
INTRODUCTION

Alzheimer’s disease (AD) is a progressive and degenera-
tive brain disease with dementia (Dubois et al., 2007). Al-
though early studies found that senile plaques, aggregations 
of amyloid β (Aβ), and tangles, aggregations of tau protein, 
are the major hallmarks of AD and they could induce AD-like 
pathology (Selkoe, 1991), pharmacological prevention or sup-
plements of AD progression are still not developed. 

Aβ, which can be produced by the cleavage of amyloid 
precursor protein, a membrane protein, is toxic when it is ag-
gregated into oligomeric and fibril forms (Hardy and Selkoe, 
2002; Viola and Klein, 2015). Extracellular oligomeric Aβ can 
bind to various receptors and ion channels, resulting in their 
dysfunction (Hardy and Selkoe, 2002; Viola and Klein, 2015). 

Moreover, oligomeric Aβ can penetrate into intracellular space 
and cause dysfunction of various intracellular signaling sys-
tems (Hardy and Selkoe, 2002; Viola and Klein, 2015). These 
various dysfunctions induce neuronal and synaptic dysfunc-
tion resulting in dementia (Hardy and Selkoe, 2002; Viola and 
Klein, 2015). Therefore, an agent that can prevent Aβ-induced 
dysfunction of various neuronal functions could be developed 
as a treatment or supplement for preventing the progression 
of AD. 

Oligomeric Aβ is reported to induce aberrant synaptic plas-
ticity, a cellular model of learning and memory (Walsh et al., 
2002). Oligomeric Aβ blocks long-term potentiation (LTP) 
and facilitates long-term depression (LTD). Previous findings 
indicated that agents preventing Aβ-induced aberrant syn-
aptic plasticity could ameliorate AD-like pathologies, includ-
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ing memory impairment (Fu et al., 2014; Yan et al., 2016). 
Therefore, trials to find agents that can modulate Aβ-induced 
aberrant synaptic plasticity could be a good method for finding 
medicines or supplements for AD. 

β-Amyrin is natural chemical compound of the triterpene 
class. β-Amyrin is widely distributed in plants and is a com-
ponent of glycyrrhizin, which is a major bioactive compound 
with a wide range of pharmacological properties and is used 
worldwide as a natural sweetener. Moreover, β-amyrin is also 
present in the surface wax of the tomato fruit (Szakiel et al., 
2012). Previous studies revealed that β-amyrin has anti-fibrot-
ic effects on liver injury models (Krishnan et al., 2014; Thiru-
pathi et al., 2017), and anti-inflammatory (Okoye et al., 2014), 
anti-diabetic (Nair et al., 2014), anti-hyperglycemic, and hy-
polipidemic effects (Maurya et al., 2012; Santos et al., 2012). 
Moreover, β-amyrin induces angiogenesis (Ishii et al., 2015). 
Recent findings indicated that β-amyrin has neurological ef-
fects including regulating sleep (Jeon et al., 2015), memory 
(Park et al., 2014), and nociception (da Silva et al., 2011; 
Chicca et al., 2012). However, the effect of β-amyrin on AD 
has not been studied before. In the present study, we tested 
whether β-amyrin has anti-AD effects using electrophysiologi-
cal and behavioral studies. Minocycline is a broad-spectrum 
tetracycline antibiotic drug. Although minocycline has various 
side effects in clinical uses, various reports suggested minocy-
cline as potential therapeutics with various positive effects in 
AD models (Noble et al., 2009; Ferretti et al., 2012; Amani et 
al., 2019). Therefore, we used minocycline as positive control.

MATERIALS AND METHODS

Materials
Aβ was purchased from AnaSpec (CA, USA). Anti-phos-

pho-phosphatidylinositol-3-kinase (pPI3K), PI3K, phosphor-
Akt (pAkt), and Akt antibodies were obtained from Cell Signal-
ing Technology (MA, USA). β-amyrin and anti-glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) antibody were ob-
tained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
LY294002 and U0126 were obtained from Tocris Bioscience 
(MO, USA).

Animals
We obtained male CD-1 mice (26-28 g, 6 weeks old) from 

SAMTAKO biokorea (Osan, Korea). Mice were housed in an 
animal facility for 1 week prior to the study for adaptation to 
the new environment. Four mice were kept in a cage and al-
lowed free access to water and food (temperature: 23 ± 1°C, 
humidity: 60 ± 10%). The lights were on from 07:00 to 19:00. 
The institutional Animal Care and Use Committee of Dong-A 
University approved protocols for all animal experiments. All 
animal experiments followed the National Institutes of Health 
guide for the care and use of Laboratory animals (NIH Publi-
cations No. 8023, revised 1978).

Hippocampal slice preparation and field EPSP recording
Artificial cerebrospinal fluid (ACSF) was comprised of 124 

mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 
2 mM CaCl2, 1 mM MgSO4, and 10 mM D-glucose. We rap-
idly removed the brain and isolated the mouse hippocampus. 
Mouse hippocampal tissues were sliced using a McIlwain tis-
sue chopper. 400-μm-thick hippocampal slices were made 

and incubated in ACSF (20-25°C) for 1 h before the experi-
ment. 

Field potential responses were recorded in the Schaffer 
collateral-commissural pathway in area CA1. Stimuli (con-
stant voltage) were delivered at 30 s intervals. The slope of 
the evoked field potential responses (fEPSP) was averaged 
from four consecutive recordings evoked at 30 s intervals. To 
induce LTP, two trains of high frequency stimulation (HFS: 100 
Hz, 100 pulses in 1 s, 30 s interval) were introduced at 20 min 
after the initiation of a stable baseline. LTP was quantified by 
comparing the mean fEPSP slope at 80 min after the HFS 
period with the mean fEPSP slope during the baseline period 
and calculating the percentage change from the baseline. For 
the experiments, slices were incubated in ACSF containing ve-
hicle or drugs for 30 min, and then further incubated in ACSF 
containing Aβ (1 μM) and/or drugs for 2 h before recording. 

Western blot
Hippocampal slices were incubated in β-amyrin-containing 

ACSF for 30 min. Then the slices were further incubated in 
Aβ and β-amyrin-containing ACSF for 2 h. Afterwards hippo-
campal slices were homogenized in ice-chilled M-PER buffer 
(Thermo, Rockford, IL, USA), a containing protease inhibitor, 
and phosphatase inhibitor cocktail (Thermo). Debris was re-
moved by microcentrifugation (4200×g, 20 min). Proteins from 
whole-cell lysates were quantified using a BCA protein assay 
kit following the manufacturer’s instructions. Samples (30 μg 
of protein) were then subjected to SDS-PAGE (12% gel) under 
reducing conditions. Proteins were transferred to PDVF mem-
branes using transfer buffer (25 mM Tris-HCl, pH 7.4 contain-
ing 192 mM glycine and 20% v/v methanol) at 400 mA for 2 h 
(4°C). Next, blots were incubated for 2 h with blocking solution 
(5% skimmed milk for total proteins, 5% BSA for phosphory-
lated proteins) and then placed at 4°C overnight with 1:1000 
dilutions of primary antibody. After serial washing, blots were 
incubated with a 1:5000 dilution of horseradish peroxidase-
conjugated secondary antibody (Santa Cruz Biotechnology) 
for 1 h at room temperature. 
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Fig. 1. The effect of β-amyrin on hippocampal long-term potentia-
tion (LTP). LTP was measured in Schaffer-collateral pathway of 
the hippocampus. β-amyrin was pretreated for 2 h to hippocampal 
slices. Data represent as mean ± SD (n=7/group).
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Aβ injection and drug administration
We added 1.0% NH4OH directly to the Aβ1-42 (35-40 μl to 0.5 

mg peptide or 70-80 μl to 1 mg peptide). This solution was im-
mediately diluted with 1X phosphate-buffered saline (PBS) to 
a concentration of 1 mg/ml. The solution was gently vortexed 
and sonicated at room temperature until fully miscible. Aβ1-42 
(10 μM) was incubated at 37°C for 24 h to obtain various sol-
uble oligomeric species, and then 5 μl of Aβ or vehicle (PBS) 
was acutely injected into the left lateral ventricle by hand (Kim 
et al., 2016). β-Amyrin (4 mg/kg, p.o.) and vehicle (10% tween 
80 solution) was administered from 1 day to 5 day after the Aβ 
injection (Park et al., 2014). Minocycline (30 mg/kg, i.p.) was 
used as a positive control (Jiang et al., 2015).

Behavioral tests 
Object recognition test: Mice were habituated to the open 

field (25 cm×25 cm×25 cm) with an internal cue on one of the 
four walls for 10 min. Thirty minutes after the habituation; mice 
were re-placed in the same box with two distinct objects. The 
objects consisted of a glass box and a plastic cylinder. Mice 
were allowed to freely explore the objects freely for 10 min. 
After 2 h, mice were placed back in the same box for the test 
phase. The two objects were again present, but one object was 
now displaced to a novel spatial location. Mice were allowed 
to freely explore the environment and the objects for 5 min. 
Time spent exploring the displaced and non-displaced objects 
were measured. A preference ratio was calculated using the 
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Fig. 2. The effect of β-amyrin on amyloid β (Aβ)-induced LTP impairment. LTP was measured in Schaffer-collateral pathway of the hippo-
campus. (A) Experimental schedule. (B) Effect of Aβ (1 μM) on hippocampal LTP. (C) Effect of β-amyrin (1 μM) on Aβ-induced LTP impair-
ment. (D) Effect of β-amyrin (10 μM) on Aβ-induced LTP impairment. (E) Effect of β-amyrin (100 μM) on Aβ-induced LTP impairment. (F) 
Effect of minocycline (1 μM) on Aβ-induced LTP impairment. (G) Bar chart of normalized fEPSP slop at 80 min time points of each groups. 
Data represent as mean ± SD (n=7/group). *p<0.05 vs. control group. &p<0.05 vs. Aβ-treated group. 
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following formula: Tdisplaced or Tnon-displaced/(Tdisplaced+Tnon-displaced)× 
100, where Tdisplaced is the time spent exploring the displaced 
object and Tnon-displaced denotes the time spent exploring the non-
displaced object.

Passive avoidance test: We conducted passive avoidance 
test using shuttle box, which is composed of separated dark 
and illuminating rooms. There was guillotine door between 
rooms. In a training trial, mouse was located in the illuminating 
room and then guillotine door was opened 10 s later. When 
the mouse entered the dark room through the guillotine door, 
the door closed and an electric shock (0.5 mA for 3 s) was 
delivered through grid floor (training trial). The following day, 
mouse was re-introduced in illuminating room. Step-through 
latency to enter the dark room was measured for a period of 
300 s (test trial).

Tissue preparation and immunohistochemistry
Immediately after the behavioral tests, we rapidly removed 

the brain and washed it with phosphate buffer (100 mM, pH 
7.4). The brains were fixed in phosphate buffer (50 mM, pH 
7.4) containing 4% paraformaldehyde overnight, then im-
mersed in 30% sucrose solution (in 50 mM PBS) and stored 
at 4°C until sectioning. Frozen sections were prepared in the 
coronal plane (30 μm) using a cryostat (Leica, Nussloch, Ger-
many) and kept in storage solution (30% ethylene glycol and 
30% glycerol in DW) at 4°C. Forty-five sections were obtained 
from each mouse. Five sections separated by 9-section in-
tervals (270 μm) were used for each immunohistochemical 
analysis.

For immunohistochemistry, sections were incubated with 
blocking solution for 2 h, then with goat anti-doublecortin (DCX, 
1:500, Santa Cruz Biotechnology) or rat anti-Ki67 (1:500, 
Santa Cruz Biotechnology) antibody overnight at 4°C. After 
washing in PBS, the sections were incubated with biotinylated 
secondary antibody (1:200 dilution, Vector Laboratories, Inc., 
Burlingame, CA, USA) for 2 h at room temperature and then 
with avidin-biotin-peroxidase complex (1:100 dilution, Vector). 
Thereafter, they were reacted with 0.02% 3,3’-diaminobenzi-
dine and 0.01% H2O2 for about 3 min. After each incubation 
step, the sections were washed three times with PBS. Finally, 
they were mounted on gelatin-coated slides, dehydrated in as-
cending alcohol concentrations, and cleared in xylene.

The DCX- or Ki67-positive cells in the SGZ region of the 
hippocampus were quantified in 5 sections from each mouse 
by an experimenter who was blind to the identities of the treat-
ment groups. Cell quantification was performed on each mark-
er that was almost entirely included in the section throughout 
the z-axis at 100× magnification (the average cell diameter 
was ~8 μm, and cells <4 μm in diameter were ignored). The 
average number of immunopositive cells per section was nor-
malized for the entire hippocampus by multiplying this average 
by the number of 30 μm sections (50 sections) corresponding 
to the entire hippocampus.

Statistics
Values are expressed as the mean ± SD. Data were ana-

lyzed by one-way analysis of variance (ANOVA) followed by 
Tukey’s post hoc test for multiple comparisons and t-test for 
single comparisons. For the inhibition study, two-way ANOVA 
followed by Bonferroni post hoc test. Statistical significance 
was set at p<0.05. 

RESULTS

β-Amyrin blocked Aβ-induced synaptic dysfunction
Impairment of synaptic function is shown in the early phase 

of AD. Oligomeric Aβ plays important role in this phenomenon. 
Therefore, we tested the effect of β-amyrin on oligomeric Aβ-
induced LTP impairments in the hippocampal tissues. Before 
the experiment, we found that β-amyrin did not affect basal 
LTP in normal hippocampal slices (Fig. 1). In the Aβ-treated 
experiments (Fig. 2A), although LTP was induced by HFS 
in control slices, HFS failed to induce LTP in the oligomeric 
Aβ-treated slices, suggesting that oligomeric Aβ impairs syn-
aptic function in the hippocampus (Fig. 2B). Pretreatment 
with β-amyrin ameliorated Aβ-induced LTP impairments in a 
concentration dependent manner (Fig. 2C-2E). Moreover, mi-
nocycline, a positive control, ameliorated Aβ-induced LTP im-
pairments (Fig. 2F). One-way ANOVA revealed that there is a 
significant group effect in this experiment (F5,36=8.072, p<0.05, 
n=7/group, Fig. 2G). These results suggest that β-amyrin 
ameliorates Aβ-induced LTP impairments.

β-Amyrin ameliorated established LTP impairment 
induced by Aβ

AD patients already have Aβ deposits in their brain and 
established synaptic dysfunction. Therefore, if drugs can be 
developed for AD patients, the drug should overcome this es-
tablished synaptic dysfunction. To test this, we examined the 
effect of delayed treatment with β-amyrin on established LTP 
impairment induced by Aβ (Fig. 3A). Two-hour incubation of 
hippocampal slices with Aβ blocked LTP induction. However, 
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delayed treatment with β-amyrin improved LTP (t12=3.177, 
p<0.05, n=7/group, Fig. 3B). This suggests that β-amyrin re-
stores LTP after established impairment by Aβ.

PI3K/Akt signaling was involved in the effect of β-amyrin
A previous study reported that glycogen synthase kinase-

3β (GSK-3β) inhibitors ameliorated established LTP impair-
ment in an AD model (Jo et al., 2011). Moreover, Aβ impairs 
PI3K/Akt signaling, an upstream regulator of GSK-3β (Chen et 
al., 2009; Reddy, 2013). Therefore, we next tested the effect 
of β-amyrin on PI3K/Akt signaling. As in previous reports, Aβ 
decreased the activities of PI3K and Akt, which were shown 
by decreases in their phosphorylation levels (Fig. 4A, 4B, 4D, 
4E). β-Amyrin (30 μM) ameliorated the Aβ-induced reduction 
of PI3K/Akt signaling (PI3K: F2,9=4.543, p<0.05, n=4/group, 
Fig. 4A, 4B; pAkt: F2,9=8.438, p<0.05, n=4/group, Fig. 4D, 4E). 
Total forms of PI3K and Akt were not changed by treatment 

(PI3K: F2,9=0.05842, p>0.05, n=4/group, Fig. 4A, 4C; Akt: 
F2,9=1.622, p<0.05, n=4/group, Fig. 4D, 4F). These results 
suggest that β-amyrin ameliorates Aβ-induced abnormality of 
PI3K/Akt signaling.

To confirm these results, we conducted a blocking experi-
ment with the PI3K inhibitor LY294002. Aβ impaired LTP and 
β-amyrin ameliorated the LTP deficit in the hippocampal slices 
(Fig. 5A). An off-target inhibitor, U0125 [mitogen-activated 
protein kinase (MAPK) inhibitor], failed to affect Aβ-impaired 
LTP and the effect of β-amyrin (two-way ANOVA: U0126, 
F1,16=1.910, p>0.05; amyrin, F1,16=122.4, p<0.05; interac-
tion, F1,16=0.007 p>0.05, n=5/group, Fig. 5A, 5B). However, 
LY294002 blocked the effect of β-amyrin (two-way ANOVA: 
LY294002, F1,16=77.95, p<0.05; amyrin, F1,16=62.15, p<0.05; 
interaction, F1,16=57.79 p<0.05, n=5/group, Fig. 5C, 5D). 
These results suggest that β-amyrin ameliorates Aβ-induced 
LTP impairment through PI3K/Akt signaling. 
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Fig. 4. Effect of β-amyrin on phosphatidylinositol-3-kinase (PI3K)/
Akt pathway. Hippocampal slices were incubated in β-amyrin (100 
μM)-containing artificial cerebrospinal fluid (ACSF) for 30 min. 
Then the slices were more incubated in amyloid β (Aβ) (1 μM) and 
β-amyrin (100 μM)-containing ACSF for 2 h. (A) PI3K signaling. (B) 
Quantitative analysis of the level of pPI3K compared to glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH). (C) Quantitative 
analysis of the level of PI3K compared to GAPDH. (D) Akt signal-
ing. (E) Quantitative analysis of the level of pAkt compared to 
GAPDH. (F) Quantitative analysis of the level of Akt compared to 
GAPDH. Data represent as mean ± SD (n=4/group). *p<0.05 vs. 
control group. #p<0.05 vs. Aβ-treated group.
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β-Amyrin ameliorated memory impairments induced by 
Aβ

To test whether β-amyrin ameliorates memory impairments 
induced by Aβ, we tested the effect of β-amyrin on memory 
impairments in an Aβ-injected mouse AD model (Fig. 6A). 
Aβ-injected mice showed memory impairments in an object 
recognition test (Fig. 6B). However, β-amyrin (4 mg/kg, p.o.) 
ameliorated Aβ-induced memory impairments in the object 
recognition test (Fig. 6B). Minocycline (30 mg/kg, i.p.), a posi-
tive control, also ameliorated memory impairments induced 
by Aβ (F3,36=2.657, p<0.05, n=10/group, Fig. 6B). During the 
tests, the total duration of exploration was not different among 
groups (F3,36=0.04404, p>0.05, n=10/group, Fig. 6C). In the 
training trial of passive avoidance test, there was no signifi-
cant difference of the step-through latency between groups 

(p>0.05, Fig. 6D). However, β-amyrin or minocycline amelio-
rated memory impairment induced by Aβ (F3,36=9093, p<0.05, 
n=10/group, p<0.05, Fig. 6E). These results suggest that 
β-amyrin ameliorates Aβ-induced memory impairments. 

β-Amyrin ameliorated neurogenesis impairments induced 
by Aβ

PI3K/Akt signaling plays an important role in adult neuro-
genesis, which is aberrantly regulated in the AD brain (Mu and 
Gage, 2011; Rodriguez and Verkhratsky, 2011; Kitagishi et 
al., 2014). Therefore, we examined neurogenesis in the hip-
pocampus of Aβ-injected AD model mice with immunohisto-
chemistry with DCX, an immature neuron marker, and Ki67, a 
proliferation marker. As in previous reports, Aβ treatment de-
creased neurogenesis, which was confirmed by a reduction of 
the number of DCX- and Ki67-positive cells in the hippocam-
pus (Fig. 7) (Haughey et al., 2002). β-Amyrin (4 mg/kg, p.o.) 
and minocycline (30 mg/kg, i.p.) ameliorated the reduction 
of neurogenesis in our AD model (DCX: F3,16=4.589, p<0.05, 
n=5/group, Fig. 7A; Ki67: F3,36=4.990, p<0.05, n=5/group, Fig. 
7B). These results suggest that β-amyrin ameliorates the Aβ-
induced reduction in hippocampal neurogenesis.

DISCUSSION

In the present study, we found that β-amyrin ameliorated 
Aβ-induced synaptic dysfunction. PI3K inhibition blocked the 
effect of β-amyrin, suggesting that β-amyrin ameliorates Aβ-
induced synaptic dysfunction through the PI3K/Akt pathway. 
Moreover, delayed β-amyrin administration improved memory 
impairments and the reduction of hippocampal neurogenesis 
induced by Aβ injection. 

Hippocampal LTP is the enhancement of synaptic efficacy. 
Many findings suggest that hippocampal LTP is the cellular 
basis of learning and memory (Nabavi et al., 2014; Penn et 
al., 2017; Shimshek et al., 2017). In various pathological situa-
tions including AD, Parkinson’s disease and stroke, hippocam-
pal LTP is aberrantly regulated (Stein et al., 2015; Tozzi et al., 
2015; Zhu et al., 2015). Therefore, regulation of hippocampal 
LTP might be a candidate means of treating these pathological 
conditions. Aβ causes over-activation of the NMDA receptor, 
and results in synaptic dysfunction and cell death (Birnbaum 
et al., 2015; Arbel-Ornath et al., 2017). Recent findings indi-
cated that activation of PI3K/Akt signaling could prevent vari-
ous Aβ-induced various pathological conditions (Tiwari et al., 
2015; Yi et al., 2018). PI3K/Akt activation inhibits GSK-3β, a 
key molecule for Aβ-induced synaptic dysfunction (Beurel et 
al., 2015), and rescues aberrant synaptic plasticity and cell 
death by Aβ (Yi et al., 2018). A previous report suggested that 
β-amyrin activates extracellular signal-regulated kinase (ERK) 
and inhibits GSK-3β in the presence of scopolamine (Park 
et al., 2014). In the present study, we found that β-amyrin 
activates PI3K/Akt in the presence of Aβ (Fig. 4). However, 
blockade of PI3K/Akt prevented an Aβ-induced LTP deficit, but 
ERK prevention failed. These results suggest that β-amyrin 
prevents Aβ-induced LTP deficits through PI3K/Akt activa-
tion. Interestingly, the present results show that β-amyrin re-
stored established LTP impairment by Aβ. This suggests that 
β-amyrin might be a disease-modifying drug. A previous study 
indicated that regulation of GSK-3β could restore Aβ-induced 
LTP deficits (Jo et al., 2011). Because β-amyrin regulated 
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Fig. 6. Effect of β-amyrin on amyloid β (Aβ)-induced memory 
impairments. β-amyrin (4 mg/kg/day, p.o.) or minocycline (30 mg/
kg/day, i.p.) was administered from 1 day after the Aβ (10 μM/5 μl, 
i.c.v.) injection for 5 days. (A) Experimental schedule. (B) Discrimi-
nation ration in object recognition test. (C) Total exploration time in 
test session of object recognition test. (D) Step-through latency in 
training trials of passive avoidance test. (E) Step-through latency 
in test trials of passive avoidance test. Data represent as mean ± 
SD (n=10/group). *p<0.05 vs. control group. §p<0.05 vs. Aβ-treated 
group. ORM, object recognition memory test. PAT, passive avoid-
ance test.
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PI3K/Akt signaling in the present study and GSK-3β activity in 
previous study (Park et al., 2014), the effect of β-amyrin on an 
established LTP deficit seems to be due to its effect on PI3K/
Akt/GSK-3β signaling. To test this in an in vivo system, we 
examined the effect of delayed administration of β-amyrin on 
memory impairments in an AD mouse model. This experiment 
showed that delayed administration of β-amyrin ameliorated 
memory impairments in our AD mouse model. These results 
suggest that β-amylin could be a drug candidate for moderate 
to severe AD patients. Moreover, according to guidelines for 
dose conversion between animals and humans (Nair and Ja-
cob, 2016), 4 mg/kg of β-amyrin in mice could be converted to 
0.325 mg/kg in humans. However, β-amyrin failed to activate 
PI3K/Akt signaling in in vivo experiment (data not shown). It 
could be speculated that β-amyrin may be metabolized in the 
liver and the metabolite of β-amyrin may act differently in the 
brain. Further study will be needed to clarify this.

From a functional point of view, hippocampal neurogenesis 
plays an important role in structural plasticity and network 
maintenance. Therefore, it is likely to contribute to informa-
tion storage, as well as learning and memory processes. The 
hippocampus is affected early in AD. Analysis of post mortem 
brain tissues from humans clinically diagnosed with AD re-
vealed a reduction of progenitors in the subventricular zone 
(Ziabreva et al., 2006). Moreover, although it is still controver-
sial, many studies suggested that neurogenic capabilities are 
impaired in the subgranular zone of the hippocampal DG (Ro-
driguez et al., 2008; Rodriguez and Verkhratsky, 2011). Volun-
tary running or environmental enrichment enhanced memory 
in transgenic mouse models of AD (Rodriguez et al., 2011; 
Gregoire et al., 2014), as well as increasing hippocampal neu-
rogenesis (Rodriguez et al., 2011; Tapia-Rojas et al., 2016). 
Moreover, 5-HT facilitation by antidepressants ameliorates 
AD-like pathology and neurogenesis deficits at late ages (Ma 

et al., 2017). In the present study, we found that β-amyrin pre-
vents Aβ-induced reduction in neurogenesis. This suggests 
that β-amyrin might be another therapeutic candidate for AD. 
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