of the candidates

in the progression of preeclampsia, often associated with fetal growth restriction

(FGR). Therapeutic agents against preeclampsia with/without FGR, as well as

adequate transgenic sFLT1 mouse models for testing such agents, are still missing.

Much is known about sFLT1–mediated endothelial dysfunction in several tissues;

however, the influence of sFLT1 on placental and fetal development is currently

unknown. We hypothesize that sFLT1 is involved in the progression of FGR by

influencing placental differentiation and vascularization and is a prime candidate

for interventional strategies. Therefore, we generated transgenic inducible human

sFLT1/reverse tetracycline-controlled transactivator (hsFLT1/rtTA) mice, in which hsFLT1

is ubiquitously overexpressed during pregnancy in dams and according to the genetics

in hsFLT1/rtTA homozygous and heterozygous fetuses. Induction of hsFLT1 led to

elevated hsFLT1 levels in the serum of dams and on mRNA level in all placentas and

hetero-/homozygous fetuses, resulting in FGR in all fetuses at term. The strongest

effects in respect to FGR were observed in the hsFLT1/rtTA homozygous fetuses,

which exhibited the highest hsFLT1 levels. Only fetal hsFLT1 expression led to impaired

placental morphology characterized by reduced placental efficiency, enlarged maternal

sinusoids, reduced fetal capillaries, and impaired labyrinthine differentiation, associated

with increased apoptosis. Besides impaired placental vascularization, the expression of

several transporter systems, such as glucose transporter 1 and 3 (Glut-1; Glut-3); amino

acid transporters, solute carrier family 38, member one and two (Slc38a1; Slc38a2); and

most severely the fatty acid translocase Cd36 and fatty acid binding protein 3 (Fabp3)

was reduced upon hsFLT1 expression, associatedwith an accumulation of phospholipids

in the maternal serum. Moreover, the Vegf pathway showed alterations, resulting in

reduced Vegf, Vegfb, and Plgf protein levels and increased Bad and Caspase 9 mRNA

levels. We suggest that hsFLT1 exerts an inhibitory influence on placental vascularization
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by reducing Vegf signaling, which leads to apoptosis in fetal vessels, impairing placental

differentiation, and the nutrient exchange function of the labyrinth. These effects were

more pronounced when both the dam and the fetus expressed hsFLT1 and ultimately

result in FGR and resemble the preeclamptic phenotype in humans.

Keywords: human sFLT1, fetal growth restriction, vascularization, placenta, transgenic mouse model

INTRODUCTION

Appropriate development and growth of the fetus depend on
adequate vascularization of both fetus and mother at the feto-
maternal unit; this vascularization involves uterine vasodilation
and vessel remodeling upon trophoblast invasion, as well as
vasculo- and angiogenesis within the placenta. The consequences
of abnormal vascular development have been associated with
various pregnancy-related pathologies, ranging frommiscarriage
to fetal growth restriction (FGR) or preeclampsia (PE) (1).

At least 60% of the 4 million neonatal deaths that occur
worldwide each year are associated with low birth weight caused
by FGR, which is characterized by insufficient growth during
pregnancy or preterm delivery (2). Epidemiologic studies have
found that children born with FGR are a risk cohort with
increased incidence and prevalence of diseases such as short- and
long-term metabolic and cardiovascular alterations, adiposity,
and neurological disorders in later life (3–5). Currently there are
no treatments for FGR.

FGR is one of the main consequences of the pregnancy
disorder PE, which is characterized by maternal hypertension
and proteinuria. PE is still a leading cause of maternal and
neonatal mortality (6, 7) and is often associated, amongst other
factors such as oxidative stress and genetic factors, with an
overexpression of the angiogenesis inhibitor soluble fms-like
tyrosine kinase 1 (sFLT1) in the placenta as the pregnancy
progresses (7, 8). sFLT1 is a soluble splice variant of the
membranous vascular endothelial growth factor receptor 1
(VEGFR-1), which contains only the extracellular domain.
Therefore, sFLT1 acts as a decoy receptor by binding and
reducing free circulating levels of the angiogenesis-promoting
VEGF and placental growth factor (PlGF), thereby limiting their
bioavailability. There is strong evidence that overproduction of
sFLT1 in the placenta and the resulting high levels of sFLT1 in
maternal serum are an important cause of vascular dysfunction
associated with PE through sFLT1–dependent antagonism of
VEGF (8, 9). The linkage of sFLT1 with the pathophysiology of
PE was clearly shown by a study of Levine et al. (10), which
found that an increase in circulating levels of sFLT1 is associated
with the severity of PE. Currently the sFLT1/PlGF ratio is used
as a clinical biomarker for predicting PE (11–13). In addition, an
elevated level of sFLT1 leads to several maternal consequences,
such as endothelial dysfunction that causes hypertension and
“glomerular endotheliosis” that finally leads to cellular injury
and disruption of the filtration apparatus, with proteinuria, and
edema as consequences (8).

We recently confirmed the importance of sFLT1 in human
pregnancy and as a clinical marker for early and late-onset
PE, as well as FGR (14). This role has been further confirmed

by the studies of Thadhani et al. (15, 16), showing that
therapeutic apheresis, which reduces the circulating levels of
sFLT1 and the severity of proteinuria in women with exceedingly
preterm PE, appears to prolong pregnancy without severe adverse
consequences to the mother or the fetus. Much is known about
the molecular mechanisms of sFLT1, which disturbs endothelial
cell function [reviewed by Lecarpentier and Tsatsaris (17)];
however, the way in which sFLT1 affects the placenta and fetus,
resulting in FGR, is currently unknown. In own previous studies,
using a lentiviral placenta-specific sFLT1 mouse model for FGR
and PE [established by Kumasawa et al. (18)], we observed
a reduction in fetal and placental weight associated with a
reduction in the transporting trophoblast layer and by changes
in the expression of labyrinthine nutrient transporters [(19);
reviewed in Winterhager and Gellhaus (20)]. These findings
demonstrate that sFLT1 not only acts directly on endothelial cells
and changes endothelial physiology but also directly or indirectly
affects placental development and function.

Studies using several animal models that overexpress human
sFLT1 (hsFLT1) have shown that hsFLT1 causes symptoms
of PE, such as hypertension and proteinuria (8). Since
most of the existing PE mouse models were developed by
injection of replication-deficient sFLT1 lenti- or adenoviruses, we
developed doxycycline (Dox)-inducible transgenic hsFLT1 mice
[hsFLT1/reverse tetracycline-controlled transactivator (rtTA)
mice] to receive a stable and reproducible hsFLT1 expression.
In this study we found ubiquitous maternal and placental/fetal
expression of hsFLT1 or ubiquitous maternal expression
only upon treatment with Dox (Tet-On System induced
during midgestation). Thus, we can discriminate between the
consequences of maternally expressed hsFLT1 and those of
maternally and placentally/fetally expressed hsFLT1 on placental
and fetal outcome.We hypothesize that elevated levels of hsFLT1,
if increased in all three compartments (dam, placenta, and fetus)
may influence placental function and transport capability via
altered placental angiogenesis and altered Vegf signaling caused
by reduced levels of growth factors such as Vegf and Plgf, thereby
resulting in FGR.

MATERIALS AND METHODS

Generation of hsFLT1/rtTA Mice and
Experimental Procedures
A mouse strain harboring a tetracycline-inducible cassette
expressing hsFLT1 was generated according to previously
published protocols (21, 22). For details of the generation
of the hsFLT1/rtTA mouse and the experimental set-up, see
Figure 1A. The mice were generated on a 129/Sv background.
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The full-length hsFLT1 cDNA (2100 bp) was inserted into
pBS31_tetO_promoter/simian virus 40 5′ of the tetO minimal
promoter of cytomegalovirus (CMV). KH2 embryonic stem
cells (ESCs) carrying the rtTA transgene in the ROSA26 locus
were electroporated with 50 µg of pBS31_hsFLT1 and 25 µg
of an expression vector for Flp recombinase [pCAGGS-flpE;
(23)]. The KH2 ESCs originated from the v6.5 mouse ESC line,
which was established from cells derived from the inner cell
mass (ICM) of a 3.5-day-old mouse embryo from a C57BL/6
× 129/sv cross. Flp-mediated recombination of pBS31_hsFLT1
leads to the integration of hsFLT1 cDNA into the ColA1 locus
of KH2 ESCs. This recombination initiates the expression of the
promoter- and ATG-less hygromycin resistance cassette present
in the Col1A1 locus. One day after electroporation, 140µg/ml
hygromycin was added; colonies were selected after 10 days; and
clones were screened by Southern blotting using SpeI to digest
genomic DNA and a 3

′
internal probe (21). Five positive clones

in which hsFLT1 expression was induced after the addition of
0.5µg/ml Dox for 48 h were expanded. The resulting hsFLT1–
KH2 ESCs were treated with Dox (1 mg/ml), and the cell
culture supernatants were analyzed for hsFLT1 secretion with
enzyme-linked immunosorbent assay [ELISA; human sVEGFR-
1 Quantikine ELISA (SVR100B), R&D Systems, Minneapolis,
MN, USA].

Subsequently, hsFLT1–KH2 ESCs were injected into
blastocysts isolated from 129/Sv Jae female mice; the
blastocysts were then transplanted into pseudopregnant
mice. We obtained 20 chimeric mice and achieved germline
transmission. The newly generated mice were registered with
the mouse genome informatics database; the allele was named
Col1A1tm2(tetO−Flt1∗)Hsc (MGI: 6202353). These mice were mated
with Rosa26–rtTA-M2 mice (B6.Gt(ROSA)26Sortm1(rtTA∗M2)Jae,
Stock No. 006965; Jackson Laboratory, Bar Habor, ME, USA)
to generate hsFLT1/rtTA double transgenic mice. The Rosa26
gene locus is ubiquitously expressed; the reverse tetracycline-
controlled transactivator protein (rtTA-M2) therefore reveals
nearly ubiquitous target gene expression in many tissues.
According to the Jackson Laboratory, expression can be observed
in liver, bone marrow, stomach, intestine, and skin, with lower
levels in the heart, lungs, kidney, spleen, and thymus and no
expression in the brain and testes (https://www.jax.org/strain/
006965).

In the parental generation (P generation) of double transgenic
hsFLT1/rtTA mice, ubiquitously expressed rtTA induces hsFLT1
expression upon treatment with Dox. When Dox is added,
rtTA can bind to the TetO promoter of the hsFLT1 transgene,
leading to hsFLT1 expression (hsFLT1/rtTA+Dox/FGR group);
without Dox, hsFLT1 is not expressed (hsFLT1/rtTA-Dox/control
group). Single transgenic hsFLT1 mice treated with Dox do not
express hsFLT1 but can be used as a control for the effects
of Dox (hsFLT1+Dox/Dox control group). Since Dox passes
the placental barrier, hsFLT1/rtTA homozygous (hom) and
heterozygous (het) fetuses/placentas in the first filial generation
(F1 generation) of the FGR group can also express hsFLT1,
whereas wild-type (wt) fetuses/placentas cannot, because they
do not express rtTA protein and thus the Tet-On system does
not function (Figure 1A). Therefore, the maternal FGR group

must be subdivided by the fetal rtTA genotype for placental and
fetal analysis (Figure 1B). This process leads to the experimental
groups shown in Table 1.

For experimental procedures, animals were mated overnight.
When a vaginal plug was present, the following day was counted
as gestational day 0.5 (day post coitum; dpc). Beginning at early
to midgestation (7.5 or 10.5 dpc) until the end of pregnancy
(18.5 dpc), animals were treated with either Dox and sucrose
or sucrose only (Figure 1C). Therefore, the FGR experimental
group and the Dox control group received 2 mg/ml Dox [0.2%
(w/v); Merck, Darmstadt, Germany] and 30 mg/ml sucrose [3%
(w/v); Carl Roth, Karlsruhe, Germany] in the drinking water,
whereas the control group received only 30 mg/ml sucrose
in the drinking water. The drinking water was renewed every
third day. The endpoint of the experiments was set at 18.5
dpc. Mice from each experimental group were sacrificed; whole
blood was collected by cardiopuncture; and fetuses, placentas,
and maternal organs such as liver and kidneys were isolated
and weighed. Fetal maturation, including FGR characteristics,
was assessed on the basis of morphological criteria according
to the Theiler developmental atlas: (http://www.emouseatlas.org/
emap/ema/theiler_stages/house_mouse/book.html). The fetal to
placental weight ratio was determined because it reflects the
efficiency of the placenta in meeting the nutritional demands of
the growing fetus (24).

All mice were housed in the animal facility of the University
Hospital Essen in a specific pathogen–free environment and were
exposed to cycles of 12 h of light and 12 h of dark. They were
provided with food and water ad libitum. All animal procedures
were performed in accordance with the German laws for animal
protection (No.: G1265/12 and G1644/17).

Tissue Preparation
At 18.5 dpc, anesthetized pregnant mice were killed by cervical
dislocation. Maternal blood was collected; maternal liver, and
kidney, as well as fetuses and placentas, were dissected in sterile
phosphate-buffered saline (PBS); and the amniotic membrane
was removed from the placenta. Isolated fetuses and placentas
were weighed with an ALJ 220-4NM analytical balance (Kern,
Ebingen, Germany) with a linearity of ±0.2mg. Organs were
either frozen and stored at −80◦C (for RNA, DNA, and protein
analysis) or fixed in 4% paraformaldehyde (PFA) for 24 h and
stored in 70% ethanol until being embedded in paraffin standard
procedures (for morphology).

Genomic DNA Isolation, Genotyping, and
Sex Determination
Genomic DNA was isolated from ear punch tissue samples with
the REDExtract-N-AmpTM Tissue PCR Kit (Sigma-Aldrich, St.
Louis, MO, USA) according to the manufacturer’s protocol.
The quality and quantity of DNA were verified with µCuvette
G1.0 and BioPhotometer Plus (Eppendorf, Hamburg, Germany).
Genotyping and sex determination of mice were performed
with a standard PCR program (hsFLT1: initial denaturation
95◦C, 5min; 40 cycles 94◦C, 45 s, 60◦C, 45 s, 72◦C, 1min, final
extension 72◦C, 5min; rtTA: initial denaturation 94◦C, 3min; 35
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FIGURE 1 | Generation of the hsFLT1/rtTA mouse model with ubiquitous overexpression of hsFLT1. (A) We mated single transgenic Gt(ROSA)26Sortm1(rtTA*M2)Jae

mice with single transgenic Col1a1tm2(tetO−Flt1* )Hsc mice to generate double transgenic human soluble fms-like tyrosine kinase 1 reverse tetracycline-controlled

transactivator (hsFLT1/rtTA) mice. These mice ubiquitously express rtTA, which induces hsFLT1 expression upon treatment with doxycycline (Dox):

(Continued)
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FIGURE 1 | hsFLT1/rtTA+Dox/FGR (fetal growth restriction) group. Without Dox, no expression of hsFLT1 occurred (hsFLT1/rtTA-Dox/control). Single transgenic

hsFLT1 mice treated with Dox (hsFLT1+Dox/Dox control) cannot express hsFLT1 but were used as a control for Dox effects (scheme adapted from that of Hubert

Schorle, Bonn). (B) Mating scheme of FGR group. Heterozygous sFlt-1/rtTA mice were mated. Since Dox passes the placental barrier, hsFLT1/rtTA homozygous

(hom), and heterozygous (het) fetuses expressed hsFLT1, whereas wild-type (wt) fetuses did not. For this reason the FGR experimental group was subdivided into

FGR hom, FGR het, and FGR wt (depending on the rtTA genotype) for fetal and placental analysis. P, parental; F1, first filial generation of fetuses. (C) Experimental

set-up. Mice were mated overnight. The day after the development of a vaginal plug was defined as day 0.5 post coitum (dpc). At early to midgestation (7.5 or 10.5

dpc), dams were treated either with 2mg Dox and 3% [w/v] sucrose per ml of drinking water or with 3% [w/v] sucrose only as a control until cesarean section and

sample preparation were performed at 18.5 dpc (cesarean section and sample preparation).

TABLE 1 | Maternal and fetal experimental groups.

Maternal groups Fetal groups

FGR (hsFLT1 expression) FGR hom (maternal and fetal hsFLT1

expression)

FGR het (maternal and fetal hsFLT1

expression)

FGR wt (only maternal hsFLT1 expression)

Control (no hsFLT1 expression) Control (no hsFLT1 expression)

Dox control (no hsFLT1 expression) Dox control (no hsFLT1 expression)

Dox, doxycycline; FGR, fetal growth restriction; hsFLT1, human soluble fms-like tyrosine

kinase 1.

cycles 94◦C, 45 s, 65◦C, 1min., 72◦C, 1min, final extension 72◦C,
2min) and the appropriate primers (Table 2).

Genomic DNA Isolation and
Pyrosequencing
Approximately 20mg of placental tissue was homogenized with a
Tissue Lyser LT (Qiagen, Hilden, Germany). Genomic DNA was
isolated with the AllPrepDNA/RNAMini Kit (Qiagen) according
to the manufacturer’s protocol. The quality and quantity of
DNA were verified with Nanodrop 2000c (Thermo Fisher
Scientific, Pittsburgh, PA, USA). Bisulfite conversion of 500 ng
genomic DNA was performed with the EZ DNA methylation
gold kit (Zymo Research, Leiden, The Netherlands) according
to the manufacturer’s protocol. Pyrosequencing was performed
as previously described by Freitag et al. (25). The sequences
of bisulfite-specific primers for long interspersed element 1
(LINE1), insulin-like growth factor two (Igf2) differentially
methylated region two (Igf2-DMR2), andH19 imprinting control
region (H19-ICR) have been previously published (25). The PCR
product was analyzed for the extent of methylation per selected
CpG position with a Pyromark Q48 sequencer (Qiagen). Data
were analyzed with PyroMark Q48 autoprep software (Qiagen).
The level of DNAmethylation was given as a percentage. Samples
were obtained from complete placentas. The experimental groups
FGR hom (n = 4), FGR het (n = 7), and FGR wt (n = 7) were
analyzed, as well as the control group (n = 10) and the Dox
control group (n= 6).

RNA Extraction, cDNA Synthesis, and
Quantitative PCR
Total RNA was extracted from ∼10mg frozen samples of
placenta, liver, kidney, and fetus with the E.Z.N.A Total RNA

Kit (Omega Bio-tek, Norcross, GA, USA) according to the
manufacturer’s protocol. Complementary DNA (cDNA) was
synthesized with 1 µg RNA as previously described (19). Gene
expression was measured from 1 µl cDNA with 19 µl of the
VeriQuest R© Fast SYBR R© Green qPCR Mix (Affymetrix, Santa
Clara, CA, USA) and the ABI Prism 7300 Sequence Detection
System (Applied Biosystems, Foster City, CA, USA) with a
standard PCR program (Table 2). For quantitative measurement,
standard curves of 1 µl cDNA of standards with known
concentrations from 1,000 to 0.1 fg of each measured gene were
used. The quantitative PCR (qPCR) analyses were carried out in
triplicate. The amount of cDNA in each sample was normalized
to glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as a
housekeeping gene and experimental groups were normalized to
control group. Primer sequences are listed in Table 2. We tested
the following experimental groups: FGR hom n = 7, FGR het
n= 15, control n= 12, Dox control n= 13.

Analysis of hsFLT1 Serum Levels
Blood was collected from anesthetized pregnant mice by
cardiopuncture after cervical dislocation. Serum samples were
prepared by centrifuging clotted blood for 15min at 3,000 g
and 4◦C; the serum was stored at −80

◦
C until analysis. The

undiluted sample was used to measure the concentration of
hsFLT1 (BRAHMS sFlt-1 KRYPTOR assay) with a BRAHMS
KRYPTOR compact PLUS analyzer based on time-resolved
amplified cryptate emission (TRACE R© technology; Thermo
Fischer Scientific), according to the manufacturer’s protocol
(FGR n = 10, control n = 3, Dox control n = 6). The detection
limit for hsFLT1 was assessed at 22 pg/ml. The sensitivity of
the functional assay, detected by interassay precision of a 20%
coefficient of variability (CV), has been assessed to be lower than
29 pg/ml for hsFLT1.

Mouse Angiogenesis Antibody Array
Approximately 20mg of frozen placenta was homogenized
in radioimmunoprecipitation assay (RIPA) protein extraction
buffer [50mM Tris/HCl, 150mM NaCl, 1% NP-40, 0.25% Na-
deoxycholate, 1mM ethylenediaminetetraacetic acid (EDTA)].
The protein content was determined with the Pierce BCA Protein
Assay Kit (Thermo Scientific, Rockford, IL, USA). Murine
angiogenesis-related proteins were simultaneously detected with
a Proteome Profiler Angiogenesis Antibody Array according to
the manufacturer’s protocol (R&D Systems, Minneapolis, MN
USA). In principle, selected capture antibodies for each of 53
different angiogenesis proteins have been spotted in duplicate on
nitrocellulose membranes. For protein detection, a total of 50 µg

Frontiers in Endocrinology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 165

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Vogtmann et al. hsFLT1 Strongly Impairs Placental Vascularization

TABLE 2 | Oligonucleotides used for genotyping, sex determination and gene expression analysis in hsFLT1/rtTA mouse model.

Gene NCBI number Primer sequence (5′
→3′) Product length (bp)

GENOTYPING

hsFLT1 XM_017020485.1 for: AATCATTCCGAAGCAAGGTG 221

rev: TTTCTTCCCACAGTCCCAAC

rtTA for: AAAGTCGCTCTGAGTTGTTAT

rev-wt: GGAGCGGGAGAAATGGATATG 650

rev-mut: GCGAAGAGTTTGTCCTCAACC 340

SEX DETERMINATION

IL-3 NM_010556.4 for: GGGACTCCAAGCTTCAATCA 544

rev: TGGAGGAGGAAGAAAAGCAA

Sry NM_011564.1 for: TGGGACTGGTGACAATTGTC 402

rev: GAGTACAGGTGTGCAGCTCT

REFERENCE/HOUSEKEEPING GENE

Gapdh XM_011241214.1 for: ACAACTCACTCAAGATTGTCAGCA 121

rev: ATGGCATGGACTGTGGTCAT

AMINO ACID TRANSPORTERS

Slc38a1 NM_001166458.1 for: AGCACAGGCGACATTCTCATC 133

rev: ACAGGTGGAACTTTGTCTTCTTG

Slc38a2 NM_175121.3 for: ACAAATGGGTTGTGGTATCTG 92

rev: CCTAGATTTCTCAGCAGTGACAATG

FATTY ACID TRANSPORTERS

Cd36 XM_006535623.2 for: CAGTGCAGAAACAATGGTTGTCT 137

rev: TGACATTTGCAGGTCTATCTACG

Fabp3 NM_010174.1 for: CTGTCACCTCGTCGAACTCT 166

rev: TTTGTCGGTACCTGGAAGCT

GLUCOSE TRANSPORTERS

Glut-1 NM_011400.3 for: GCTGTGCTTATGGGCTTCTC 202

rev: ACACCTGGGCAATAAGGATG

Glut-3 NM_011401.4 for: GGAGGAGAACCCTGCATATGATA 96

rev: TGGCTTCATAGTCATCCTTTAGTAAC

LABYRINTHINE DIFFERENTIATION MARKERS

Cx26 NM_008125.3 for: ATGCTACGACCACCACTTCC 194

rev: TACGGACCTTCTGGGTTTTG

Gcm1 NM_008103.3 for: TGCTCACCTATGGCTCTCCT 201

rev: AAAATTCTGCCSAGCCCTTT

FETAL ENDOTHELIAL CELL MARKER

Cd31 NM_008816.3 for: ATGACCCAGCAACATTCACA 200

rev: CACAGAGCACCGAAGTACCA

TROPHOBLAST GIANT CELL MARKERS

Ctsq NM_029636 for: GTGATCTGAGGCAGTAGTGGTC 180

rev: GTACTTCTTCCTCCGGACTGTATA

PLAP XM_006538500.2 for: TGAGGGCAATGAGGTCACAT 161

rev: CCTCTGGTGGCATCTCCTTA

Prl3d1 NM_008864 for: TGGAGCCTACATTGTGGTGGA 131

rev: TGGCAGTTGGTTTGGAGGA

Prl3b1 NM_008865.3 for: AGCAGCCTTCTGGTGTTGTC 197

rev: TGTGACACCACAATCACACG

Prl2c2 NM_011118 for: AGGAGCCATGATTTTGGATG 203

rev: ACCAGGCAGGGTTCTTCTTT

SPONGIOTROPHOBLAST AND GLYCOGEN CELL MARKERS

Cx31 NM_008126 for: GTCTACTAGCGCTGGGATGG 227

rev: GTGCCAAACCTTCTCATGGT

(Continued)
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TABLE 2 | Continued

Gene NCBI number Primer sequence (5′
→3′) Product length (bp)

Cx31.1 NM_008126 for: CCCTCTTTGCTTGTGGTCAT 151

rev: CCTTGAACGAGAGGCTGAAG

Igf2 NM_010514 for: CGTTTGGCCTCTCTGAACTC 155

rev: GACGACTTCCCCAGATACCC

Pcdh12 NM_017378.2 for: CTTCACCTCATCACGCTCAA 197

rev: TGCCCTCTGTCCTCTGCTAT

Tpbpa NM_009411 for: CCAGCACAGCTTTGGACATCA 116

rev: AGCATCCAACTGCGCTTCA

ANGIOGENESIS MARKERS

Flk-1 NM_001363216.1 for: GGCGGTGGTGACAGTATCTT 162

rev: GTCACTGACAGAGGCGATGA

m(s)Flt-1 NM_001363135.1 for: TATAAGGCAGCGGATTGACC 159

rev: TCATACACATGCACGGAGGT

Flt-4 NM_008029.3 for: GTGGCTGTGAAGATGCTGAA 199

rev: TGACACGCAAGAAGTTGGAG

Plgf XM_011244016.1 for: CGTCCTGTGTCCTTCTGAGT 200

rev: CCTCTTCCTCTTCCCCTTGG

Vegfa NM_001025257.3 for: CAGGCTGCTGTAACGATGAA 140

rev: GCATTCACATCTGCTGTGCT

Vegfb NM_011697.3 for: AACACAGCCAATGTGAATGC 157

rev: GGAGTGGGATGGATGATGTC

Vegfc NM_009506.2 for: CAAGGCTTTTGAAGGCAAAG 159

rev: TCCCCTGTCCTGGTATTGAG

Vegfd NM_001308489.1 for: CAACAGATCCGAGCAGCTTC 155

rev: AAAGTTGCCGCAAATCTGGT

PROAPOPTOTIC MARKERS

Bad NM_001285453.1 for: GGAGCTTAGCCCTTTTCGAG 166

rev: GCTTTGTCGCATCTGTGTTG

Casp9 NM_001355176.1 for: GATGCTGTCCCCTATCAGGA 151

rev: CGATGTACCAGGAGCCACTT

HYPOXIA-INDUCIBLE MARKERS

Nos3 XM_006535639.3 for: GACCCTCACCGCTACAACAT 209

rev: CTGGCCTTCTGCTCATTTTC

Hif1α NM_001313920.1 for: TCAAGTCAGCAACGTGGAAG 198

rev: TATCGAGGCTGTGTCGACTG

Hmox1 NM_010442.2 for: CACGCATATACCCGCTACCT 175

rev: CCAGAGTGTTCATTCGAGCA

Cited2 NM_010828 for: CTAGGGCAGCGGAGGAAAAG 176

rev: TTCTGCTCGGAACACCGAAG

A, adenine; Bad, Bcl-2–associated death promoter; bp, base pair; Casp9, caspase 9; Cd31, cluster of differentiation 31; Cited2, Cbp/P300 Interacting Transactivator With Glu/Asp

Rich Carboxy-Terminal Domain 2; Ctsq, cathepsin Q; C, cytosine; Cx26, connexin 26; Fabp3, fatty acid binding protein 3; Flk-1, fetal liver kinase 1; Flt-4, Fms-like tyrosine kinase 4;

for, forward; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Gcm1, glial cell missing 1; Glut-1, glucose transporter 1; G, guanine; Hif1α, hypoxia-inducible factor-1alpha; Hmox1,

Heme Oxygenase 1; hsFLT1, human soluble fms-like tyrosine kinase 1; Igf2, insulin-like growth factor 2; IL-3, interleukin-3; mut, mutant; NCBI, National Center for Biotechnology

Information; Nos3, Nitric Oxide Synthase 3; Pcdh12, Protocadherin 12; PLAP, Placental Alkaline Phosphatase; Plgf, Placental Growth Factor; Prl3b1, prolactin family 3; subfamily b,

member 1; rev, reverse; rtTA, reverse tetracycline-controlled transactivator; Slc38a1, Solute Carrier Family 38 Member 1; Sry, sex determining region Y; Tpbpa, Trophoblast-specific

protein alpha; T, thymine; Vegfa, Vascular Endothelial Growth Factor A; wt, wild-type.

protein of a pooled sample of each condition (control n= 5, Dox
control n = 5, FGR het n = 5 and FGR hom n = 5; each 10 µg)
was diluted and mixed with a cocktail of biotinylated detection
antibodies. The sample/antibody mixture was then incubated
with the array at 4◦C over night. Streptavidin-horseradish

peroxidase and chemiluminescent detection reagents were
added, and chemiluminescence was detected with ChemiDocTM

XRS+ System (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Pixel intensity for each spot was measured with ImageJ (National
Institutes of Health, Bethesda, MD, USA) and normalized to
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negative and reference spots. Normalized intensities of the pair
of duplicate spots representing each angiogenesis-related protein
were determined and the most relevant proteins were presented.

Serum Metabolome Detection
Maternal serum was obtained as described above. Serum
metabolome analysis was performed by Biocrates with the
Biocrates AbsoluteIDQ p180 Kit at their facility (Biocrates Life
Sciences AG, Innsbruck, Austria), as described previously (26).
The following maternal groups were analyzed: FGR group,
n = 6 [hsFLT1/rtTA, treatment with Dox at 7.5 (n = 3) and 10.5
dpc (n = 3), respectively]; control group, n = 6 [hsFLT1/rtTA,
not treated with Dox (n = 3) and hsFLT1, treated with Dox at
10.5 dpc (n = 3)]. A commercially available direct-flow injection
system and a liquid chromatography tandem mass spectrometry
(LC-MS/MS) kit was used to analyze 188 available metabolites in
plasma samples, including hexose (1), amino acids (21), biogenic
amines (21), glycerophospholipids (90), sphingolipids (15), and
acylcarnitines (40). Internal standards were pipetted in advance,
and a calibration standard mix in seven different concentrations
was included in a standardized assay in a 96-well plate, with
10 µl serum in each well. Derivatization was performed with
a 5% solution of phenyl isothiocyanate, followed by extraction
via the addition of methanol with 5mM ammonium acetate.
The samples were analyzed with an API4000 Qtrap R© MS/MS
instrument (Applied Biosystems) using a reverse-phase high-
performance liquid chromatography (HPLC) column, followed
by a direct-flow injection assay.

Histologic and Morphometric Analysis
Formalin-fixed and paraffin-embedded placentas were sectioned
at 7µm and mounted on either standard slides (Engelbrecht
Medizin- und Labortechnik GmbH, Edermünde, Germany)
or Superfrost Plus Slides (R. Langenbrinck, Emmendingen,
Germany). For morphological analysis, sections were stained
with hematoxylin and eosin (H&E). Stained slides were scanned
with the Aperio CS2 ScanScope slide scanner (Leica, Wetzlar,
Germany) at 40×, and images were converted to TIFFs via Image
Scope (Version 12.3.2.8013; Leica). Scanned slides were opened
by ImageJ with the plugin “bioformats_package.jar.”

Morphometric analysis of placental compartments (labyrinth
and spongiotrophoblast layer) was performed on three serial
sections of three different parts in the proximity of the umbilical
cord from each experimental group (FGR wt n = 8, control
n= 8, Dox control n= 7). Total placental area was calculated by
combining measurements of labyrinth and spongiotrophoblast
area; differences in placental compartment composition were
measured by the ratio of labyrinth to spongiotrophoblast area as
previously described (19).

Immunohistochemical Analysis
Deparaffinized sections were used for immunostaining.
Endogenous peroxidase was blocked with H2O2 in methanol
(1ml methanol per 25 µl H2O2). Antigens were retrieved by
boiling sections with citrate buffer for 10min. After blocking
with bovine serum albumin, sections were incubated overnight
at 4◦C with rat anti-Cd31 (DIA310; 1:20; Dianova, Hamburg,

Germany). Bound primary antibody was visualized with goat
anti-rat immunoglobulin G horseradish peroxidase (IgG-HRP)
secondary antibody (sc-2032; 1:100; Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA) and the Liquid DAB+ Substrate
Chromogen System (Dako, Carpinteria, CA, USA).

For placental alkaline phosphatase (PLAP) staining, samples
were deparaffinized, rehydrated, and incubated with Nitro
Blue Tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl phosphate
(BCIP) (Promega Corporation,Madison,WI, USA) as a substrate
for PLAP. Nuclear Fast Red (Sigma-Aldrich) was used for
counterstaining. Stained slides were scanned and converted as
described above.

Statistical Analysis
Normal distribution was tested with D’Agostino-Pearson
omnibus K2 test and Shapiro-Wilk test. Both normality tests
could not prove that all of our data were sampled from a
Gaussian distribution. Therefore differences between groups
were calculated with the Kruskal–Wallis test and Dunn’s multiple
comparison test. Data are either presented in mean ± standard
error of mean or in box and whisker plot. For all statistical tests,
a probability value (p-value) of 0.05 or less was indicated with
∗, ∗∗p < 0.01 ∗∗∗p < 0.001. Outliers were detected performing
Grubbs’ test (https://www.graphpad.com/quickcalcs/Grubbs1.
cfm). Spearman correlation was used to test the association
between selected variables. Since correlation is an effect size,
the following descriptions of various values of r (Spearman
correlation coefficient) were used as a guide to estimate the
measured values: |r|= 0.00–0.19, no correlation; |r|= 0.20–0.39,
weak correlation; |r| = 0.40–0.59, moderate; |r| = 0.60–0.079,
strong correlation; |r| = 0.80–1.0, very strong correlation. Data
were analyzed with GraphPad Prism software version 5.01
(GraphPad, La Jolla, CA, USA).

Statistical analysis of the serum metabolome detection was
performed with MetaboAnalyst 4.0 [http://www.metaboanalyst.
ca; (27)]. Row-wise normalization was performed with a pooled
sample from the control group, and column-wise normalization
was performed by log2 transformation of the data. Univariate
data analysis was performed with a volcano plot with a fold-
change threshold of two and with t-tests at a threshold of 0.05, as
well as with theMann-WhitneyU-test. Multivariate data analysis
was performed with partial least squares discriminant analysis
(PLS-DA) and heat map analysis (Top 25) for visualizing the
metabolic differences between FGR and control dams.

RESULTS

The hsFLT1/rtTA Mouse Model Led to
Ubiquitous Overexpression of hsFLT1
We used transgenic hsFLT1/rtTA mice, in which hsFLT1 can be
ubiquitously induced at several time points during pregnancy
and is expressed in dams and fetuses or only in dams (depending
on the fetal rtTA genotype, as described in the mating scheme)
(Figure 1B).

At 18.5 dpc, hsFLT1 was detected in the hsFLT1/rtTA dams
treated with Dox at early or midgestation (7.5/10.5 dpc; FGR
group) but not in the two control groups, with the following
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FIGURE 2 | Expression level of hsFLT1 protein in maternal blood serum as measured by ELISA (A) and expression of hsFLT1 mRNA in maternal liver (B) and kidney

(C) as well as in placentas (D) and fetuses (E) as determined by qPCR of the hsFLT1/rtTA mouse model. Expression of human soluble fms-like tyrosine kinase 1

(hsFLT1) occurred only in the mice that exhibited induced hsFLT1/rtTA (reverse tetracycline-controlled transactivator) after treatment with doxycycline (+Dox) (FGR

group) and that also exhibited higher placental and fetal hsFLT1 expression depending on the fetal rtTA genotype. Low hsFLT1 expression was detectable in FGR

wild-type (wt) placentas and no hsFLT1 expression in FGR wt fetuses or in the control and Dox control groups. Samples were obtained from complete placentas and

fetuses and from maternal livers and kidneys at day 18.5 post coitum (dpc). Measured mRNA levels were normalized to Gapdh. *p < 0.05, **p < 0.01 and ***p <

0.001, as determined by the Kruskal–Wallis test and Dunn’s post hoc test.

hsFLT1 serum levels: FGR, 1587 ± 294 pg/ml compared to
<22 pg/ml for control (p < 0.05) and dox control group (p
< 0.01) (Figure 2A). Also, high levels of hsFLT1 mRNA were
found in liver and kidney tissue from the FGR dams, indicating
ubiquitous maternal hsFLT1 overexpression (Figures 2B,C). In
addition, elevated hsFLT1 transcript levels were detected in
FGR placentas (FGR wt, het and hom). The placental hsFLT1
transcript expression strength was associated with the fetal rtTA
genotype (Figure 2D). The highest level of hsFLT1 expression
was detected in the FGR hom placentas, with lower levels in FGR
het and wt placentas and no expression in placentas from either
control group or Dox control group. The same held true for FGR
hom and FGR het fetuses, because they possess both components
of the Tet-On system (the rtTA and hsFLT1 allele) that is
necessary for hsFLT1 induction (Figure 2E). In this case, hsFLT1
could be induced by Dox transfer via umbilical cord blood. The
FGRwt placentas exhibited only a weak hsFLT1 expression due to
the maternal part of the placenta (Figure 2D) and FGR wt fetuses
(Figure 2E) exhibited no hsFLT1 expression because they lack the
rtTA gene.

Induction of hsFLT1 in hsFLT1/rtTA
Pregnant Mice Resulted in FGR
Since we found no obvious differences in inducing hsFLT1
expression between treating with Dox at 7.5 dpc (at ectoplacental
cone formation) or at 10.5 dpc (at the beginning of placental
differentiation; Figure S1), two important reproductive stages
in placental development, we present here the combined data
collected at both time points, defined as early to midgestation
(Figures 2, 3).

Using the hsFLT1/rtTA mouse model, we evaluated fetal and
placental weight, litter size per dam, amount of resorption and
growth retardation, and placental efficiency (fetal to placental
weight) (Figure 3). Maternal overexpression of hsFLT1 with or
without fetal overexpression produced various effects on fetal
size, depending on the fetal rtTA genotype and, therefore, on fetal
hsFLT1 expression, categorized as strong (FGR hom; Figure 3E),
medium (FGR het; Figure 3D; both maternal and fetal hsFLT1-
overexpression), or mild (FGR wt; Figure 3C; maternal hsFLT1
overexpression only). In contrast, fetal size was normal in the
control groups that did not express hsFLT1 (Figures 3A,B). Thus,

Frontiers in Endocrinology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 165

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Vogtmann et al. hsFLT1 Strongly Impairs Placental Vascularization

FIGURE 3 | Phenotype of the hsFLT1/rtTA mouse model. Analysis of fetal outcome (fetal weight, litter size, resorptions, and retardations) and the placental phenotype

(placental weight, placental efficiency) at day 18.5 post coitum. (A–E) Consequences of ubiquitous maternal and/or fetal overexpression of human soluble fms-like

tyrosine kinase 1 (hsFLT1) in fetal growth restriction (FGR) homozygous (hom), FGR heterozygous (het), or FGR wild-type (wt) fetuses, showing strong (A), medium

(B), or mild (C) effects on fetal size in contrast to the control group, which did express hsFLT1 (D). Treating the dam with doxycycline (Dox) (single hsFLT1 mice)

produced no negative effects on fetal size (E). These observations were confirmed by analysis of fetal weights (F) and by the correlation of fetal weight to placental

hsFLT1 expression (G). Placental weight was decreased only in the FGR hom group upon the highest expression of hsFLT1 in fetus and dam (H), whereas placental

efficiency (fetal weight/placental weight) is reduced in each FGR group in association with the corresponding hsFLT1 expression levels (I). Litter size (J) and number of

resorptions (K) did not vary between mouse cohorts; however, signs of retardation, such as cyanosis or demise of the fetus, increased in frequency upon hsFLT1

expression (L). Data show hsFLT1/rtTA (FGR) or single hsFLT1 (Dox control) mice treated with Dox at early to midgestation and untreated controls. *p < 0.05, **p <

0.01, ***p < 0.001 as determined by the Kruskal–Wallis test with Dunn’s post hoc test. Correlation analysis was performed with Spearman’s rank correlation coefficient.

Frontiers in Endocrinology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 165

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Vogtmann et al. hsFLT1 Strongly Impairs Placental Vascularization

treating the dam with Dox (single hsFLT1 mice) exerted no
negative effects on fetal size. These observations were confirmed
by analysis of fetal weights (Figure 3F).

It is shown by us that in a dietary mouse model sex-
specific placental differences occurred (28). In the current study,
the influence of hsFLT1 on fetal outcome seemed to be sex-
specific, with a stronger impact on female fetuses than on male
fetuses (Figure S2A). However, in the FGR hom and FGR wt
groups, fewer male fetuses could be weighed and this difference
in numbers may have influenced the ratio between male and
female weight outcome (Figure S2C). Statistical analysis found
a moderate negative correlation between fetal body weight
and placental hsFLT1 expression (r = −0.5639; p = 0.0010)
(Figure 3G). Also, we found a strong correlation between
reduced fetal weights and increased fetal hsFLT1 expression (r
= −0.6691; p= 0.0033) (Figure S3A).

Placental weight was decreased in the FGR hom group
only at the highest levels of hsFLT1 expression in fetus
and dam (Figure 3H). In contrast, placental efficiency (fetal
weight/placental weight) was reduced in each FGR group in
association with the corresponding hsFLT1 expression levels: we
found a weak negative correlation between placental efficiency
and placental hsFLT1 expression (r = −0.2439; p = 0.24) and
a moderate negative correlation between placental weight and
fetal hsFLT1 expression (r = −0.4059; p = 0.1188) (Figure 3I;
Figures S3B,C). In addition, reduced placental efficiency affects
female fetuses more frequently than male ones, as seen before
in the differences in fetal weights (Figure S2B). Litter size
(Figure 3J) and resorption (Figure 3K) did not vary between
the experimental groups; however, Dox treatment seemed to be
associated with smaller litter size upon hsFLT1 expression and
with a larger number of resorptions, independent of hsFLT1
expression. Signs of retardation, such as cyanosis were frequently
observed in the litters of all hsFLT1–expressing dams (FGR
group) (Figure 3L).

Elevated hsFLT1 Levels Led to Severe
Changes in Maternal and Fetal
Vascularization
FGR is often associated with placental dysfunction and
malnutrition (1). Hence, we asked whether the anti-angiogenic
factor hsFLT1 affects placental development, vascularization, and
function. Histologic analysis of the hsFLT1–expressing placentas
in the FGR hom and het groups showed a severe impairment in
placental structure due to extremely enlarged blood-filled spaces,
called lacunas (Figures 4J–O); this impairment did not appear
in control placentas (Figures 4A–F). The largest alterations in
placental morphology were found in the FGR hom group and
were associated with high placental hsFLT1 levels. The large
lacunas found in the FGR hom and het placentas appeared to
sprout from the chorionic plate into the labyrinth, which is
responsible for nutrient exchange (Figures 4K,L,N,O). The FGR
wt placentas, which are characterized by a weak expression of
hsFLT1 due to the maternal part, exhibited a morphological
phenotype different from that of FGR hom/het placentas and
control placentas, in which the labyrinth compartment was

appropriately differentiated, with branched villi containing fetal
blood vessels and trophoblast layers lining the longitudinally
arranged maternal sinusoids (Figures 4G–I). To analyze this
more deeply we assessed FGR wt placentas for total placental
area as well as labyrinth and spongiotrophoblast layer (Figure 5).
Total placental area (Figure 5C) and labyrinth area (Figure 5A)
tended to be slightly decreased in the FGR wt placentas
in comparison to controls and in addition the labyrinth to
spongiotrophoblast ratio (Figure 5D) was also reduced in FGR
wt placentas compared to controls.

To determine whether the dilated vessels in the FGR
het and hom placentas were of maternal or fetal origin, we
immunostained paraffin sections for the fetal endothelial
cell (EC) marker cluster of differentiation 31 (Cd31;
Figures 6A,C,E,G,I). Cd31 staining showed that the number
of fetal vessels was lower in the hsFLT1–expressing placentas
(FGR hom and het) (Figures 6G,I) than in control placentas
(Figures 6A,C), with the strongest reduction in the FGR hom
placentas. Moreover, in FGR hom and FGR het placentas, single
ECs were detected in the labyrinthine compartment, but they did
not form appropriate fetal capillaries (Figures 6G,I). The Cd31
signal in the stained FGR wt placentas (Figure 6E) was similar
to that in the control placentas (Figures 6A,B). We also found
lower levels of Cd31 in hsFLT1–expressing FGR hom and FGR
het placentas than in control placentas at the transcript level
(Figure 7A).

Staining for PLAP, which is exclusively present in the
sinusoidal trophoblast giant cell (S-TGC) subtype andwhich lines
the maternal sinusoids in the labyrinth (Figures 6B,D,F,H,J),
demonstrated that the observed large lacunas in the hsFLT1–
expressing placentas (FGR hom and FGR het) were maternal
sinusoids (Figures 6H,J). The FGR wt placentas exhibited
maternal sinusoids that were more longitudinally arranged and
slightly larger or more swollen (Figure 6F) than those exhibited
by the other groups. All maternal sinusoids in the control
placentas exhibited a normal phenotype (Figures 6B,D). PLAP
mRNA expression was also lower in hsFLT1–expressing placentas
(FGR hom and het) than in control placentas (Figure 7A),
whereas the levels of an additional marker of S-TGCs, cathepsin
Q (Ctsq), were only moderately reduced in FGR hom placentas
and were unchanged in the experimental groups (Figure 7A).

Elevated hsFLT1 Levels Led to Severe
Changes in Placental Differentiation in the
Labyrinthine Compartment, as
Characterized by Inhibition of Vegf
Signaling
Because we found that hsFLT1 expression exerted a strong effect
on changes in the placental labyrinthine compartment, we also
quantified syncytiotrophoblast differentiation marker genes of
the labyrinth, such as the leading transcription factor glial cell
missing 1 (Gcm1) and the gap junction protein connexin 26
(Cx26), which is located between the two syncytiotrophoblast
layers (Figure 7A). We found lower transcript levels of both
differentiation marker genes (Gcm1 and Cx26) in the FGR hom
and het placentas than in control placentas, corresponding to
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FIGURE 4 | Placental morphology at day 18.5 post coitum in the hsFLT1/rtTA mouse model. Placentas from the various experimental groups were collected and

stained with hematoxylin and eosin (H&E). The following groups are shown either in 2× overview (left) or in a 20× detailed structure view of spongiotrophoblast

(middle) and labyrinth (right): control [n = 16 (A–C)] and doxycycline (Dox) control placentas [n = 12 (D–F)], fetal growth restriction wild-type [FGR wt; n = 9 (G–I)],

FGR heterozygous het; n = 3 (J–L) and FGR homozygous placentas [hom; n = 10 (M–O)]. High-expressing human soluble fms-like tyrosine kinase 1 (hsFLT1) FGR

hom and FGR het placentas (maternal and placental hsFLT1 expression) exhibited enlarged blood-filled spaces (lacunas, indicated by gray arrows) within the entire

placenta, but low-expressing hsFLT1 FGR wt placentas (with maternal hsFLT1 expression only), non-expressing hsFLT1 control placentas, and Dox control placentas

did not exhibit such lacunas [(A,D) compared to (G,J,M)]. The lacunas were located not only in the spongiotrophoblast [(B,E) compared to (H,K,N)], but also in the

labyrinth of hsFLT1–expressing placentas [(C,F) compared to (I,L,O)]. Interestingly, the FGR wt placentas exhibited a phenotype with a morphology between those of

FGR hom/het placentas and control placentas, in which the labyrinth compartment is more densely characterized by an intense staining pattern. Scale bar 2×

overview = 1,000µm; 20× details =100µm. D, decidua; L, labyrinth; S, spongiotrophoblast; U, umbilical cord.
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FIGURE 5 | Morphometric analysis of placentas in the hsFLT1/rtTA mouse model. Analysis of the labyrinthine (A), spongiotrophoblast (B), and total placental area

(C) as well as labyrinth to spongiotrophoblast area ratio (D) of human soluble fms-like tyrosine kinase 1 (hsFLT1) expressing fetal growth restriction wild-type placentas

(FGR wt; n = 8), compared to control (n = 8), and doxycycline (Dox) control (n = 7) placentas. FGR wt placentas showed slight reduction in labyrinth and total

placental area and labyrinth to spongiotrophoblast ratio compared to both control groups, whereas spongiotrophoblast area was slightly increased. Data is presented

in box and whisker plot. *p < 0.05 as determined by the Kruskal–Wallis test with Dunn’s post hoc test.

the hsFLT1 levels in each experimental group. We also analyzed
various markers on transcript level for spongiotrophoblast
and glycogen cells, which are mainly involved in endocrine
regulation. These markers include the prolactin Prl3d1 as a
marker for parietal trophoblast giant cells (P-TGCs), Cx31, and
trophoblast-specific protein alpha (Tpbpa), all of which are
upregulated upon hsFLT1 expression (refer to Figure S4A).

We also investigated transcriptional changes in the
endogenous Vegf signaling cascade in the placentas of the
various experimental groups. We analyzed most of the relevant
genes in this pathway, such as the murine/intrinsic variants
of sFlt-1/Flt-1 (m(s)Flt-1); fetal liver kinase 1 (Flk-1); the
ligands Plgf, Vegfa, and Vegfb; and the proapoptotic markers
downstream of Flk-1, such as caspase 9 (Casp9) and Bcl-
2–associated death promoter (Bad) [reviewed by Koch and
Claesson-Welsh (29)] (Figure 7B). The mRNA levels of murine
sFlt-1/Flt-1 and its ligands Plgf, Vegfa, and Vegfb were higher in
the FGR group, primarily in the FGR hom group, than in the
control groups. In contrast, the levels of Flk-1, which is located
on fetal ECs (30), are lower in hsFLT1–expressing placentas
(FGR hom and FGR het) than in control placentas. In contrast,

other Vegf receptors and Vegf isoforms, such as Fms-related
tyrosine kinase 4 (Flt-4), Vegfc, and Vegfd, were not regulated by
hsFLT1 overexpression (Figure S4A).

To analyze the growth factors of the Vegf signaling cascade
also on protein level we used a Proteome ProfilerTM Mouse
Angiogenesis Antibody Array to simultaneously detect 53
angiogenesis-related proteins in a single sample. We found a
downregulation of total Vegf, Vegfb in particular, and Plgf
in the FGR hom and het placentas compared to the controls
(Figure 7C). In addition, the Angiogenesis Antibody Array
exhibits an upregulation of the angiogenesis-related proteins
tissue factor, Serpin E1, and Serpin F1 upon hsFLT1 expression
in FGR hom and het placentas compared to both control groups
(Figure S4B).

Furthermore, we found that the proapoptotic molecules
Bad and Casp9 are strongly increased upon hsFLT1
upregulation (Figure 7B). Both factors signal downstream
of Flk-1 and have been shown to be strongly negatively
regulated by Vegfa (29). hsFLT1–expressing FGR hom and
het placentas exhibited increased transcript levels of both
proapoptotic markers.
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FIGURE 6 | Analysis of fetal (left) and maternal (right) vascularization in the placental labyrinth in the hsFLT1/rtTA mouse model. Immunohistochemical staining of

Cd31 (brown staining) in the labyrinth area indicates fewer fetal vessels (indicated by gray arrows) and inadequate formation of blood spaces (indicated by black

asterisks) in high-expressing human soluble fms-like tyrosine kinase 1 (hsFLT1) fetal growth restriction homozygous (FGR hom; n = 10) (I) and FGR heterozygous (het;

n = 3) (G) placentas (maternal and fetal hsFLT1 expression) than in low-expressing hsFLT1 FGR wt [n = 9 (E)] (maternal expression only) and non-expressing hsFLT1

control (n = 16) and doxycycline (Dox) control (n = 12) placentas (A,C). For Cd31 staining nuclei are counterstained in blue. Cells lining dilated vessels (lacunas) in

high-expressing hsFLT1 FGR hom [n = 10 (J)] and FGR het [n = 3 (H)] placentas exhibited placental alkaline phosphatase (PLAP) activity (dark purple staining), a

finding indicating the presence of sinusoidal trophoblast giant cells (S-TGCs); therefore, these vessels are characterized as maternal sinusoids (indicated by gray

arrowheads). In addition, PLAP-positive vessels in low-expressing hsFLT1 FGR wt placentas [n = 9 (F)] exhibited a different phenotype, especially for the maternal

sinusoids, with more longitudinally arranged and slightly larger sinusoids than in the other groups (indicated by white asterisks). In contrast, the controls [control

n = 16 (B) and Dox control n = 12 (D)] did not exhibit dilatation of maternal sinusoids. For PLAP staining nuclei are counterstained in light red. Scale bar 20× details

= 100µm and 40× details = 50 µm.
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FIGURE 7 | Gene expression analysis of important placental labyrinthine

markers and Vegf signaling molecules in the hsFLT1/rtTA mouse model.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) of

marker genes in placentas of each group: fetal growth restriction homozygous

(FGR hom; n = 7), FGR heterozygous (het; n = 15), control (n = 12), and

doxycycline (Dox) control (n = 13). (A) The mRNA level of fetal endothelial cell

marker Cd31 was lower in placentas expressing human soluble fms-like

tyrosine kinase 1 (hsFLT1) (FGR hom; FGR het) than in control placentas

(control and Dox control). In addition, the expression of syncytiotrophoblast

markers, such as gap junction protein connexin 26 (Cx26) and

differentiation-promoting transcription factor glial cell missing one (Gcm1), is

lower in hsFLT1–expressing placentas (FGR hom more pronounced than FGR

het) than in control placentas (control and Dox control). The expression of

maternal sinusoidal trophoblast giant cell markers, such as placental alkaline

phosphatase (PLAP), was also lower in hsFLT1–expressing placentas than in

control placentas, whereas cathepsin Q (Ctsq) expression seemed to be

unaffected by hsFLT1 expression in all groups. (B) Murine mRNA levels of

sFlt-1 and Flt-1 (m(s)Flt-1) exhibited no clear up- or downregulation between

groups (no discrimination between murine sFlt-1 and murine Flt-1 possible at

the mRNA level), whereas the expression of murine fetal liver kinase 1 (Flk-1)

was lower in FGR hom and FGR het placentas than in control placentas

(control and Dox control). Growth factors, such as placental growth factor

(Plgf ; mainly binding to sFlt-1 and Flt-1), vascular endothelial growth factor A

(Vefga; mainly binding to sFlt-1, Flt-1, and Flk-1), and Vegfb (mainly binding to

sFlt-1 and Flt-1), are upregulated at the time of hsFLT1 expression (FGR hom

and FGR het), a finding correlating with increasing levels of hsFLT1.

Nevertheless, the proapoptotic markers caspase9 (Casp9) and

Bcl-2–associated death promoter (Bad) downstream of Flk-1 are more

(Continued)

FIGURE 7 | highly upregulated upon hsFLT1 expression in FGR hom and FGR

het placentas than in either control group (control and Dox control). Samples

were obtained from complete placentas at day 18.5 post coitum (dpc).

Measured mRNA levels were normalized to glyceraldehyde-3-phosphate

dehydrogenase (Gapdh; except for Casp9 and Bad, which were normalized to

Flk-1), and control group levels were set at 100% (dotted line). Data is

presented as mean ± standard error of the mean. *p < 0.05, **p < 0.01, and

***p < 0.001 determined by the Kruskal–Wallis test with Dunn’s post hoc test.

(C) Protein levels of Plgf, total Vegf, and Vegfb were reduced upon hsFLT1

expression in FGR hom (n = 5) and het (n = 5) placentas compared to control

(n = 5) and Dox control group (n = 5). Data is presented as mean ±

standard deviation.

Overall, we found that, upon hsFLT1 expression, 22 of 34
genes were differently regulated in FGR groups than in control
groups, and these differences led to distinct transcriptomic
profiles (Figure S4A).

Elevated hsFLT1 Levels Altered the
Placental Transporter System and
Increased the Total Levels of
Phosphatidylcholine in Maternal Serum
From hsFLT1/rtTA Mice
The expression level of important nutrient transporter genes
for the transport of glucose, amino acid, and fatty acid across
the placental barrier was screened. For each transport pathway,
we analyzed two transporters: for glucose transport, glucose
transporter 1 (Glut-1; localized in syncytiotrophoblast (ST) layer
I and II [reviewed by Winterhager and Gellhaus (20)] and 3
(Glut-3; localized in ST layer I); for fatty acid transport, the fatty
acid translocase Cd36 and fatty acid binding protein 3 (Fabp3)
(both ST layer I and II); and for amino acid transport, solute
carrier family 38, members one and two (Slc38a1 in ST layer
I and II); Slc38a2 only in ST layer II). The expression of all
examined transporters was lower in mice expressing induced
hsFLT1 (FGR hom and FGR het) than in uninduced controls,
with the strongest decrease in the expression of fatty acid
transporters (Figure 8C).

Since we observed a strongly impaired placental morphology
and changes in the transport system, we expected that the
induced hsFLT1/rtTA dams (FGR group) and uninduced dams
(control group) would exhibit unique metabolomic profiles.
Using the Biocrates AbsoluteIDQ R© p180 Kit, we investigated
188 endogenous metabolites from five compound classes by
tandem mass spectrometry (MS/MS). Metabolites whose levels
were below the lower limit of quantification (<LLOQ) were
excluded; the remaining 152 metabolites were included in the
analysis. To visualize the main metabolic differences between
experimental groups, we performed multivariate data analysis
with partial least squares discriminant analysis (PLS-DA) and
heat map analysis (the 25 top changed metabolites are shown
in Figure 8B). PLS-DA showed a clear distinction in the
variable importance of projection (VIP) scores between the two
experimental groups (FGR vs. controls) (Figure 8A). A heat
map representation of the top 25 modified metabolites showed
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FIGURE 8 | Maternal metabolome analysis and placental expression of nutrient transporter genes in the hsFLT1/rtTA mouse model. (A) Supervised partial least

squares discriminant analysis (PLS-DA) of 152 metabolites detected the main metabolomic differences in serum from fetal growth restriction dams (FGR; n = 6; green

dots) and control dams (n = 6; red dots). (B) Heat map representation of the top 25 modified metabolites in each group (n = 6 each) mainly indicated accumulation of

lysophosphatidylcholines and phosphatidylcholines in serum from hsFLT1–expressing dams (color-coding intensity in the red spectrum shows an increase in the

number of given metabolites, and color intensity in the blue spectrum shows a decrease in the number of the given metabolites). (C) Results of quantitative reverse

transcription polymerase chain reaction (qRT-PCR) analysis of nutrient transporters in placentas from each group: FGR homozygous (hom; n = 7), FGR heterozygous

(het; n = 15), control (n = 12), and doxycycline (Dox) control (n = 13). The mRNA expression levels of glucose transporters Glut-1 and Glut-3, fatty acid transporters

fatty acid binding protein 3 (Fabp3) and Cd36, and amino acid transporters solute carrier family members one and two (Slc38a1 and Slc38a2) are lower in

hsFLT1–expressing placentas (FGR hom and FGR het) than in control placentas (control and Dox control); the strongest decrease was observed in the fatty acid

transporters. Samples were obtained from complete placentas at day 18.5 post coitum (dpc). Measured mRNA levels were normalized to

glyceraldehyde-3-phosphate dehydrogenase (Gapdh), and the control group was set at 100% (dotted line). Data is presented as mean ± standard error of the mean.

*p < 0.05, **p < 0.01, ***p < 0.001 as determined by the Kruskal–Wallis test with Dunn’s post-hoc test.

distinct metabolic footprints between the FGR group and the
control group, with 17 upregulated and eight downregulated
metabolites (Figure 8B). Most of the upregulated metabolites
were lipids, whereas most of the downregulated metabolites
were amino acids or biogenic amines. Furthermore, volcano
plot analysis, a combination of fold change (FC = 2) and t-
test results (p < 0.05), showed that 13 changed metabolite
levels were found in serum from dams (FGR and controls).
Ten of these were upregulated, and most were long chain fatty
acid phosphatidylcholine (PC)/lysophosphatidylcholines or the

amino acid glycine (Gly) and its byproduct/precursor sarcosine
(Figure 8B; Table 3). All three downregulated metabolites were
biogenic amines.

Overexpression of hsFLT1 Resulted in Only
Small Epigenetic Changes in the Placentas
We have previously shown that overexpression of placenta-
specific sFLT1 by lentiviral gene delivery results in small
changes in DNA methylation (19). Using the previous lentiviral
model, we found DNA methylation of Igf2-DMR2, H19-ICR,
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TABLE 3 | Top 13 regulated metabolites in serum among dams in the hsFLT1/rtTA

mouse model.

Fold change log2(FC) p–value -log10(p)

PC ae C40:3 0.27987 −1.8372 0.001 3.1843

PC ae C38:3 0.45671 −1.1306 0.002 2.7442

lysoPC a C18:1 0.449 −1.1552 0.004 2.4119

PC ae C38:1 0.36779 −1.443 0.005 2.2804

Gly 0.35951 −1.4759 0.009 2.0239

PC ae C42:4 0.32027 −1.6427 0.010 2.0139

PC aa C42:4 0.3671 −1.4458 0.012 1.909

Sarcosine 0.44167 −1.1789 0.019 1.7266

lysoPC a C20:3 0.31089 −1.6855 0.024 1.6226

PC aa C40:3 0.40968 −1.2874 0.041 1.3855

Kynurenine 2.1765 1.122 0.010 2.0002

t4-OH-Pro 2.0757 1.0536 0.013 1.9025

Histamine 2.0072 1.0052 0.021 1.6826

aa, diacyl; ae, acyl-alkyl; FC, fold change; Gly, glycine; lysoPC, lyso phosphatidylcholine;

p, probability; PC, phosphatidylcholine; t4-OH-Pro; trans-4-Hydroxyproline.

and LINE1. Two of the five CpG positions in the Igf2 gene
were hypomethylated, but there was no change in general
DNA methylation.

Consequently, in the current study we measured DNA
methylation at the same loci: Igf2-DMR2 (five positions), H19-
ICR (three positions), and LINE1 (five positions) (Figure S5).
However, in the FGR wt placentas we found changes in DNA
methylation of LINE1 at CpG position three, but no further
changes in DNA methylation at the other four CpG positions.
In addition, no changes in DNA methylation were found for
H19-ICR and Igf2-DMR2.

DISCUSSION

Various sFLT1 mouse models based on adenoviral transduction
(31, 32) have been used in FGR/PE research; most of thesemodels
exhibited an accumulation of sFLT1 in the liver. The effects of
sFLT1 on the maternal endothelium and the maternal organs
have been described [reviewed by Lecarpentier and Tsatsaris
(17)]. However, less is known about the direct and indirect
influence of sFLT1 on placental development and function.
Therefore, we generated transgenic inducible hsFLT1/rtTA mice,
in which hsFLT1 expression can be ubiquitously induced in
dams and fetuses by Dox administration at chosen time points
between early gestation and midgestation during pregnancy, as
in humans.

Since Dox crosses the placental barrier, hsFLT1/rtTA fetuses
can express hsFLT1 just as their dams do. Because of
the limitations of inheritance rules, we could not generate
pregnancies in these transgenic hsFLT1/rtTA mice during which
the dams overexpressed hsFLT1 and the fetuses did not.
Therefore, we used hsFLT1/rtTA heterozygous mating to create
various levels of hsFLT1 expression in fetuses within a single
dam, depending on the fetal rtTA genotype (hom, het, or
wt). With these three possibilities of hsFLT1 expression, we

could discriminate between overexpression of hsFLT1 by dams
and by fetuses or placentas and, thus, between the effects of
maternal hsFLT1 overexpression and those of fetal/placental
hsFLT1 overexpression on both fetus/placenta and mother
during pregnancy. The rationale and premise for this hsFLT1
mouse model is that we are able to analyze if hsFLT1—only
maternally expressed- also affects the fetus indirectly (by altering
mediators) or directly via a transplacental transport of hsFLT1
from the mother to fetal circulation. It would require an active
transport mechanism, of hsFLT1 with 120 kDa to cross the
placental barrier, because the limit of membrane transfer for
proteins via the placenta is believed to be ∼500 Da (33).
Kumasawa et al. (18) suggested that hsFLT1 in the mother’s
circulation can pass through the placenta into the fetus and
thus contribute to FGR, but evidence was missing. Anyway, we
observed only a very small effect in the wt fetuses on fetal growth.
Thus, the amount of hsFLT1 levels not only in the maternal but
predominantly in the fetal circulation seems to be important.
A placental transfer of hs to the fetus is not yet proven by
us or others and would need further investigations in future
studies. Furthermore, inducing the hsFLT1 expression directly
in the fetus itself allows analyzing direct effects of hsFLT1 on
placental development and the possible consequences for the
dam to develop heart diseases in later life upon fetal expression
of hsFLT1.

In addition to the theory that hsFLT1 is transported across the
placenta to the fetus it cannot be excluded that the slight growth
restriction of FGR wt fetuses is due to the presence of hsFLT1
in the maternal decidua. The maternal sinusoids which exhibit
high levels of hsFLT1 bathe the placenta and could influence
changes in placental function, as indicated by reduced placental
efficiency and FGR. The association between increased sFLT1
levels in maternal circulation and FGR of the fetuses is already
shown in humans (34). The results of hsFLT1/rtTA homozygous
mating showed that hsFLT1/rtTA homozygous fetuses did not
survive after birth, probably because of strong growth retardation
or associated other not known malformations. Thus, the survival
rate and the reasons for stillbirth in the FGR groups must be
confirmed in experiments focused on fetal outcome.

Focusing on the effect of hsFLT1 on placental development,
we found that placental weights were reduced in FGR hom
placentas but not in FGR het and wt placentas but a decrease in
placental efficiency was found in all FGR groups. In the sFLT1
lentiviral mice (19) both, the fetal weight and the placental weight
of sFLT1–transduced mice were reduced. These differences in
placental weights could be due to the different model systems
because in the lentiviral mouse model hsFLT1 is permanently
expressed in the trophoblast cells already from the blastocyst
stage onwards.

The placental phenotype described here, with enlarged
maternal blood sinusoids and reduced numbers of fetal blood
vessels, has not been observed in other sFLT1 mouse models
(31, 32, 35). The exclusively maternal overexpression of hsFLT1
in the FGR wt group produced results very similar to those found
in the placenta-specific lentiviral mice published by Kumasawa
et al. (18) and our group (19). Both groups evidenced a reduced
labyrinthine layer and in the study of Kumasawa et al. (18) also
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a reduction in Cd31 expression. The observed alterations in the
maternal blood spaces by Kumasawa et al. (18) could not be seen
in our lentiviral mouse model (19) but in the present study using
the hsFLT1 maternally overexpressing mice.

We induced hsFLT1 expression in early to midgestation, at
the leading time point of chorioallantoic attachment followed
by fetal vasculature branching to form dense villi within the
murine labyrinth (8.5–10.5 dpc), processes that are strictly
regulated by members of the Vegf, Plgf, fibroblast growth
factor (Fgf), and transforming growth factor beta (Tgf-β)
families (36, 37). At this time point of gestation, the inhibition
of angiogenesis by overexpression of hsFLT1 could have the
strongest effect and strengthens the finding that Vegf is required
for placental development following 7.5 dpc. This finding was
closely associated with the change in expression patterns of Vegf
signaling molecules and apoptotic markers in the FGR hom and
het placentas. Since we induced hsFLT1 expression upon 7.5
dpc, hsFLT1 could also have influenced the yolk sac function,
which is the main source of nutrition to the fetus before 10.5
dpc of pregnancy (38). Thus, we cannot exclude that impaired
development of the yolk sac function also contributes to FGR.
However, taken into account that the later induction of hsFLT1
on 10.5 dpc where the yolk sac is already differentiated lead to
the same effect on fetal and placental growth, we suggest a minor
role of yolk sac dysfunction in our model.

The unraveling of hsFLT1–associated impairment of the
Vegf signaling cascade showed a strong upregulation of the
endogenous binding partners of murine sFlt-1 on transcript
level in the placentas: the murine variants of Plgf, Vegfa, and
Vegfb exhibited a kind of counterregulation to the increase
in hsFLT1, indicating the binding of hsFLT1 to the murine
ligands. This could be strengthen by a reduction of Vegf and Plgf
protein levels in the FGR hom and het groups maybe causing
an impaired Vegf signaling, indicated by mRNA upregulation of
Vefg-related apoptosis markers. Indeed, Szalai et al. (32) found
that hsFLT1 can bind and sequester murine Plgf in vivo. The
mRNA expression of membrane-bound Vegf receptor 2 (Flk-1),
which is the leading receptor for angiogenesis and is expressed
by placental/fetal ECs (30, 39), was lower in FGR hom and
het placentas than in control placentas. The reduction of Flk-
1 transcript levels was combined with a reduction in Cd31
transcript levels and in the number of fetal ECs.

Moreover, the mRNA expression of proapoptotic markers
such as Casp9 and Bad downstream of Flk-1 was highly
upregulated upon hsFLT1 expression in FGR hom and het
placentas, a finding that argues for apoptosis of fetal ECs and the
consequent reduction in Cd31 signals and in the number of fetal
ECs. Jiang et al. (40) found that sFLT1 mediates oxidative stress
on trophoblast cells during PE and thereby increases apoptosis.
We hypothesize that the same holds true for fetal ECs. These
findings indicate that placental Vegf signaling is impaired, and
this impairment probably inhibits placental vessel development.
Therefore, we hypothesize that the observed FGR phenotype
in the hsFLT1/rtTA fetuses results mainly from impaired Vegf
signaling via Flk-1 in the placenta, which is triggered by excessive
signaling of the anti-angiogenic molecule hsFLT1 and, as a
consequence, by reduced binding of Vegfa and Vegfb to Flk-1.

In contrast, other Vegf receptors and Vegf isoforms, such as Flt-
4, Vegfc, and Vegfd, seem not to be differentially regulated on
mRNA level upon hsFLT1 overexpression.

The enlargement of maternal sinusoids in the labyrinthine
compartment in the FGR hom and het placentas could be due
to a stasis of maternal blood conditioned by a reduced fetal
vascular system that increases maternal blood pressure as a
possible reactive response to the necessity to fulfill the nutrient
requirements of the fetus. Although maternal hypertension
and pathological uteroplacental blood flow have not yet been
confirmed in ourmodel, thismechanism resembles PE symptoms
in humans.

hsFLT1 exerts a strong influence on labyrinth differentiation
combined with a decrease of syncytiotrophoblast markers in
relation to placental hsFLT1 levels, such as the glucose-diffusion
channel Cx26 and the differentiation-promoting transcription
factor Gcm1. Gcm1 is one of the leading transcriptional
factors during labyrinthine differentiation; it is expressed by
a subset of chorionic trophoblast cells and defines the places
at which branch points of fetal vessels in the labyrinth will
form (41). The reduced transcript expression of markers for the
transporting trophoblast fit very well with the FGR phenotype
of the fetuses with the various hsFLT1 levels. In addition, the
markers for the spongiotrophoblast and glycogen cells, which
are mainly responsible for the production of endocrine factors
and regulation, have been shown to be upregulated upon hsFLT1
expression; these markers include prolactin Prl3d1, as a marker
for P-TGCs, and Cx31, and Tpbpa. This indicates in addition an
altered differentiation of the spongiotrophoblast upon hsFLT1
overexpression. The dysregulation of labyrinthine markers in
the hsFLT1/rtTA placentas upon hsFLT1 induction in pregnant
mice was in accordance with the expression levels of placental
nutrient transporters. Transcript levels of glucose transporters
Glut-1 and Glut-3, fatty acid transporters Fabp3 and Cd36, and
amino acid transporters Slc38a1 and Slc38a2 were reduced in
hsFLT1–expressing placentas, with the strongest decrease in fatty
acid transporters. These alterations strengthened the hypothesis
of a negative effect of hsFLT1-expression on placental nutrient
transport, leading to a reduction in the transport of nutrients
to the fetus. The reduction in the expression of all types of
nutrient transporters and of syncytiotrophoblast markers, as
well as the reduction in labyrinthine size indicated a reduction
in the number of trophoblast cells in the labyrinth but not
a downregulation in the expression of these markers per cell.
These observations agree with the findings of previous studies
using sFLT1 overexpressing mice, which showed a reduction
in the size of the labyrinthine compartment (18, 19), and with
those of studies using a Plgf knockout mouse model (42) or a
Gcm1-deficient mouse model (41, 43).

Thus, we suggest that, in transgenic hsFLT1/rtTA mice,
placental function is seriously impaired by hsFLT1 because of
a possible deficiency in the placental exchange of nutrients, in
particular fatty acid transport. Lipids as central precursors of
bioactive molecules are essential for fetal brain development and
fetal weight gain (44–46).

Indeed, the metabolic profile of the serum of hsFLT1/rtTA
dams showed a change in the metabolome upon hsFLT1
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expression, a finding that indicates an accumulation of
lysophosphatidylcholines and phosphatidylcholines in the serum
of these dams. These findings fitted to the observed reduced
level of expression of fatty acid transporters and placental
alkaline phosphatases, an enzyme which dephosphorylates
phospholipids, which is necessary before transport of the lipids
via the placenta (20). Accumulation of phosphatidylcholines in
maternal serum and reduction of placental Fabp3 transcript level
was also shown in a sFlt-1 overexpressing adenovirus mouse
model by Stojanovska et al. (47). Thus, there is an association
between reduced placental nutrient transporter expressions
with identified protein classes as a result of a dysfunctional
placenta. However, we cannot exclude that other altered signaling
pathways not involved in placental transport could contribute
in elevation of circulating lipids. That FGR is associated with
changes in the plasma metabolome, especially amino acid and
fatty acid metabolism, has also been shown by other studies,
including studies using a maternal diet mouse model (26, 48).

PE with or without FGR is well-known for its long-term
consequences for the fetuses (49). Changes in DNA methylation
have been proposed to mediate these long-term effects on the
fetus (50). Our model of lentiviral sFLT1 overexpression showed
methylation of Igf2, an imprinted epigenetically regulated gene,
and of H19, which is co-localized with Igf2. Igf2 transcription
is dependent on the methylation status of H19-ICR, which is
located upstream of the H19 promoter (51). In addition, the
average methylation of LINE1 elements was used as a proxy
for DNA methylation in general and can therefore serve as
an indicator of total DNA methylation levels (52). The use of
the transgenic mouse model overexpressing only hsFLT1 did
not lead to further changes in the methylation pattern. The
current study found only minor changes in DNA methylation,
with only one change in LINE1 and no changes in H19 or
Igf2. This finding may be related to the fact that we induced
ubiquitous hsFLT1 expression in both the dam and the fetus,
and this ubiquitous expression resulted in much higher levels
of hsFLT1 at midgestation, unlike the more pathophysiological
levels observed in human PE, in which only the placenta
overexpresses sFLT1, as in the lentiviral model (19). Moreover,
it is tempting to speculate that under the severe conditions
observed here we measured methylation in the surviving
cell population; thus, there may be an experimental bias by
selective survival.

Taken together, the impaired placental development shown
in these hsFLT1/rtTA mice ultimately leads to placental
insufficiency and FGR. Changes in the transport mechanism
of lipids and other nutrients, in combination with a reduction
in the placental vascular system, could have caused the strong
decrease in fetal weight during pregnancy found in our study.
Thus, we speculate that the alterations triggered by the increase
in anti-angiogenesis brought about by hsFLT1 expression
not only may strongly affect the maternal cardiovascular
system, as shown by Mosca et al. (53, 54), but also may
adversely affect the fetus by altering development and function
of the placenta as the first fetal organ, increasing the
risk of cardiovascular and neurological diseases later in
life (55).

CONCLUSION

We introduced a novel stable and reproducible transgenic
hsFLT1/rtTA FGR mouse model, in which hsFLT1
overexpression can be ubiquitously induced at several time
points during murine pregnancy. Using this model, we were able
to discriminate between the effects of hsFLT1 overexpression
by the dam and the placenta/fetus and those of overexpression
by the dam alone. FGR has developed in all hsFLT1 expressing
groups at term, and its severity depended on the hsFLT1
expression strength. In the present study we focused primarily
on the consequences of hsFLT1 overexpression on placental
development, with a special focus on placental vascularization
and nutrient transport. The results indicate the importance of the
Vegf/sFlt-1 system in placental development in stages following
7.5 dpc in mice. hsFLT1 inhibits placental differentiation,
especially inhibiting fetal capillary branching by reducing Vegf
signaling and inducing apoptosis in fetal ECs. Over time, this
inhibition could lead to a stasis of maternal blood, promoting
dilatation of the maternal sinusoids because of impairment
of the fetal vessel system. The altered placental morphology
ultimately results in uteroplacental insufficiency, including
reduced nutrient transport (predominantly affecting the fatty
acid supply), which leads to FGR.

Currently we are determining whether these hsFLT1/rtTA
mice also exhibit typical symptoms of PE. This improved model
can serve as a tool for further molecular biological investigations
of sFLT1–mediated pathophysiology in PE with FGR as well
as for the development of maternal diseases. Furthermore, it
could yield new treatment options for PE and could be used in
follow-up studies of fetal and maternal outcome.
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Figure S1 | Comparison of fetal (A) and placental weight (B) as well as placental

efficiency (C) of hsFLT1 expression starting at gestational day (dpc) 7.5 or 10.5

until 18.5 dpc in the hsFLT1/rtTA mouse-model. (A) fetal weights: Controls 7.5,

n = 13, 10.5, n = 25; Dox controls 7.5, n = 32, 10.5, n = 25; FGR wt 7.5, n =

12, 10.5, n = 4; FGR het 7.5, n = 3, 10.5, n = 19; FGR hom 7.5, n = 3, 10.5, n =

12. (B) Placental weights: Controls 7.5, n = 11, 10.5, n = 25; Dox controls 7.5,

n = 30, 10.5, n = 20; FGR wt 7.5, n = 12, 10.5, n = 3; FGR het 7.5, n = 3, 10.5,

n = 18; FGR hom 7.5, n = 4, 10.5, n = 20. (C) Placental efficiency: Controls 7.5,

n = 11, 10.5, n = 23; Dox controls 7.5, n = 30, 10.5, n = 20; FGR wt 7.5,

n = 12, 10.5, n = 3; FGR het 7.5, n = 3, 10.5, n = 17; FGR hom 7.5, n = 3, 10.5,

n = 17. Data is presented as median and interquartile range. Two-Way ANOVA

with Bonferroni post tests revealed no changes between the starting time points

7.5 and 10.5 dpc in each experimental condition (p > 0.05).

Figure S2 | Sex-specific differences in fetal weight and placental efficiency in the

hsFLT1/rtTA mouse model. (A) Body weight of mouse fetuses at day 18.5 post

coitum (dpc) was lower in females expressing human soluble fms-like tyrosine

kinase-1 (hsFLT1) than in males expressing hsFLT1. (B) In addition, reduced

placental efficiency affected female fetuses more frequently than male fetuses.
∗p < 0.05; ∗∗∗p < 0.001 as determined by the Kruskal–Wallis test with Dunn’s

post hoc test. P-values of each fetal growth restriction (FGR) group are shown

only in contrast to control group fetuses of the same sex. (C) Percentages show

the distributions of males and females within the experimental groups. The FGR

group contained the fewest males (25.8%) in comparison to the number of

females (48.5%) but also contained the highest number of fetuses of unknown

gender (25.7%), a finding that is mostly due to technical reasons because of the

high degree of degraded DNA in the retarded cyanotic fetuses. In comparison, the

control group contained 40.5% males, 52.4% females, and 7.1% fetuses of

unknown gender; the doxycycline (Dox) control group contained 65.5% males,

32.8% females, and only 1.7% fetuses of unknown gender.

Figure S3 | Correlations of fetal weight and placental efficiency with either

placental hsFLT1 transcript level (A) or fetal hsFLT1 transcript level (B,C) in the

hsFLT1/rtTA mouse model. (A) Reduction in fetal body weight was negatively

correlated with fetal expression of human soluble fms-like tyrosine kinase-1

(hsFLT1) (r = −0.6691; p = 0.0033). Placental efficiency exhibited a moderate

negative correlation with the expression of fetal hsFLT1 (r = −0.4059; p = 0.1188)

(B) and a weak negative correlation with the expression of placental hsFLT1

(r = −0.2439; p = 0.24) (C).

Figure S4 | Analysis of the expression of important placental marker genes in the

hsFLT1/rtTA mouse model. (A) Heat-map representation of the results of

quantitative reverse transcription polymerase chain reaction (qRT-PCR) of 34

marker genes detected differences in placental gene expression between fetal

growth restriction (FGR) homozygous (n = 7) or FGR heterozygous (n = 15)

placentas and control (n = 12) or doxycycline (Dox) control (n = 13) placentas.

The expression of human soluble fms-like tyrosine kinase-1 (hsFLT1) changed the

expression of 22 of 34 genes, as shown by one-way analysis of variance (ANOVA;

color-coding intensity in the red spectrum shows an increase in the expression of

a marker gene, and color intensity in the blue spectrum shows a decrease in the

expression of a given marker gene). (B) Protein levels of differentially regulated

angiogenesis-related factors (Tissue Factor, Serpin E1, and Serpin F1) detected

with Proteome Profiler Angiogenesis Antibody Array. All three factors were

upregulated upon hsFLT1 expression in FGR hom (n = 5) and het (n = 5)

placentas compared to control (n = 5) and Dox control (n = 5) placentas. Data is

presented as mean ± standard deviation.

Figure S5 | Characterization of average DNA methylation of insulin-like growth

factor two (Igf2) differentially methylated region two (DMR2) (A), H19 imprinting

control region (H19-ICR) (B) and global DNA methylation by long interspersed

element one (LINE1) (C) in placentas of the human soluble fms-like tyrosine kinase

reverse tetracycline-controlled transactivator (hsFLT1/rtTA) mouse model.

Samples were obtained from complete placentas. Methylation levels were

analyzed by pyrosequencing. The following experimental groups were analyzed:

fetal growth restriction homozygous (FGR hom; n = 4); FGR heterozygous (het;

n = 7); FGR wild-type (wt; n = 7) in various shades of red; and control (n = 10)

and doxycycline (Dox) control (n = 6) groups in different shades of gray. Data are

presented as means ± standard error of the mean. ∗p < 0.05, as determined by

the Kruskal–Wallis test with Dunn’s post hoc test.
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