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BACKGROUND Paroxysmal atrial fibrillation (AF) often eludes early
diagnosis, resulting in significant morbidity and mortality. Artificial
intelligence (AI) has been used to predict AF from sinus rhythm
electrocardiograms (ECGs), but AF prediction using sinus rhythm
mobile electrocardiograms (mECG) remains unexplored.

OBJECTIVE The purpose of this study was to investigate the utility
of AI to predict AF events prospectively and retrospectively using
sinus rhythm mECG data.

METHODS We trained a neural network to predict AF events from
sinus rhythm mECGs obtained from users of the Alivecor KardiaMo-
bile 6L device. We tested our model on sinus rhythm mECGs within
60–2 days, 63–7 days, and 68–30 days from AF events to deter-
mine the optimal screening window. Finally, we tested our model
on mECGs from before an AF event to determine whether AF can
be predicted prospectively.

RESULTS We included 73,861 users with 267,614 mECGs (mean age
58.14 years; 35% women). Users with paroxysmal AF contributed
60.15% of mECGs. Model performance on the test set comprising
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control and study samples across all windows of interest showed
an area under the curve (AUC) score of 0.760 (95% confidence inter-
val [CI] 0.759–0.760), sensitivity of 0.703 (95% CI 0.700–0.705),
specificity of 0.684 (95% CI 0.678–0.685), and accuracy of 69.4%
(95% CI 0.692–0.700). Model performance was better on 60–2
day samples (sensitivity 0.711; 95% CI 0.709–0.713) and worse
on the 68–30 day window (sensitivity 0.688; 95% CI 0.685–
0.690), with performance on the 63–7 day window falling in be-
tween (sensitivity 0.708; 95% CI 0.704–0.710).

CONCLUSION Neural networks can predict AF using a widely scal-
able and cost-effective mobile technology prospectively and retro-
spectively.

KEYWORDS Artificial intelligence–based electrocardiographic anal-
ysis; Atrial fibrillation; Atrial fibrillation event prediction; Mobile
electrocardiography; Scalable technology; Sinus rhythm
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Introduction
Atrial fibrillation (AF) is the most common arrhythmia diag-
nosed in the United States.1 Early diagnosis of AF is crucial
to preventing complications such as stroke and heart fail-
ure.2,3 Diagnosing AF can be challenging because one-
third of individuals with the arrhythmia are asymptomatic,4

and AF often presents intermittently, referred to as parox-
ysmal AF. Strategies for detecting AF include in-hospital
monitoring, serial electrocardiography (ECG), and long-
term outpatient monitoring using wearable continuous
ECGs, event monitors, or implantable cardiac monitors.
Despite these measures, AF detection rates remain low, be-
tween 5% and 20%.5,6 Identifying novel, convenient, and
more cost-effective techniques to predict when an AF event
may occur could substantially improve early treatment of
this condition, which is expected to affect about 12.1 million
individuals in the United States by 2030.

Artificial intelligence (AI) algorithms have been har-
nessed to predict AF development by analyzing health
care–based 12-lead ECGs of individuals in sinus rhythm.7,8

However, 12-lead ECGs might not be available for those
who lack an indication for a screening ECG or those without
regular access to health care. For these and other cohorts,
multiple mobile electrocardiographic (mECG) platforms are
emerging that are increasingly being used in physician’s of-
fices and by users themselves to monitor heart rhythms.9–13

The growing ubiquity of mECG devices and the ease of
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KEY FINDINGS

� In this study of more than 260,000 mobile electrocar-
diogram (mECGs) in 73,861 AliveCor 6L users, we found
that neural networks were able to predict AF events
from sinus rhythm mECGs with good performance met-
rics.

� We demonstrated that atrial fibrillation (AF) events can
be predicted before they occur. Furthermore, our model
shows comparable performance of mECGs obtained
before and after the AF event.

� We showed that the accuracy of AF prediction improves
when mECGs are screened closer to the AF event, with
the predictions on mECGs from the 2-DAY window out-
performing the 7-DAY and 30-DAY windows.

� This study is the first to show the utility and feasibility
of using artificial techniques on mECGs to predict AF
events, which may be a widely scalable technology for
reducing morbidity and mortality.
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self-administration of mECGs with these platforms provide a
unique opportunity to leverage AI to perform large scale,
cost-effective AF prediction.

In this study, we documented our application of AI models
to predict AF events in study participants with paroxysmal
AF using self-administered 6-lead sinus rhythm mECGs
collected on a smartphone-based mobile device. We studied
AF event prediction using sinus rhythm ECGs obtained
within different prespecified time windows of the sampling
of the AF mECG. Furthermore, we examined whether AF
events can be predicted prospectively, which could offer
unique therapeutic opportunities.
Methods
Data source and acquisition
Our data consisted of mECGs acquired from KardiaMobile
6-lead (6L) users (AliveCor, Inc., Mountain View, CA)
from June 28, 2019, to February 19, 2021. The KardiaMobile
6L device (Figure 1) is an Food and Drug Administration
(FDA)–cleared, portable, wireless, 6L mECG platform that
can obtain up to 5 minutes of mECG data through 2 touch
sensors with no wires, patches, or gels. Each mECG is
sampled at 300-Hz resolution, and the mECG devices are
configured to record in the bandwidth range of 0.540 Hz
(in accordance with, and in excess of, the standard set for
ambulatory ECGs described in the IEC 60601-2-47 guide-
lines).14

To record an mECG with KardiaMobile 6L, users place
their fingers or thumbs on the top electrodes, place the bottom
electrode on the bare skin of their left ankle or left knee, and
hold for 30 seconds. If an uninterpretable poor-quality
mECG is obtained, the reading is erased, and the user is
prompted to resubmit another reading. After mECG acquisi-
tion, data are transmitted through the AliveCor mobile phone
application to a cloud-based data repository. Of note, upon
registration of a new device, users provided research authori-
zation and self-reported age and sex. Data validity is main-
tained by trained AliveCor personnel through rigorous
auditing. The Institutional Review Board of the University
of Washington provided a waiver of informed consent
because all study data were de-identified. The research re-
ported in this paper adhered to the Helsinki Declaration as
revised in 2013 guidelines.
Model design and implementation
We framed the detection of AF from mECGs as a time series
classification problem. The input to our neural network was a
9000 by 2-dimensional matrix, which represented leads I and
II sampled at 300 Hz for 30 seconds. Although the Kardia-
Mobile 6L device acquires ECG data in leads I, II, III,
aVL, aVR, and aVF, only data in leads I and II were used
as input because the network could learn any linear combina-
tion of the 4 remaining leads from those 2 leads.

Model architecture consists of 3 sequential parts: a convo-
lutional neural network (CNN); a gated recurrent unit (GRU);
and standard dense neural network layers.15 We used a modi-
fied version of the CNN architecture of Attia et al7 to build
our Resnet-based CNN layers. Each Resnet block contained
3 convolutional layers with a fixed filter count and kernel
length (Figure 2). Skip connections were used between layers
to increase depth and prevent the vanishing gradient. Each
Resnet block was followed by a dropout layer to prevent
overfitting of the model to the training samples. Our convo-
lutions focused on the longer axis (9000) to extract temporal
features, and results were combined across both leads.

We appended a recurrent neural network (RNN) block to
the CNN to provide persistence and memory for temporal
patterns found across longer patches of signal. We used a
bidirectional GRU architecture for our RNN. The GRU, us-
ing update and reset gates, also minimized the vanishing
gradient problem and decreased the number of parameters,
contributing to easy training and reduced overfitting.

The dense layer at the end of the architecture reduced the
result from the GRU to a 2-dimensional output vector. A soft-
max activation function was applied to the output vector,
yielding predictive probabilities corresponding to the occur-
rence or absence of AF. All evaluation and training were
done in Tensorflow 2.4.1 (Google, Mountainview, CA) and
Python 3.7 on a CentOS-based Linux machine outfitted
with a 32 core Intel(R) Xeon(R) CPU E5-2620 @ 2.10
GHz and 4 Nvidia GeForce GTX 1080 GPUs.
Study design
We identified 76,891 users from the pool of all commercial
users of the AliveCor KardiaMobile 6L platform who re-
corded at least one 30-second mECG from the study period.
Users were categorized as not having AF (control cohort) if
they had no AF readings and had at least 10 sinus rhythm
mECG recordings in the Alivecor database.



Figure 2 Neural network architecture consisting of Resnet blocks (convo-
lutional neural network [CNN]), gated recurrent unit (GRU) block (RNN),
and Dense block.

Figure 1 A: The Alivecor KardiaMobile 6L mobile electrocardiographic (ECG) device contains 3 electrodes: 2 on the top surface and 1 on the bottom surface.
B: Six-lead ECG acquisition requires contact with 1 finger from each arm, and from the knee or ankle from a lower limb.
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Users were categorized as having AF (study cohort) if
they submitted at least 1 mECG with AF, as determined by
the proprietary, FDA-cleared Kardia AI algorithm package
(FDA clearance K181823).16 This algorithm uses a mixture
of deep learning and conventional machine learning to detect
AF from lead I of an ambulatory bandwidth ECGwith.95%
specificity and 95% sensitivity. Users were excluded if they
had persistent or permanent AF (defined, for the study pur-
pose, as AF present in all sample mECGs from an individual)
or were ,18 years old. mECGs were excluded if they were
,30 seconds in duration.

For the primary analysis, we randomly sampled 1 AF
mECG from each participant in the study cohort, which
served as our cases. Then, from the same participant, we
randomly sampled at most 10 sinus rhythm mECGs within
60–30 days of the sampled AFmECG to include in our study
sample. This was done to ensure variety. From each partici-
pant in our control cohort, we randomly sampled 1–2mECGs
from the study window to include in our control sample.
Users in the study and control cohorts were randomly as-
signed to either train, validation, or test sets in a 7:1:2 ratio.
Therefore, no unique users could have mECGs in.1 of these
sets.

In the clinic, we would not have any information about
when a patient with suspected paroxysmal AF had the last
AF episode. We needed our model to be able to infer AF/
no AF without the use of such temporal information. Howev-
er, we were interested in determining the optimal AF
screening window. Therefore, we trained, validated, and
tested a single model on study and control mECGs. We re-
ported these overall results, where study samples come
from 60–30 days of an AF event (Figure 3). For identifying
an optimal screening window, we further stratified our test
set’s study mECGs temporally into 3 windows. We chose
60–2 days (2-DAY), 63–7 days (7-DAY), and 68–30
days (30-DAY) windows from the associate AF event
because we hypothesized a priori that miniscule but clini-
cally important structural and abnormal ECG changes would
be most pronounced shortly before, and immediately after, an
AF event, and that these changes may be detected by the
model. We coupled the control test sample to each of these
windows in the reported results, as the control mECGs do
not surround a given mECG and rather are sampled from
the entire study period.
After exclusions, our final cohort consisted of 73,861 pa-
tients and 267,469 mECGs, of which there were 8,661 users
who had paroxysmal AF, contributing 160,840 mECGs, and
55,200 control users, contributing 106,629 mECGs. The
sampling and stratification methodology is shown in
Figure 3. Once control users and study users are assigned
to the test set, their mECGs are separated into the different
test set subsamples (Figure 4).

We performed secondary analyses to determine the pro-
spective predictive power of our model. We divided the
test sample into 2 cohorts: all mECGs collected in the days



Figure 3 Diagram of the study data. mECG 5 mobile electrocardiogram.
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preceding the AF event (BEFORE); and all mECGs collected
in the days following the AF event (AFTER) (Figure 4). We
evaluated the model on these subsets separately to ascertain
whether AF events could be predicted prospectively or retro-
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Table 1 Comparison of model performance by mECG screening
period

Study Sensitivity (95% CI)

2-DAY subsample 0.711 (0.709–0.713)
7-DAY subsample 0.708 (0.704–0.710)
30-DAY subsample 0.688 (0.685–0.690)
BEFORE 0.713 (0.710–0.716)
AFTER 0.695 (0.691–0.700)

Sensitivity and accuracy represent the same value for the subsample
studies. Area under the receiver operating curve, specificity, and F1 not
applicable for subsamples because performance is tested on study samples.

mECG 5 mobile electrocardiogram.
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Statistical optimization
After each round of training, the fitted model was applied to
the validation set. Carrying out inference on this intermediate
set let us tune the internal parameters of the model. The final
model was arrived at after such iterative training. Statistical
optimization for each model included grid search over
parameter spaces to find optimal hyperparameters: dropout
equal to 0.1, Adamax optimizer, learning rate of 0.01, and
a final dense layer of size 16. The final model was evaluated
on the hold out test set using receiver operating characteristic,
sensitivity, specificity, accuracy, and F1 score. For each sec-
ondary analysis described earlier, our model, architecture,
and hyperparameters remained consistent, and our test set
varied.
Figure 5 Model receiver operating characteristics (ROC) when trained
with sinus rhythm mobile electrocardiograms obtained in all study windows.
AUC 5 area under the curve; CI 5 confidence interval.
Results
Across the entire cohort, there were 73,861 included users
with 267,614 mECGs. Overall, mean age was 58.14 6
14.61 years; 25,991 users (35.1%) were female; and mean
number of mECGs contributed per user was 3.62. Of these
users, 18,661 individuals (25.3%) and 160,957 mECGs
composed the study cohort. Mean age of the study cohort
was 60.46 6 14.55 years; 6098 users (32.7%) were female;
and mean number of mECGs contributed was 8.62 6 6.44.
The control cohort included 55,200 users (74.7%) and
106,657 mECGs. Mean age of the control cohort was 54.64
6 14.01 years; 19,893 (36.0%) were female; and mean num-
ber of mECGs contributed was 1.93 6 0.25.

In total, 51,703 users and 187,221 mECGs were allocated
to the training set, with 38,012 mECGs from the 2-DAYwin-
dow, 27,371 mECGs from the 7-DAY window, 47,188
mECGs from the 30-DAY window, and 74,650 mECGs
from the control sample. A total of 7,312 users and 25,394
mECGs were allocated to the validation set, with 5513
mECGs from the 2-DAY window, 3759 mECGs from the
7-DAY window, 6842 mECGs from the 30-DAY window,
and 9280 mECGs from the control sample. A total of
14,846 users and 54,999 mECGs were allocated to the test
set, with 10,881 mECGs from the 2-DAY window, 7683
mECGs from the 7-DAY window, 13,708 mECGs from
the 30-DAY window, and 22,727 mECGs from the control
sample. Users with paroxysmal AF contributed 60.15% of
the mECGs in our study (Figure 3). Median number of
days between the first and second mECGs randomly sampled
from each user in the control cohort was 238.4 (95% confi-
dence interval [CI] 9.5–1314.1).

Our model achieved an overall area under the curve
(AUC) score of 0.760 (95% CI 0.759–0.760), sensitivity of
0.703 (95% CI 0.700–0.705), specificity of 0.684 (95% CI
0.678–0.685), accuracy of 69.4% (95% CI 0.692–0.700),
and F1 score of 0.694 (95% CI 0.694–0.700) on the test set
comprising control samples and study samples from all 3
windows of interest (Table 1 and Figure 5). Prevalence, pos-
itive predictive value (PPV), and negative predictive value
(NPV) were 0.601, 0.773, and 0.637 respectively, and, in
practice, PPV and NPV would be impacted by real-life prev-
alence.

A comparison of model performance on study samples
from the 2-DAY, 7-DAY, and 30-DAY windows of interest
is given in Table 1. We report accuracy on each of the win-
dows, which is equivalent to sensitivity for these subsamples.
Generally, model performance was better on the 2-DAYwin-
dow (sensitivity 0.711; 95% CI 0.709–0.713) and worse on
the 30-DAY window (sensitivity 0.688; 95% CI 0.685–
0.690), with performance on the 7-DAY window falling in
between (sensitivity 0.708; 95% CI 0.704–0.710).
Secondary analyses
Performance characteristics of the model tested on sinus
rhythm study mECGs stratified into before and after the AF
event are given in Table 1. There were 14,268 BEFORE
mECGs and 18,004 AFTER mECGs in the test set. The
BEFORE and AFTER studies performed similarly to each
other, with sensitivity of 0.713 (95% CI 0.709–0.717) and
0.695 (95% CI 0.692–0.699), respectively (Table 1).

When we examined the model performance by age group,
the test set (including both control and study samples) con-
tained 10,098 users (68.0%) ,65 years old contributing
33,908 mECGs (32.0%) and 4748 users �65 years old
contributing 21,091 mECGs.



Table 2 Comparison of model performance measures by age and sex

Study AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1 (95% CI)

Test set 0.760 (0.758–0.760) 0.703 (0.700–0.705) 0.684 (0.678–0.685) 69.4% (69.2%–70.0%) 0.700 (0.694–0.700)
Age (y)
18–64 0.743 (0.742–0.745) 0.615 (0.613–0.618) 0.750 (0.746–0.751) 0.680 (0.679–0.682) 0.679 (0.678–0.681)
64–99 0.749 (0.745–0.750) 0.807 (0.804–808) 0.508 (0.503–0.510) 0.720 (0.713–0.719) 0.715 (0.711–0.717)

Sex
Male 0.765 (0.763–0.767) 0.714 (0.713–0.715) 0.674 (0.670–0.678) 70.0% (69.6%–70.0%) 0.700 (0.698–0.700)
Female 0.747 (0.746–0.751) 0.680 (0.678–0.686) 0.694 (0.691–0.696) 68.6% (68.4%–68.9%) 0.687 (0.685–0.691)

AUROC 5 area under the receiver operating curve.

26 Cardiovascular Digital Health Journal, Vol 4, No 1, February 2023
The model performed marginally better in adults �65
years old (AUC 0.748; 95% CI 0.744–0.750) compared to
adults ,65 years old (AUC 0.743; 95% CI 0.742–0.745)
(Table 2).

When we examined the model performance by sex, the
test set (including both control and study samples) contained
10,252 male users (69.0%) contributing 36,436 mECGs and
4594 (31.0%) female users (31.0%) contributing 18,563
mECGs. Model performance was similar for men (AUC
0.765; 95% CI 0.763–0.767) and women (AUC 0.747;
95% CI 0.746–0.751) (Table 2).
Discussion
In our study of more than 260,000 mECGs in 73,861 Alive-
Cor 6L users, we found that neural networks were able to
accurately predict AF events from sinus rhythm mECGs
with good performance metrics. We demonstrated compara-
ble model performance on data obtained before or after the
AF event, which suggests AF events can be predicted before
they occur. Additionally, we showed that the accuracy of AF
prediction improved when mECGs were screened closer to
the AF event, with the predictions on the 2-DAY window
outperforming the 7-DAY and 30-DAY windows. Taken
together, our results suggest AI-enabled AF event prediction
using mECGs is time-dependent because model performance
is best when trained with mECGs in the immediate temporal
vicinity of an AF event but diminishes with time. These re-
sults highlight the utility and feasibility of using AI tech-
niques and mECG data to predict AF events, which may be
a valuable screening tool for reducing morbidity and mortal-
ity of patients with AF.

To our knowledge, this study is the first to use AI tech-
niques to predict AF events prospectively and retrospectively
using sinus rhythm mECG data and to analyze a temporal
relationship with model performance. There are several po-
tential advantages to leveraging mECG data vs 12-lead
data to predict AF using AI, including more frequent ECG
sampling, ease of acquisition, and administration without
the need to travel to a health care facility, ultimately
improving access to AF screening for those without regular
medical care. In addition, mECGs can be uploaded to a cen-
tral cloud-based data repository, enabling multiple institu-
tions to implement AI-based AF event prediction
paradigms, whereas 12-lead ECGs must be processed at the
institutional level and require significant technical support
to abstract from medical records. Thus, mECG-based AI
techniques represent a significantly more scalable, wide-
reaching, and cost-effective means of predicting AF.

Our results can be taken in the context of medical
screening tests including B-type natriuretic peptide for heart
failure (AUC 0.60–0.70), Papanicolaou smear for cervical
cancer (AUC 0.70), and CHA2DS2-VASc Score for stroke
risk (AUC 0.57–0.72) as compared by Attia et al.7 Although
we demonstrated robust predictive abilities when applied to
mECG data, our model did not outperform AI prediction of
AF when applied to 12-lead ECGs. In this context, Attia
et al demonstrated an AUC of 0.90, and Raghunath demon-
strated an AUC of 0.85.7,8 There may be several reasons
for the discrepancies between their findings and ours. The
number of mECGs and users included in our dataset was
4 times smaller than in the study by Attia et al and an order
of magnitude smaller compared to the work by Raghunath.
As more mECG data are collected, we would expect higher
training capabilities and improved model performance. Addi-
tionally, the mECG sampling rate and spatial resolution are
40% and 50% lower, respectively, than traditional 12-lead
ECGs (sampling rate is 300 Hz in mECGs and 500 Hz in
traditional 12-lead ECGs; mECGs do not have leads in the
frontal axis). Because neural networks recognize hidden pat-
terns from minute details, performance likely would decrease
as resolution decreases. The tradeoff between better spatial
resolution vs ease of implementation, scalability, and wide-
spread adoption will have to be considered when performing
AI-based analyses on ECG data. Finally, although mECG de-
vices are gaining popularity, we are using data from Alivecor
users who already are monitoring health. Therefore, it is
likely that some patients who appear in the control actually
have paroxysmal AF, making model prediction more chal-
lenging, mimicking a real-world use of such a tool.

We found that AF prediction was most accurate when our
algorithm was tested on mECGs closest to the AF event. One
explanation for this finding is an increase in nonsinus electri-
cal activity occurring in close temporal proximity to AF
events. It has been hypothesized that subtle, nonsinus electri-
cal activity that subtly alters ECG morphology may immedi-
ately precede or follow AF, and these minute changes would
facilitate AI-based detection of AF.17,18 Our findings seem to
confirm this hypothesis, as performance of the model on 2-
DAY data was superior to that of the model on 7-DAY and
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30-DAY data, respectively. This finding carries important AI
training implications: to best predict AF development, AI al-
gorithms should be trained on ECG data as close as possible
to an AF event.

The ability to predict AF from mECGs may have a signif-
icant clinical impact. Because paroxysmal AF can be asymp-
tomatic, thromboembolic stroke often occurs before a
diagnosis of AF is made.19 By identifying from mECG
data those individuals at high risk for AF, clinicians may
be able to selectively implement more aggressive surveil-
lance measures, such as prolonged outpatient monitoring,
more frequent mECG sampling, or prescription of an
implantable loop recorder, so that anticoagulation can be pre-
scribed as soon as AF is diagnosed but before a stroke occurs.
The ability to identify those at high risk for AF with AI-
enabled algorithms thus may result in more cost-effective
and efficient use of traditional long-term ECG monitoring
techniques. In addition to primary prevention of stroke, neu-
ral networks may prevent additional strokes.

Predicting future AF events may enable novel paradigms
of how pharmacotherapy can be used for those with AF. For
example, rhythm-controlling medications are sometimes
used to maintain a sinus rhythm in highly symptomatic indi-
viduals with paroxysmal AF, but these drugs are associated
with significant and potentially dangerous side effects if
taken for the long term. If a future AF event could be pre-
dicted with high accuracy, these medications potentially
could be taken as needed before an AF event occurs, which
may be useful in reducing side effects, decreasing pill burden,
and increasing medication adherence. Similarly, in the case
of anticoagulation medication for stroke prevention, AI-
based event prediction algorithms could be leveraged to tailor
anticoagulation duration to periods of high likelihood of an
AF event. This has the potential to reduce the frequency of
adverse bleeding events and decrease pill burden for the pri-
mary prevention of stroke, resulting in more patient-centered
and effective clinical care.
Study limitations
Our study cohort is small compared to studies of AI-enable
AF prediction in 12-lead ECGs, which likely resulted in
lower robustness with our neural networks. However, this
is the first and largest study using mECGs for such prediction
models, and as mECGs become more widely used, the pre-
dictive power of neural networks likely will increase. Sec-
ond, the spatial resolution of mECGs is less than that of
12-lead ECGs, possibly resulting in the neural network
missing detail in ECG changes predictive of AF. The tradeoff
between better spatial resolution and ease of implementation,
scalability, and widespread adoption will have to be consid-
ered when performing AI-based analysis on mECG data.
Third, the Alivecor AF detection package does not distin-
guish between AF and atrial flutter, an atrial arrhythmia
with a different mechanism than AF. However, because atrial
flutter also carries an increased risk of stroke,20 AI models
that predict both of these rhythms would be useful. Fourth,
we do not have characteristic information (eg, additional clin-
ical indicators, socioeconomic standing, or racial back-
ground) for our study population, limiting the applicability
of our study to real-life clinical settings. Finally, because
our results included only participants using the Alivecor 6L
device, they may not be generalizable to users of other
mECG devices. Further studies assessing the predictive capa-
bilities of AI in other mECG platforms, with demographic
context, may confirm our results.
Conclusion
We demonstrated that neural networks can predict with good
performance the development of AF using sinus rhythm
mECG data. As the screening approached an AF event, we
observed that the predictive power of the CNN increased. Ul-
timately, mECG data may lower barriers to implementing AI-
based AF event prediction systems in the modern health care
setting because of its scalability, availability, and cost-effec-
tiveness.
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