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Abstract: The quantitative study of rare earth compounds is important for the improvement of exist-
ing magnesium alloy systems and the design of new magnesium alloys. In this paper, the effective
separation of matrix and compound in Mg–Zn–Ce–Zr alloy was achieved by a low-temperature
chemical phase separation technique. The mass fraction of the (Mg, Zn)12Ce compound was deter-
mined and the effect of the (Mg, Zn)12Ce phase content on the heat deformation organization and
properties was investigated. The results show that the Mg–Zn–Ce compound in both the as-cast and
the homogeneous alloys is (Mg, Zn)12Ce. (Mg, Zn)12Ce phase formation depends on the content
and the ratio of Zn and Ce elements in the initial residual melt of the eutectic reaction. The Zn/Ce
mass ratios below 2.5 give the highest compound contents for different Zn contents, 5.262 wt.% and
7.040 wt.%, respectively. The increase in the amount of the (Mg, Zn)12Ce phase can significantly
reduce the critical conditions for dynamic recrystallization formation. Both the critical strain and
the stress decrease with increasing rare earth content. The reduction of the critical conditions and
the particle-promoted nucleation mechanism work together to increase the amount of dynamic
recrystallization. In addition, it was found that alloys with 6 wt.% Zn elements tend to undergo
a dynamic recrystallization softening mechanism, while alloys with 3 wt.% Zn elements tend to
undergo a dynamic reversion softening mechanism.

Keywords: Mg–Zn–Ce–Zr alloy; (Mg, Zn)12Ce phase; phase separation; thermal deformation; quan-
titative analysis

1. Introduction

Magnesium alloys have become one of the most promising lightweight structural ma-
terials today due to their low density, high specific strength, and specific stiffness [1–3], and
they are used in a large number of applications in the aerospace, military, and electronics
industries [4]. In addition, magnesium is widely used in medicine for medical implant
applications, one of which is to be a fixation for the acetabular cup component of total
hip prostheses [5]. In recent years, researchers have developed a large number of new
high-strength magnesium alloys by designing material preparation methods [6–9] and
introducing various rare earth elements. Mg–Zn–Zr series magnesium alloys can be applied
to a variety of high-load, high-yield parts and large complex forgings because of their high
strength, good plasticity, corrosion resistance, and good heat treatment and processing
properties. The application of rare earth elements (RE) in Mg–Zn–Zr series magnesium
alloys such as Ce, Y, Gd, Tb, Dy, Ho, or Er [10] further enhances the performance of this
series of alloys and compensates for the poor thermal stability performance of Mg–Zn–Zr
series alloys, which is one of the hot areas of current research.

The addition of Ce is expected to improve the strength and the heat resistance of
Mg–Zn–Zr alloys due to its huge reserves in the earth’s crust and easy extraction, especially
in the Mg–Zn–Zr system. According to the Mg–Ce binary phase diagram [11], the solid
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solution of element Ce in the magnesium matrix is extremely low, so the improvement of
the properties of the Mg–Zn–Ce–Zr alloy acts mainly through intermetallic compounds.
Currently, thermodynamic analysis of Mg–Zn–Ce–Zr alloys (Mg-rich angular region) gives
information on the formation temperature, transformation reaction equations, and structure
of various compounds [12,13]. The addition of Ce improves the yield strength (YS), ultimate
tensile strength (UTS), and ductility of the alloy by refining the grains [14], promoting the
formation of dynamic recrystallization, forming high density precipitation, and weakening
the weave [15]. The mixed addition of Ce and other elements (Y, Ca, etc.) also contributes
to the strength and ductility of the alloy [11,16–18]. The above reports indicate that rare
earth compounds such as (Mg1−xZnx)11Ce and (Mg1−xZnx)12Ce are the key to playing a
strengthening role. The organizational characteristics of Mg–Zn–Ce compounds, including
morphology, distribution, and quantity, all influence their role in the alloy, among which
the quantity of Mg–Zn–Ce compounds has been less studied. The quantitative study of the
effect of the quantity of rare earth compounds on strengthening effect has become one of
the important tasks of current research.

Several methods have been used for the analysis of the content of rare earth com-
pounds, among which the older point parameter method is more limited. Atomic probe
chromatography (APT) [19,20], although the most accurate, is not widely available with
expensive equipment. The phase separation method is a more widely used analytical
method, and it has some applications in Mg-Al-Zn magnesium alloys [21], but the number
of rare earth compounds studied by the phase separation technique in Mg–Zn–Ce–Zr
magnesium alloys is still a gap.

In summary, the quantitative study of the (Mg, Zn)12Ce phase and its content regu-
lation method are the key elements in the study of Mg–Zn–Ce–Zr alloys. To this end, a
novel chemical phase separation method was designed to investigate the mass fraction of
the (Mg, Zn)12Ce phase in different composition alloys. In the Mg–Zn–Ce–Zr alloy, the
Zn element can form the Zn–Zr phase before the eutectic reaction at the early stage of
solidification, and it may form the Mg–Zn phase during the eutectic reaction. Therefore, in
this study, it is assumed that all Zr forms Zn–Zr compounds, and the content of Zn and Ce
in the solidified melt can be obtained by using the difference between the total amount of
elements and the measured solid solution amount. Further, the effect of Zn and Ce content
on the amount of Mg–Zn–Ce ternary compound formation is discussed in order to provide
help for the design and the improvement of new high-strength alloys.

2. Materials and Methods

The Ce elements were added to the Mg–Zn–Zr alloy to form the alloy used for the
experiments. The added Ce content was 0.5 wt.%, 1.0 wt.%, and 1.5 wt.%, respectively, and
the Zn content was 3 wt.% and 6 wt.%. Pure magnesium and intermediate alloys (Mg–Zn,
Mg–Ce and Mg–Zr) were melted under slag protection to prepare semi-continuous ingots
of 210 mm. The actual chemical composition test results of the ingots are shown in Table 1.
The experimental specimens were intercepted at 1/2 the same height as the ingot, with
a diameter of 12 mm. The samples were sealed in quartz tubes filled with argon gas
for homogenization heat treatment. The homogenization treatment was carried out in a
chamber resistance furnace at a temperature increase rate of 10 ◦C/min to 475 ◦C, held for
12 h, and then immediately water-cooled. The specimens were processed into short bars of
10 mm, 15 mm. Thermal deformation experiments were conducted using a Gleeble-3500
thermal simulation tester with a heating rate of 3.3 ◦C/s to 400 ◦C, a holding time of 3
min, a strain rate of 0.1 s−1, and a deformation of 50%. The deformed specimens were
water-cooled immediately after deformation and used for deformation tissue observation.



Materials 2022, 15, 4420 3 of 16

Table 1. Design composition and measured composition of Mg–Zn–Ce–Zr alloys.

Alloy Code Nominal Alloys
Composition (wt.%)

Zn Ce Zr Mg

ZCI Mg–3Zn–0.5Ce–0.5Zr 2.599 0.619 0.517 Bal.
ZCII Mg–3Zn–1.0Ce–0.5Zr 3.042 0.936 0.522 Bal.
ZCIII Mg–3Zn–1.5Ce–0.5Zr 2.697 1.525 0.513 Bal.
ZCIV Mg–6Zn–0.5Ce–0.5Zr 5.410 0.533 0.570 Bal.
ZCV Mg–6Zn–1.0Ce–0.5Zr 5.900 1.055 0.510 Bal.
ZCVI Mg–6Zn–1.5Ce–0.5Zr 5.560 1.412 0.540 Bal.

The low-temperature phase separation of the alloy was performed by chemical meth-
ods. The solid solution phase in the alloy reacts with the solution and then decomposes
and dissolves into the solution, while the compound phase remains in the solution in its
original form. The phase separation solution uses methanol as the solvent, ammonium
benzoate as the surface passivator of the compound, 2,2′-bipyridine as the complexing
agent of Zn ions, salicylic acid as the inhibitor of hydrolysis products, and dioxane as the
chemical corrosion inhibitor of the magnesium alloy. The reaction between the alloy and
the separation solution was carried out at −20 ◦C with a reaction time of 2 h. After the
reaction, the solid–liquid was separated by the centrifugation + membrane method. The
liquid phase was used to determine the content of rare earths and Zn elements in the solid
solution, and the solid phase was used for the physical identification and the morphological
observation of the compounds.

The HITACHI SU8220 scanning electron microscope (SEM) was used to observe the
morphology of the metallographic sample and the separated solid phase of the alloy.
The composition of the micro-area was analyzed by an energy dispersive spectrometer
(EDS). The composition of the as-cast alloy and the solid phase separation was analyzed
by D/Max 2500/PC X-ray diffraction (XRD). The X-ray diffractometer had a Cu-k target,
and its working voltage was 40 kV and its current was 300 mA. The scanning speed
was 1 degree per minute, and the scanning step was 0.02 degrees. The scanning angle
range was 20–80 degrees. The transmission electron microscope (TEM) analysis sample
of the as-cast experimental alloy was prepared by the ion thinning method. The phase
morphology observation and the selected area diffraction analysis were carried out by the
FEI Talos F200X transmission electron microscope. The electron acceleration voltage was
200 kV. Figure 1 shows the workflow of the experimental tests in this study.
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3. Results
3.1. Microstructure and Compounds of As-Cast Alloy

Figure 2 shows the SEM images of the as-cast microstructure of the experimental
alloy, which can be seen to consist mainly of α-Mg matrix and a gray second phase on the
grain boundaries. By increasing the content of Ce in the alloy alone, the density of the
second phase at the grain boundaries increases significantly. It changes from intermittent
distribution to continuous distribution, especially at the triangular grain boundaries, where
the degree of aggregation is significantly increased, with typical eutectic organization
characteristics. No obvious second phase was observed inside the grains. Changing the
content of element Zn alone has a small effect on the amount and the distribution of the
second phase, with only a small increase in the second phase in the 6 wt.% alloy.
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Figure 2. SEM microstructure images of the as-cast alloys. (a) ZCI, (b) ZCII, (c) ZCIII, (d) ZCIV,
(e) ZCV, (f) ZCVI.

Figure 3 shows the SEM photographs of the typical morphology of the solid phase
isolated from the metallographic organization of ZCIII and ZCVI alloys. The compounds are
mainly arranged in granular piles at the grain boundaries, showing a rounded appearance
with mutual adhesion. The morphology of the solid phase isolates of the two experimental
alloys is similar. The results of EDS analysis (as shown in Table 2) indicate that the main
part of the compound is the Mg–Zn–Ce ternary compound, corresponding to points A
and C in Figure 3. The content of Ce in the Mg–Zn–Ce ternary compound is basically the
same, and the content of Zn increases with the increase of the addition, while the content
of Mg in it decreases with the increase of Zn. This indicates that the binary replacement
solid solution formed by Zn atoms in this compound can replace Mg at some positions.
D. Kevorkov et al. [22] determined the chemical formula of this phase as (Mg, Zn)12Ce. A
few Mg–Zn and Zn–Zr binary phases were detected in the fine bulk particles in the figure,
corresponding to points B and D in Figure 3, respectively.
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Table 2. EDS Analysis Results of Typical Alloy Solid Phase Separation.

Mark Position
Composition (at.%)

Zn Ce Zr Mg

A 17.93 7.21 74.86
B 71.80 28.20
C 22.73 6.95 70.32
D 59.46 40.54

Figure 4 shows the XRD spectra of the cast alloy and its solid phase separated. The
direct calibration of ZCVI alloy in Figure 4a resulted in an -Mg phase, and the second phase
could not be accurately calibrated due to the low peak. After the phase separation, the -Mg
phase diffraction peak disappears completely, and only the second phase particles remain
in the solid phase separated. Due to the enrichment of the second phase, the calibration of
each phase in the alloy solid-phase separates has high reliability. The calibration results in
Figure 4b show that the solid phase separation includes the (Mg, Zn)12Ce phase and the
Mg21Zn25 phase. The Mg–Zn and the Zn–Zr phases may be too small and entrapped in
a large number of particles to be effectively calibrated. Based on the relative intensities
of the (Mg, Zn)12Ce phase diffraction peaks, it can be seen that the proportion of the (Mg,
Zn)12Ce phase increases with the increase of Ce and Zn content. The position of the main
peak of the (Mg, Zn)12Ce phase in the figure shows a small shift, which is caused by the
change of Zn content in the Mg–Zn–Ce ternary phase.
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The elements Mg, Zn, and Ce can form four major intermetallic compounds, including
(Mg1−xZnx)12Ce, (Mg1−xZnx)10Ce, Mg7Zn12Ce, and Mg3Zn5Ce [13]. The selected area
electron diffraction (SAED) pattern calibration results and high-resolution images of the
prepared thin film specimens of ZCVI alloy are shown in Figure 5. The calibration results
show that the distances of the center near diffraction spots are 4.844 Å, 4.915 Å, and 5.024
Å, and the angles are 59.35◦ and 61.14◦, which are similar to the distances and the angles
of the (−2, 1, 0), (0, 2, 3), and (2, 1, 3) crystal planes of the Mg12Ce phase, respectively.
The TEM-EDS results show that the phases are all composed of Mg, Zn, and Ce. The
atomic percentages of Mg, Zn, and Ce are 50.13%, 42.18%, and 7.7%, respectively, and
the ratio of the sum of Mg and Zn atoms to Zn is 11.98:1. Therefore, the diffraction
pattern calibration result is the (Mg, Zn)12Ce phase, which is consistent with the X-ray
diffraction analysis result.
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The Ce element in the alloy mainly exists as a solid solution and Mg–Zn–Ce ternary
phases. Based on the determination of the rare earth compound phase as the (Mg, Zn)12Ce
phase, the mass fraction of the (Mg, Zn)12Ce phase in each alloy can be calculated from
the Ce element content (the difference between the Ce element content and the solid
solution amount), assuming that the (Mg, Zn)12Ce phase follows the stoichiometric ratios
determined by SEM-EDS and TEM-EDS, and the results are shown in Table 3.

Table 3. The mass fraction of the (Mg, Zn)12Ce phase in the as-cast alloys.

ZCI ZCII ZCIII ZCIV ZCV ZCVI

(Mg, Zn)12Ce phase 3.586 4.875 5.262 3.950 6.617 7.040

3.2. Microstructure and Compounds of Homogeneous Alloy

Figure 6 shows the microstructure of the experimental alloy after the homogenization
treatment. The second phase maintains the characteristics of interphase distribution similar
to that of an as-cast state. However, at some locations, the second phase changed from
continuous network distribution to intermittent distribution and concentrated at triangular
grain boundaries and at other locations. Figure 6g shows the microstructure of ZCVI alloy
in a homogeneous state. The outline of the compound is clearer and smoother than that
in the as-cast state. The slender second phase between two adjacent grains is obviously
reduced, while the second phase at the triangular grain boundary is increased. Figure 6h
shows the separated solid phase morphology of a homogeneous ZCVI alloy, and larger
second phase particles appear in the separated material.

Figure 7 is the XRD spectrum of a typical homogeneous alloy and separated solid
phase. Only the (Mg, Zn)12Ce phase exists in the calibration results of the homogeneous
alloy, which indicates that the (Mg, Zn)12Ce phase can exist stably at this homogenization
temperature. As a result, the Mg–Zn phase was not calibrated, indicating that the non-
equilibrium phase such as Mg–Zn was fully decomposed in the homogenization process.
As only the (Mg, Zn)12Ce phase in the homogeneous alloy compound contains the Ce
element, the mass fraction of the (Mg, Zn)12Ce phase in the alloy can be calculated according
to the Ce content in the compound (the difference between the Ce addition amount and the
solid solution amount), and the results are shown in Table 4.
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Figure 7. XRD spectrums of solid phases separated from homogeneous alloys.

Table 4. The mass fraction of the (Mg, Zn)12Ce phase in the homogeneous alloys.

Compound ZCI ZCII ZCIII ZCIV ZCV ZCVI

(Mg, Zn)12Ce phase 2.093 2.884 3.183 4.990 7.045 7.253

To verify the accuracy of the quantitative analysis results of the (Mg, Zn)12Ce phase,
SEM images of the as-cast and the homogenized states were analyzed in the study by using
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image analysis software, and the results are shown in Figure 8. The measured mass fraction
of the (Mg, Zn)12Ce phase is shown on the left axis (black) and the area percentage of the
(Mg, Zn)12Ce phase is shown on the right axis (red), which shows similar values and the
same trend of (Mg, Zn)12Ce phase content with alloy composition.
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3.3. Hot Deformation Microstructure and Mechanical Properties

Figure 9 shows the SEM images of the heat deformation organization along the
extrusion direction (ED), and its low magnification microstructures are shown in the upper
right corner. The low-power SEM images show that the deformed microstructure includes
the (Mg, Zn)12Ce phase distributed along the grain boundary and large extruded grains.
In the high-power SEM image, besides the second phase broken during extrusion, a large
number of dynamically recrystallized grains are distributed at the grain boundary, and the
dynamically recrystallized grains are concentrated around the broken (Mg, Zn)12Ce phase.
The above results show that a large number of initial grains remain during hot deformation,
so that complete dynamic recrystallization is impossible, and a large number of dynamic
recrystallization grains can be formed in the (Mg, Zn)12Ce phase.

The stress–strain curves of the experimental alloy are shown in Figure 10. The curve
shows a fine serrated shape due to the joint effect of dynamic softening and work-hardening,
which indicates that the softening and the hardening effects continue to interact and lead
each other during the deformation process. When the strain is very small, the dislocations
proliferate a lot, and the interaction between dislocations is enhanced, which becomes the
resistance to their movement, and the process of hardening plays the main role at this
time. When the strain continues to increase, the dynamic softening comes into play when
the distortion energy caused by the dislocation stress field accumulates to a certain level.
In the initial stage, the stress of ZCI, ZCII, and ZCII alloys increased rapidly, and work
hardening played a dominant role. With the deformation process, the dynamic softening
was enhanced and the hardening rate decreased, but the hardening still dominated. ZCIV,
ZCV, and ZCVI alloys are similar to the above alloys before reaching their peak stress.
However, after the peak stress continues to increase with the strain, the dynamic softening
begins to dominate, and the stress gradually decreases. At the same time, the curve shows
that the alloy with 6 wt.% Zn content has a stronger dynamic softening effect, but its
strength is lower than that of the 3 wt.% alloy.
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In order to deeply investigate the microstructural characteristics of dynamic recrystal-
lized grains during the thermal deformation of Mg-Zn-Ce-Zr alloy, the average size (µm),
average area (µm2) and area ratio of recrystallized grains (shown in Table 5) were obtained
by extracting the recrystallized grains with image analysis software (as shown in Figure 11).
The results show that the change of Ce content and of Zn content can obviously affect
the microstructure characteristics of recrystallized grains, and the increase of Ce or Zn
content alone can reduce the size of dynamic recrystallized grains and the area ratio of
recrystallized areas. The content of Ce and of Zn in ZCVI alloy is the highest, which has
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the most significant effect on dynamic recrystallization, and the recrystallization area ratio
increases greatly.

Table 5. Measurement results of recrystallized grains.

ZCI ZCII ZCIII ZCIV ZCV ZCVI

Average diameter (µm) 4.703 4.578 4.056 5.056 4.791 3.856
Average area (µm2) 6.885 5.706 5.593 8.344 6.866 5.608

Area fraction (%) 4.068 5.073 5.616 6.098 9.868 16.760
Materials 2022, 15, x FOR PEER REVIEW 10 of 16 
 

 

  

  

  

Figure 11. Recrystallization grain size and area calculation. (a) ZCI, (b) ZCII, (c) ZCIII, (d) ZCIV, (e) 

ZCV, (f) ZCVI. 

Table 5. Measurement results of recrystallized grains. 

 ZCI ZCII ZCIII ZCIV ZCV ZCVI 

Average diameter (μm) 4.703 4.578 4.056 5.056 4.791 3.856 

Average area (μm2) 6.885 5.706 5.593 8.344 6.866 5.608 

Area fraction (%) 4.068 5.073 5.616 6.098 9.868 16.760 

4. Discussion 

4.1. Effect of Ce and Zn Content on the Formation of the (Mg, Zn)12Ce Phase 

The analysis of the microstructure of the as-cast alloy revealed that the number of 

rare earth compounds and their Zn and Ce contents did not follow the same proportional 

change when the addition of Zn and Ce elements increased proportionally, indicating that 

there are other factors affecting the content of elements involved in the formation of the 

compounds and that the initial element addition is not a direct factor affecting the number 

of compounds. In Figure 1, the (Mg, Zn)12Ce phases are all distributed at the grain bound-

Figure 11. Recrystallization grain size and area calculation. (a) ZCI, (b) ZCII, (c) ZCIII, (d) ZCIV,
(e) ZCV, (f) ZCVI.

4. Discussion
4.1. Effect of Ce and Zn Content on the Formation of the (Mg, Zn)12Ce Phase

The analysis of the microstructure of the as-cast alloy revealed that the number of
rare earth compounds and their Zn and Ce contents did not follow the same proportional
change when the addition of Zn and Ce elements increased proportionally, indicating
that there are other factors affecting the content of elements involved in the formation of
the compounds and that the initial element addition is not a direct factor affecting the
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number of compounds. In Figure 1, the (Mg, Zn)12Ce phases are all distributed at the grain
boundaries, indicating that they are formed after the matrix phase, so the analysis of the
solidification process of the alloy can help to study the compositional factors affecting the
number of compounds.

The generalized phase diagram generally describes the condition that the system is in
thermodynamic equilibrium. In fact, the diffusion coefficient of solute in the solid phase
is very small, so equilibrium solidification is extremely difficult to achieve. The actual
solidification process is usually closer to the Scheil–Gulliver cooling condition, that is, there
is no diffusion in the solid phase, the liquid phase is uniformly mixed, and the solid–liquid
interface is in a local equilibrium state [21,22]. The Scheil–Gulliver model calculation
of the solidification process of Mg–Zn–Ce–Zr alloy is shown in Figure 12. During the
cooling process, the -Mg matrix phase is first formed, and the position marked by the arrow
in Figure 12b is the starting point of the precipitation of other phases in the remaining
liquid phase. The Mg–Zn–Ce compound is formed in the remaining liquid phase after the
solidification of the α-Mg phase. It can be seen that Zn and Ce elements can be divided into
two parts: one part forms an -Mg solid solution, and the other part exists in the remaining
melt. As the elements in the residual liquid phase directly participate in the formation
process of the (Mg, Zn)12Ce phase, it is more accurate to describe the formation of the
(Mg, Zn)12Ce phase by using the alloy components in the residual liquid phase.
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Figure 12. Scheil–Gulliver non-equilibrium solidification model. (a) Calculated results of S-G model
for experimental alloy, (b) Enlarged view of the red area in the figure on the right.

The Zn and Ce contents in the remaining melt are shown in Figure 13. With the
increase of the Ce element, the Ce content in the remaining melt increases linearly, and
it is not affected by the Zn content. The content of Zn in the remaining melt is mainly
determined by the added amount. Figure 13b shows the relationship between the mass
ratio of Zn/Ce in the alloy and the mass ratio of Zn/Ce in the remaining melt and the
number of compounds. The lower Zn/Ce mass ratio is beneficial to the formation of the
(Mg, Zn)12Ce phase, and the change trend of compounds is similar, while the number of
compounds formed in the alloy with 6 wt.% Zn content is obviously greater. It shows that
the conditions for increasing the number of compounds are increasing the content of Zn
and Ce in the remaining melt and decreasing the mass ratio of Zn/Ce.
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compound mass fraction in the alloy and the remaining melt.

4.2. Effect of the (Mg, Zn)12Ce Phase Content on Dynamic Recrystallization

The critical condition of dynamic recrystallization (DRX) is an important parameter to
study the evolution of dynamic recrystallization, and the work hardening rate method is
often used to judge the condition of dynamic recrystallization of magnesium alloys [23].
The critical condition for the softening behavior of the material DRX can be proved as

∂
∂(σ)

(
− ∂θ

∂σ

)
= 0 (i.e., the inflection point of the −∂(ln θ)/∂ε curve) by using the principle of

incremental work balance of the thermodynamic system. Figure 14 shows the results of the
partial derivative calculation of the work-hardening rate curve. The critical conditions for
dynamic recrystallization of the experimental alloy can be determined from the minimal
values of the curves. Table 6 displays the data for the minima. As the number of (Mg,
Zn)12Ce phases increases, the critical stress for dynamic recrystallization decreases and
the corresponding critical strain decreases, indicating that the alloy is more likely to start
dynamic recrystallization during thermal deformation.
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Table 6. Critical strain in experimental alloys of various compositions.

ZCI ZCII ZCIII ZCIV ZCV ZCVI

εc 0.09693 0.09307 0.09120 0.15520 0.10496 0.09206
σc 67.089 60.982 60.636 70.596 64.278 62.183

The second phase during thermal deformation can act as a nucleation point for re-
crystallized particles, i.e., play a particle stimulated nucleation (PSN) mechanism, and
what role the particles play depends on the size, spacing, and fraction of the particles [24].
The intermittently distributed second phase after the homogenization treatment (shown
in Figure 5) and the broken second phase particles after thermal deformation (shown in
Figure 7) all indicate that the conditions for the PSN mechanism to function are satisfied in
the alloy. During the heat deformation processing, strain gradient regions are generated in
these rare earth compounds with certain dimensions. These regions have a high dislocation
density; a large orientation; and, around the grains, subgrain boundaries move rapidly to
form new high-angle grain boundaries [25]. All of these locations are effective nucleation
points for recrystallized grains. In addition, clustering of second-phase particles on triangu-
lar grain boundaries appears in the microstructure after the homogenization treatment. It
has been shown that clustered second-phase particles are equally beneficial in promoting
the DRX behavior during extrusion [26]. The results in Figure 15 show that the increase
in the number of (Mg, Zn)12Ce phases reduces the size of the recrystallized grains, while
increasing the area fraction of recrystallized grains in the alloy, which is consistent with the
results in previous reports.
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Figure 15. Influence of the number fraction of rare earth compounds on recrystallized grains.

4.3. Effect of (Mg, Zn)12Ce Phase Content on Mechanical Properties

Figure 16 shows the stress–strain curves and the work hardening curves of two typical
experimental alloys. When the strain is εp, the alloy reaches the peak stress σp, and the
θ value in the work hardening curve of the alloy decreases to 0. In the flow stress curve of
ZCIII alloy, the stress tends to be stable after reaching the peak stress, and it does not show
typical DRX softening characteristics. At this time, the dynamic softening mechanism is
dominated by the dynamic recovery mechanism (DRV). However, during the subsequent
strain increase, the softening effect of DRX gradually increases, and DRX grains appear at
the grain boundaries of the alloy. The flow stress curve of ZCIV alloy shows obvious DRX
softening characteristics. The flow stress gradually decreases after reaching the peak stress,
and the dynamic softening mechanism is dominated by DRX. The above analysis shows
that the content of the Zn element will affect the dynamic softening mechanism of the alloy.
The dynamic softening mechanism of low Zn alloy is mainly DRV, while that of high Zn
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alloy is mainly DRX, and the effect of DRX is stronger in the alloy with a high content of
the (Mg, Zn)12Ce phase.
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Figure 16. Typical stress–strain and θ−ε curves. (a) ZCIII alloy, (b) ZCVI alloy.

Figure 17 shows the relationship between the peak stress and the number of (Mg,
Zn)12Ce phases in the experimental alloy. With the increase of compound content in alloys
with different Zn content, the peak stress increases, and the changing trend is consistent.
However, it can be seen that the peak stress is obviously lower in 6 wt.% Zn alloy with a
higher number of compounds, which is attributed to the role of the (Mg, Zn)12Ce phase in
the process of thermal deformation. The increase in the number of (Mg, Zn)12Ce phases
reduces the critical conditions for dynamic recrystallization and greatly advances the
dynamic softening effect in the alloy. In the corresponding stress–strain curves, ZCIV,
ZCV, and ZCVI alloys show peak stress at small strain. In addition, the increase in the
number of (Mg, Zn)12Ce phases also strengthens the PSN mechanism, provides conditions
for the nucleation of recrystallized particles, and inhibits their growth, which corresponds
to the stress reduction stage in the stress–strain curve. The above analysis results show that
controlling the amount of the (Mg, Zn)12Ce phase can not only predict the properties of the
alloy during the current deformation process but also adjust the trend of the stress–strain
curve to obtain ideal mechanical properties.
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5. Conclusions

In this study, the mass fraction of the (Mg, Zn)12Ce phase in the alloy was obtained
based on a chemical phase separation method. The effects of Zn and of Ce contents in the
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remaining liquid phase on the (Mg, Zn)12Ce phase content were analyzed in combination
with the quantitative analysis results, revealing the effects of the (Mg, Zn)12Ce phase content
on the mechanical properties, and the main conclusions can be summarized as follows.

The Mg–Zn–Ce compound in the as-cast alloy is only the (Mg, Zn)12Ce phase, and
the Zn and Ce content will affect the amount of the compound formed in the alloy. With
the increase of Zn and Ce content, the (Mg, Zn)12Ce content increased from the lowest
3.586 wt.% to the highest 7.040 wt.%. Additionally, the (Mg, Zn)12Ce phase can be stable in
the homogenization treatment due to its higher thermal stability.

The (Mg, Zn)12Ce phase is formed in the liquid phase remaining after the solidification
of the α-Mg phase is completed. Therefore, the formation of the (Mg, Zn)12Ce phase was
more accurately analyzed using the content of each element in the remaining liquid phase.
The maximum compound content for different Zn contents can be obtained by controlling
the Zn/Ce mass ratio in the remaining melt to below 2.5 in the composition designed for
the study.

The increase in the amount of the (Mg, Zn)12Ce phase can reduce the critical strain and
the critical stress of dynamic recrystallization and promote the dynamic recrystallization
process together with the PSN nucleation mechanism of the (Mg, Zn)12Ce phase. In
addition, the work-hardening curves indicate that alloys with 6 wt.% Zn elements tend
to undergo a DRX mechanism, while alloys with 3 wt.% Zn elements tend to undergo a
DRV mechanism.

At present, we have studied Mg–Zn–Zr alloys with different types of rare earths
added using chemical phase separation methods, all of which can achieve the expected
results. However, this method is currently limited to Mg–Zn-based magnesium alloys
and a few Mg-Al-based magnesium alloys. Due to differences in the physical and the
chemical properties of the elements in the alloys, the adjustment of the reagents used in the
separation solution can expand the application area of the phase separation method.
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