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ABSTRACT

Motivation: Immunological bioinformatics methods are applicable

to a broad range of scientific areas. The specifics of how and where

they might be implemented have recently been reviewed in the

literature. However, the background and concerns for selecting

between the different available methods have so far not been

adequately covered..

Summary: Before using predictions systems, it is necessary to not

only understand how the methods are constructed but also their

strength and limitations. The prediction systems in humoral epitope

discovery are still in their infancy, but have reached a reasonable

level of predictive strength. In cellular immunology, MHC class I

binding predictions are now very strong and cover most of the

known HLA specificities. These systems work well for epitope

discovery, and predictions of the MHC class I pathway have been

further improved by integration with state-of-the-art prediction tools

for proteasomal cleavage and TAP binding. By comparison, class II

MHC binding predictions have not developed to a comparable

accuracy level, but new tools have emerged that deliver significantly

improved predictions not only in terms of accuracy, but also in MHC

specificity coverage. Simulation systems and mathematical model-

ing are also now beginning to reach a level where these methods will

be able to answer more complex immunological questions.

Contact: lunde@cbs.dtu.dk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

1.1 Immunology

The adaptive immune system of vertebrates is thought to be

only 400 million years old and exists in most fish, amphibians,

reptiles, birds and mammals (Thompson, 1995). Adaptive

immunity is induced by lymphocytes and can be classified

into two types: humoral immunity, mediated by antibodies,

which are secreted by B lymphocytes and can neutralize

pathogens outside the cells; and cellular immunity, mediated

by T lymphocytes that eliminate infected or malfunctioning

cells, and provide help to other immune responses. Diversity is

the hallmark of the adaptive immune systems. Both the B and
T lymphocyte-specific receptors for antigen recognition are

assembled from variable (V), diversity (D), and joining (J)
gene segments early in the lymphocyte development. There are
multiple copies of V, D and J segments, and a huge repertoire

of T and B cells is generated by the recombination of these
segments, reviewed by Li et al. (2004). Another task faced by

the immune system is the tolerance to self, which is handled
by continuously removing receptors that react to self-epitopes.
Special immunoglobulin molecules (antibodies) mediate the

humoral response. As mentioned above, the antibodies are
produced by B lymphocytes that bind to antigens by their
immunoglobulin receptors, which is a membrane bound form

of the antibodies. When the B lymphocytes become activated,
they start to secrete the soluble form of this receptor in large

amounts. The antibody is Y-shaped, and each of the two
branches functions independently and can be recombinantly
produced and is then known as Fabs. The highly variable tip of

the Fab, which can bind to epitopes is called the paratope and is
made up of the so-called complementary determining regions

(CDRs). Antibodies can coat the surface of an antigen such as a
virus, so that it cannot function or infect cells, reviewed by

Burton (2002). Antibody-covered viruses or bacteria are easily
phagocytosed and destroyed by scavenger cells of the immune
system, e.g. the macrophages. Antigenic proteins can be

recognized by the antibodies in their native form without any
cleavage or interactions with other molecules. Thus the

humoral immune response reacts to extracellular pathogens,
and the response is crucial in the defense against most
pathogens.

B-cell epitopes are normally classified into two groups:
continuous and discontinuous epitopes. A continuous epitope,
(also called a sequential or linear epitope) is a short peptide

fragment in a protein that is recognized by antibodies specific
for that protein. A discontinuous epitope is composed of

residues that are not adjacent in the primary structure (amino
acid sequence), but are brought into proximity by the folding of
the polypeptide. The classification is not clear-cut as discontin-

uous epitopes may contain linear stretches of amino acids, and
continuous epitopes may show conformational preferences.

The cellular arm of the immune system consists of two
parts; cytotoxic T lymphocytes (CTL), and helper T lympho-
cytes (HTLs). CTLs destroy cells that present non-self

peptides (epitopes). HTLs are needed for B cells activation*To whom correspondence should be addressed.
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and proliferation to produce antibodies against a given antigen.
CTLs on the other hand perform surveillance of the host cells,
and recognize and kill infected cells, generally explained in

Janeway et al. (2001). Both CTL and HTL are raised against
peptides that are presented to the immune cells by major
histocompatibility complex (MHC) molecules, which are the

most polymorphic of mammalian proteins. The human versions
of MHCs are referred to as the human leucocyte antigen
(HLA). The cells of an individual are constantly screened for

such peptides by the cellular arm of the immune system. In the
MHC class I pathway, class I MHCs presents endogenous
antigens to T cells carrying the CD8 receptor (CD8þ T cells).

To be presented, a precursor peptide is normally first generated
by the large cytosomal protease complex called the proteasome
(Loureiroa and Ploegha, 2006). Generally, it then binds to

the transporter associated with antigen processing (TAP) for
translocation into the endoplasmic reticulum (ER), reviewed by
Abele and Tampé (2004), but some peptides can enter the ER
independently of TAP. This should be considered when dealing

with virus-infected cells or tumors cells that might have reduced
or absent TAP function. There are several ways that the peptide
can enter the ER without TAP function depending on the

origin and properties of the peptide. The most well-established
model, however, is for proteins containing a signal peptide.
Such proteins are translated directly into the ER through the

Sec61 transporter complex and sometimes the cleaved-off signal
peptide will end up in ER. This model is especially relevant for
peptides binding to HLAs belonging to the abundant A2 HLA

serotype where TAP-independent presentation is responsible
for up to 10% of the A2 restricted epitopes, reviewed in Larsen
et al. (2006). During or after the transport into the ER the

peptide must bind to the MHC class I molecule (Stoltze et al.,
2000; Zhang and Williams, 2006) before it can be transported to
the cell surface through the golgi system. The most selective

step in this pathway is binding of a peptide to the MHC class I
molecule. In an older review, Yewdell and Bennink (1999)
states that only 1 in 200 binds with an affinity strong enough to

generate an immune response. This has been challenged, and it
might be that up to 3% of the possible peptides bind strong
enough to generate a subsequent immune response (Assarsson

et al., 2007). In another recent work of Moutaftsi et al. (2006),
however, it is found that of the 49 epitopes that are responsible
for 95% of the total CD8þ T-cell response against a vaccinia

challenge in mouse 90% binds MHC with an affinity stronger
than 500 nM. In any case a peptide must go through the
processes in a greater number than competing peptides to

be immunodominant. The MHC is the most polymorphic
gene system known. This polymorphism is a huge challenge
for T-cell epitope discoveries, enhancing the need for bio-

informatical analysis and resources. However, it also highly
complicates immunological bioinformatics, as predictive meth-
ods for peptide MHC binding have to deal with the diverse

genetic background of different populations and individuals.
On a population basis, hundreds of alleles have been found
for most of the HLA encoding loci (1839 in release 2.17.0

of the IMGT/HLA Database, http://www.ebi.ac.uk/imgt/hla/).
In a given individual either one or two different alleles
are expressed per locus depending on whether the same

(in homozygous individuals) or two different (in heterozygous

individuals) alleles are coded for on the two different chromo-

somes. The number of MHC expressing loci, however, differs

highly among species. While a fully heterozygous human has six

different MHC class I genes, a rhesus macaque may host up

to 22 active MHC class I genes (Daza-Vamenta et al., 2004).

Each MHC allele binds a very restricted set of peptides and

the polymorphism affects the peptide binding specificity of the

MHC; one MHC will recognize one part of the peptide space,

whereas another MHC will recognize a different part of this

space. The very large number of different MHC alleles makes

reliable identification of potential epitope candidates an

immense task if all alleles are to be included in the search.

However, many MHC alleles share a large fraction of their

peptide-binding repertoire, and it is often possible to find

promiscuous peptides, which bind to a number of HLA alleles.

A way of reducing the problem is to group all the different

alleles into supertypes in a manner so that all the alleles within

a given supertype have roughly the same peptide specificity

(Hertz and Yanover, 2007; Lund et al., 2004; Reche and

Reinherz, 2004; Sette and Sidney, 1998, 1999). This allows the

search to be limited to a manageable representative set.

Representing a supertype by a well-studied allele might lead

to selection of epitopes that is very restricted to this allele,

but not to any other alleles within the supertype. Thus another,

and potentially more rational approach, would be to select a

limited set of peptides restricted to as many alleles as possible.

This should be within reach with new methods that directly

predict epitopes that can bind to different alleles (promiscuous

epitopes) (Brusic et al., 2002), or pan-specific approaches that

can make predictions for all alleles where the sequence is known

(Jojic et al., 2006; Nielsen et al., 2007a). When the peptide–

MHC complex is presented on the surface of the cell, it might

bind to a CD8þ T cell with a fitting T-cell receptor (TCR). If

such a TCR clone exists depends on, among other factors, if the

TCR–peptide complex is too similar to MHC–peptide com-

plexes generated with peptides from the host proteome (self-

peptides). This effect is called tolerance and might be broken by

so-called self-epitopes, reviewed by Andersen et al. (2006).
B cells must be activated to produce antibodies against

a given antigen, and helper T cells specific for peptides from

the antigen must be activated to get a strong B-cell response.

The epitope recognized by the helper T cell is usually somehow

connected to the epitope that is recognized by the B cell,

but the two cells do not necessarily recognize overlapping

epitopes. T cells can recognize internal peptides that do not

need to be a part of the surface–surface interactions with the

B-cell receptor. Actually, the T-cell and the B-cell epitopes

might not even come from the same protein (Janeway et al.,

2001). The peptides recognized by the CD4þ T cells are

presented by the MHC class II molecule, and peptide presen-

tation on MHC class II molecules follow a different path than

the MHC class I presentation pathway (Castellino et al., 1997):

MHC class II molecules associate with the invariant chain (Ii)

in the ER and the MHC–Ii complex accumulates in endosomal

compartments. Here, Ii is degraded, while another MHC-like

molecule, called HLA–DM in humans, loads the MHC class II

molecules with the best available ligands originating from

endocytosed antigens. The peptide–MHC class II complexes
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are subsequently transported to the cell surface for presentation

to T helper cells.
Immunological predictions and simulations have been

demonstrated highly useful in applied immunology in general,

and in vaccinology in particular. It can be used as an efficient

tool to lower the experimental workload in epitope discovery

for use in rational vaccine design, immunotherapeutics and

development of diagnogstic tools. A number of recent publica-

tions describe in great detail the values and benefits obtained

by the use of immunoinformatics and predictions in applied

immunology and vaccinology (Davies and Flower, 2007;

De Groot, 2006; De Groot and Moise, 2007; Korber et al.,

2006; Lund et al., 2005; Petrovsky and Brusic, 2006; Tong et al.,

2007). Here, we will not engage in this discussion, but rather

limit ourselves to describing the available methods for making

such predictions, and deliver some of the background infor-

mation needed to be able to choose the appropriate method

for a given task.

1.2 Prediction methods

A large variety of machine-learning techniques are commonly

used in the field of immunological bioinformatics ranging

from the conventional techniques of position-specific scoring

matrices (PSSMs) (Altschul et al., 1997), Gibbs sampling

(Lawrence et al., 1993; Nielsen et al., 2004), artificial neural

networks (ANNs) described in Baldi and Brunak (2001),

hidden Markov models (HMMs) explained in Hughey and

Krogh (1996), and support vector machines (SVMs) described

in Cortes and Vapnik (1995), to more exotic methods like

ant colonies (Karpenko et al., 2005) and other motif search

algorithms (Bui et al., 2005; Chang et al., 2006; Murugan and

Dai, 2005). ANNs and SVMs and are ideally suited to

recognize non-linear patterns, which are believed to contribute

to, for instance, peptide–HLA-I interactions (Adams and

Koziol, 1995; Brusic et al., 1994; Buus et al., 2003; Gulukota

et al., 1997; Nielsen et al., 2003). In an ANN, information is

trained and distributed into a computer network with an input

layer, hidden layers and an output layer all connected in a given

structure through weighted connections (Baldi and Brunak,

2001). In a PSSM on the other hand, all positions in the

motif are assumed to contribute in an independent manner,

and the likelihood for matching a motif is calculated as a sum

of individual matrix scores. The Gibbs sampler method is

a particular implementation of the PSSM search algorithm,

where the optimal PSSM is determined by a search for a

sequence alignment that provides maximal information content

for a given motif length. Conventionally PSSMs are log-odds

matrices (Altschul et al., 1997), where the weight matrix

elements are estimated from the logarithm of the ratio of the

observed frequency of a given amino acid to the background

frequency of that amino acid. However, many other techniques

including the stabilization matrix method (SMM) (Peters and

Sette, 2005), and evolutionary algorithm (Brusic et al., 1998)

exist to construct a PSSM. The PSSMs might also be coupled

with other information available to compensate for lack of data

(Lundegaard et al., 2004). Finally, HMMs have been used in

the field of immunological bioinformatics. These are well suited

to characterized biological motifs with an inherent structural

composition, and have been used in the field of immunology

to predict for instance peptide binding to MHC class I

(Mamitsuka, 1998) and class II (Noguchi et al., 2002)

molecules. Beside machine-learning techniques, also (empirical)

molecular force field modeling techniques (Logean et al., 2001)

and 3D Quantitative Structure–Activity Relationship

(3D-QSAR) (Doytchinova and Flower, 2002; Zhihua et al.,

2004) analysis have been used to predict features of the immune

system.

1.3 Performance measures and validation

As an evaluation of the general quality of a prediction method

a measure describing this quality is needed. However, no single

measure can capture all qualities of a prediction, and not all

types of data and predictions can be reasonably described by

the same measure. So to be able to compare different systems,

it is often needed to present several measures of quality.

Most measures need the data to be classified into two groups,

i.e. positives and negatives. The number of classified (experi-

mentally measured) positives is often designated as actual

positives (AP), and the number of negatives, actual negatives

(AN), the number of predicted positives (PP), predicted nega-

tives (PN), truly predicted positives (TP), falsely predicted

positives (FP), truly predicted negatives (TN), and falsely

predicted negatives (FN). Some of the most often used

measures are briefly described here. The equations for the

mentioned measures are given at the end of the section.
The fraction correct predicted (FCP) is the fraction of the

total predictions that falls into the correct group. This measure

is intuitively easily captured, but has the weakness that if a large

fraction of the total evaluation data falls into a single group

one will get high performance by just blindly predicting most

or even everything to belong to this category.
The positive predicted value (PPV) is the fraction of the

positive predictions that actually falls into the positive class.
The sensitivity is the fraction of the AP that is predicted as

positives using a given threshold.

The specificity is the fraction of the AN that is predicted

as negatives.
The three latter measures are also easily grasped, however

they are all dependent on the chosen prediction cutoff

classifying the data into positive and negative predictions.

A high sensitivity can be obtained by setting your prediction

cutoff so that most of your evaluation data will fall into the

positive group, but this will then be at the expense of the

specificity and the PPV. Which cutoff to use is determined by

the purpose of the prediction, i.e. how many verified epitopes

is needed versus the resources available for experimental

validation.
A plot of the sensitivity against the false positive rate

(1-specificity) is called a receiver operating characteristic (ROC)

curve (Swets, 1988). Such a plot can be a help to set the best

prediction cutoff. One of the best ways of measuring the

predictive power of a method is to calculate the area under

the ROC curve (AUC) since this is a threshold-independent

measure. Another robust measure is the Pearson correlation

coefficient (PCC), which is a measure of how well the predic-

tion scores correlate with the actual value on a linear scale.
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In situations where the correlation is not necessarily linear, the
Spearman’s rank correlation coefficient (SRC) is more appro-

priate. In this measure each prediction is ranked on the basis of

the prediction score and the PCC is calculated on the basis

of this rank rather than the prediction score. The SRC, like
the AUC, is a threshold-independent measure of how well the

predictor ranks the data when compared with the actual

ranking.
When comparing different methods, the threshold-

independent measures are to be preferred. Otherwise a thresh-

old has to be set under the same assumptions for all predictors.

As an example one can estimate the specificity for each
predictor by setting the threshold for the given predictor

to a value where the sensitivity will be 0.5 (i.e. half of the

total available positives is over the threshold), or estimate

the sensitivity at a threshold where the specificity will be
0.8 (i.e. 80% of the AN are predicted as negatives).

The choice of an evaluation set is also absolutely crucial and
several considerations must be taken. A large and diverse

dataset is to be preferred to avoid any biases in prediction

space. Extreme care should also be taken to ensure that none of

the predictors have been trained on the data used for evaluation

even though that might not always be possible. To make the
evaluation as broad as possible cross-validation is often used,

i.e. the method is trained on a large part of the available data

and a smaller part is left out for evaluation. This is done until

all data has been included in the evaluation set and in this way
it is possible to estimate the performance on the complete

dataset. Caution has to be taken, however, that the part used

for training is not too similar to the evaluation part, as this will

lead to an overestimation of the performance due to over-
training. This is especially true when using the leave-one-out

version of cross-validation where everything except one data

point is used for training, and the evaluation is then performed

on the ensemble of the left out data points. Equations are as

follows:

FCP ¼ ðTPþ TNÞ=ðAPþANÞ

PPV ¼ TP=PP

Sensitivity ¼ TP=AP

Specificity ¼ TN=AN

PCC ¼

P
i ðai � �aÞðpi � �pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðai � �aÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðpi � �pÞ2
q

2 CURRENT PREDICTION ALGORITHMS

The state-of-the-art class I T-cell epitope prediction methods

are today of a quality that makes it highly useful as an initial

filtering technique in epitope discovery. Studies have demon-
strated how it is possible to rapidly identify and verify MHC

binders from upcoming possible threats such as the SARS virus

(Sylvester-Hvid et al., 2004) with high reliability, and take such

predictions a step further and validate the immunogenecity

of peptides with limited efforts, as has been shown with the
influenza A virus (Wang et al., 2007). It is also possible to

identify the vast majority of the relevant epitopes in a rather

complex organism as the vaccinia virus using class I MHC

binding predictions and only have to test a very minor fraction

of the possible peptides in the virus proteome (Moutaftsi

et al., 2006).

MHC class II predictions can be made fairly reliable for

certain alleles, and a number of helper epitopes have been

identified by the help of bioinformatical approaches (Consogno

et al., 2003).
B-cell epitopes are still the most complicated task. However,

some consistency between predicted and verified epitopes is

starting to emerge using the newest prediction methods

(Dahlback et al., 2006).
In the following, we describe some of the best-performing

prediction methods within each area.

2.1 B-cell epitope predictions

B-cell epitope prediction is a highly challenging field due to

the fact that the vast majority of antibodies raised against

a specific protein interact with discontinuous fragments

(van Regenmortel, 1996). The prediction of continuous, or

linear, epitopes, however, is a somewhat simpler problem, and

may be still useful for synthetic vaccines or as diagnostic tools

(Regenmortel and Muller, 1999). Moreover, the determination

of continuous epitopes can be integrated into determination of

discontinuous epitopes, as these often contain linear stretches

(Hopp, 1994).
In the early 1980s, Hopp and Woods (Hopp and Woods,

1981, 1983) developed the first linear epitope prediction

method. This method takes the assumption that the regions

of proteins that have a high degree of exposure to solvent

contain the antigenic determinants. According to the hydro-

philicity scale generated by Levitt (1976), Hopp and Woods

(1981) assigned the hydrophilicity propensity to each amino

acid in a sequence and looked at groups of six residues. This

gave promising results and a number of methods have since

been developed with the aim of predicting linear epitopes using

a combination of different amino acid propensities (Alix, 1999;

Debelle et al., 1992; Jameson and Wolf, 1988; Maksyutov and

Zagrebelnaya, 1993; Odorico and Pellequer, 2003; Parker et al.,

1986). In 1993, Pellequer et al. (1993) proposed an evaluation

set containing 85 continuous epitopes in 14 proteins and found

that the method based on turn propensity (i.e. the propensity

of an amino acid to occur within a turn structure) had the

highest sensitivity using this set. Seventy percent of the residues

predicted to be in epitopes by this method were actually part

of epitopes. The sensitivity for methods based on other

propensities was in the range of 36–61% (Pellequer et al.,

1991). Analyzing the epitope regions in the Pellequer dataset

reveals that almost all the hydrophobic amino acids are under-

represented, supporting the assumption that linear B-cell

epitopes will occur in hydrophilic regions of the proteins.
An extensive study of linear B-cell epitope prediction

methods was published by Blythe and Flower (2005). To test

how well peaks in single amino acid scale propensity profiles

are (significantly) associated with known linear epitope loca-

tions, 484 amino acid propensities from the AAindex database

(http://www.genome.ad.jp) (Kawashima and Kanehisa, 2000)

were used. As test set they used 50 epitope-mapped proteins

defined by polyclonal antibodies, which were the best non-
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redundant test set available. Blythe and Flower (2005) found,
however, that even the predictions based on the most accurate
amino acid scales were only marginally better than random,

suggesting that more sophisticated approaches is needed to
predict the linear epitopes. BepiPred (Larsen et al., 2006), an
algorithm that combines scores from the Parker hydrophilicity

scale (Parker et al., 1986) and a PSSM trained on linear
epitopes, shows a small, but significant, increase in AUC over
earlier scale-based methods. The sequence parametrizer algo-

rithm (Sollner, 2006; Sollner and Mayer, 2006), along with its
associated machine-learning methods uses the common single
amino acid propensity scales, but also incorporates neighbor-

hood parameters reflecting the probability that a given stretch
of amino acids exists within a predefined proximity of a specific
amino acid residue. Training and testing on epitope sequences

pulled from a high-quality proprietary database, as well as
several publicly accessible databases, yields a degree of
accuracy that is greatly increased over single-parameter
methods.

Different experimental techniques can be used to define
conformational epitopes. Probably the most accurate, and
easily defined is using the solved structures of antibody–antigen

complexes (Fleury et al., 2000; Mirza et al., 2000). The amount
of this kind of data is unfortunately still scarce, compared to
linear epitopes. Furthermore, very few antigens have been

studied in a way where all possible epitopes on a given antigen
has been identified. Unidentified epitopes within the dataset
will lower the apparent performance of an accurate prediction

method by increasing the apparent false positive rate.
The simplest way to predict the possible epitopes in a protein

of known 3D structure is to use the knowledge of surface

accessibility (Novotny et al., 1986; Thornton et al., 1986).
Two newer methods using protein structure and surface
exposure for prediction of B-cell epitopes have been developed.

The CEP method (Kulkarni-Kale et al., 2005) calculates the
relative accessible surface area for each residue in the structure.
Then it is determined which parts of the protein that are

exposed enough to be antigenic determinants. Regions that are
distant in the primary sequence, but close in three-dimensional
space are considered as one epitope. The tool was tested on

a dataset of 63 antigen–antibody complexes and the algorithm
correctly identified 76% of the epitope residues. DiscoTope
(Haste et al., 2006) uses a combination of amino acid statistics,

spatial information and surface exposure. It is trained on
a compiled dataset of discontinuous epitopes from 76 X-ray
structures of antibody–antigen protein complexes. This method

outperforms methods that predict linear epitopes. Recently a
workshop was held on the subject of B-cell epitope predictions
attended by a broad range of the current method developers.

The workshop resulted in a published review containing conclu-
sions on the present common ground, and suggestions for
the future especially concerning coordination and evaluation

(Greenbaum et al., 2007).
Different ways of measuring the accuracy of B-cell epitope

predictions have been suggested (Hopp, 1994; van Regenmortel

and Pellequer, 1994). Pellequer suggested using the specificity
as a measure of accuracy, while Hopp suggested using the PPV,
but, as described earlier, neither measure will alone give a good

description of the performance. In accordance to this the recent

workshop concluded that the AUC measure is to be preferred

(Greenbaum et al., 2007). Another issue is whether to make

the statistics on a per-residue or on a per-epitope basis.

However, as the latter have the additional complications of

defining how much of an epitope that must be included in

a prediction to be considered correct, and how much extra

included residues is allowed, the per residue measure is to be

preferred.

Epitope mapping can be performed experimentally by other

methods than structure determination, e.g. by phage display

(Jesaitis et al., 1999; Smith and Petrenko, 1997). The low

sequence similarity between the mimotope [i.e. a macromole-

cule, often a peptide, which mimics the structure of an epitope,

(Meloen et al., 2000)] identified through phage display and the

antigen complicates the mapping back onto the native structure

of the antigen. A number of methods have been developed to

facilitate this (Batori et al., 2006; Enshell-Seijffers et al., 2003;

Halperin et al., 2003; Huang et al., 2006; Moreau et al., 2006;

Mumey et al., 2003; Schreiber et al., 2005; Tarnovitski et al.,

2006). However, these are to be considered as interpreters of

experimental data rather than predictors, which are the main

focus of this review.

2.2 MHC binding

A number of methods for predicting the binding of peptides

to MHC molecules have been developed (Schirle et al., 2001)

since the first motif methods were presented (Rothbard and

Taylor, 1988; Sette et al., 1989). The majority of peptides

binding to MHC class I molecules have a length of 8–10 amino

acids. Position 2 and the C-terminal position have turned out

generally to be very important for the binding to most class I

MHCs and these positions are referred to as anchor positions

(Rammensee et al., 1999). For some alleles, the binding motifs

further have auxiliary anchor positions. Peptides binding to the

human HLA-A*0101 allele thus have positions 2, 3 and 9 as

anchors (Kondo et al., 1997; Kubo et al., 1994; Rammensee

et al., 1999). The importance of anchor positions for peptide

binding and the allele-specific amino acid preference at the

anchor positions was first described by Falk et al., 1990. The

discovery of such allele-specific motifs led to the development

of the first reasonable accurate algorithms (Pamer et al., 1991;

Rotzschke et al., 1991). In these prediction tools, it is assumed

that the amino acids at each position along the peptide

sequence contribute a given binding energy, which can indepen-

dently be added up to yield the overall binding energy of the

peptide (Meister et al., 1995; Parker et al., 1994; Stryhn et al.,

1996). Similar types of approaches are used by the EpiMatrix

method (Schafer et al., 1998), the BIMAS method (Parker

et al., 1994), the SYFPEITHI method (Rammensee et al.,

1999), the RANKPEP method (Reche et al., 2002) and the

Gibbs sampler method (Nielsen et al., 2004). Several of these

matrix methods use an approach in the development where

the method is build using exclusively positive examples defined

after certain criteria, like eluted peptides and interferon gamma

response data. This data can be used in training as well as

affinity binding data defining binding stronger than a certain

threshold (usually 500 nM). Other matrix methods, like the

SMM method, aim at predicting an actual affinity and thus
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use exclusively affinity data. As described earlier, matrix-based

methods cannot take correlated effects into account, i.e. where

the contribution to the binding affinity by a given amino acid at

one position is influenced by amino acids at other positions in

the peptide. Higher order methods like ANNs and SVMs, on

the other hand, are ideally suited to take such correlations into

account. These methods can be trained with data either in the

format of binder/non-binder classification, or as real affinity

data. Some of the recent methods combine the two types of

data and prediction methods, either by averaging over

predictions made by either (Bhasin and Raghava, 2007), or by

feeding the predictions from the positive data-trained PSSMs to

ANNs together with sequence/affinity data (Nielsen et al., 2003).

A study by Yu et al. (2002) clearly shows the influence of having

a large dataset on the performance of the resulting method.

However, including knowledge of important positions reduce the

need for data significantly (Lundegaard et al., 2004).
Several prediction methods have been made publicly avail-

able, and when selecting between these several cautions should

be taken. The published performance, and how it is evaluated

should be examined, but it is also very important that the

method is able to generate predictions for the actual allele of

interest. A major study comparing the predictive performance

of a large part of the available methods was recently performed

by Peters et al. (2006) showing that in general the SMM and the

ANN methods (Table 1) perform the best, even when taken

into account the number of training data for each method.

The cross-validated performance of these methods for several

human and mouse MHC class I alleles was compared with the

best performing other method available as web tool. The full

results of this work are listed in Supplementary Table 1. The

tools and URLs are listed in Table 1. It should be mentioned,

however, that tools known to be trained on a significant part

of the test set were excluded from this comparison. To achieve

binding predictions for an allele with uncharacterized specifi-
city, the supertype concept (Sette and Sidney, 1998) can be used
for the limited number of alleles with well-defined supertype

relationships (Lund et al., 2005). Note, however, that predic-
tions with methods predicting the specific allele is most often
to be preferred, as the accuracy of these will be better (Nielsen

et al., 2007a).
In general, HLA-I binding predictions depend on sufficient

experimental data being available for the exact HLA-I molecule
in question. Unfortunately,510% of the 1500 registered HLA-I

proteins (Lefranc, 2005) have been examined experimentally,
and55% have been characterized with more than 50 examples
of peptide binders (Rammensee et al., 1999; Sette et al., 2005).

Several groups have suggested prediction strategies to span
these ‘uncharacterized’ regions of the HLA diversity (Brusic
et al., 2002; Jojic et al., 2006; Nielsen et al., 2007; Zhu et al.,

2006). In different forms, all these methods exploit both peptide
and primary HLA sequence as input information for training,
aiming at simultaneously incorporating all HLA specificities. In

a recent paper (Nielsen et al., 2007a), it is successfully
demonstrated that such an approach can, to a very high
degree, accurately characterize the binding motif for previously

untested HLA-I molecules.
Unlike the MHC class I molecules, the binding cleft of MHC

class II molecules is open-ended, which allows for the bound

peptide to have significant overhangs in both ends. As a result
MHC class II binding peptides have a broader length distri-
bution even though the part of the binding peptide that

interacts with the MHC (the binding core) still includes only
9 amino acid residues. This complicate binding predictions
as identification of the correct alignment of the binding core

is a crucial part of identifying the MHC class II binding motif
(Nielsen et al., 2004). The MHC class II binding motifs have
relatively weak and often degenerate sequence signals. While

some alleles like HLA-DRB1*0405 show a strong preference
for certain amino acids at the anchor positions, other alleles
like HLA-DRB1*0401 allow basically all amino acids at all

positions (Rammensee et al., 1999). However, there are other
issues affecting the predictive performance of most MHC class
II binding prediction methods. The majority of these methods

take as a fundamental assumption that the peptide–MHC
binding affinity is determined solely from the nine amino acids
in binding core motif. This is clearly a large oversimplification

since it is known that peptide flanking residues (PFR) on both
sides of the binding core may contribute to the binding affinity
and stability (Godkin et al., 2001). Some methods for MHC

class II binding have attempted to include PFRs indirectly,
in terms of the peptide length, in the prediction of binding
affinities (Chang et al., 2006). Recently, Nielsen et al. (2007b)

published a method for MHC class II prediction that directly
include PFRs and demonstrated that these PFRs improves the
prediction accuracy. Most of the methods for MHC class II

binding predictions have been trained and evaluated on very
limited datasets covering only a single or a few different
MHC class II alleles, making it very difficult to compare the

different performance values and generality of the methods.
Nielsen et al. (2007b) have made available a large-scale
benchmark set-up for evaluating MHC class II peptide bind-

ing affinity prediction algorithms. The benchmark covers

Table 1. URLs for a selected subset of the methods in Peters et al.

(2006)

Name URL

IEDBa http://tools.immuneepitope.org/analyze/html/

mhc_binding.html

NetMHCb http://cbs.dtu.dk/services/NetMHC

BIMAS http://thr.cit.nih.gov/cgi-bin/molbio/

ken_parker_comboform

hla_a2_smm http://zlab.bu.edu/SMM-cgi/peptide1.cgi

hlaligand http://hlaligand.ouhsc.edu/prediction.htm

libscore http://hypernig.nig.ac.jp/cgi-bin/Lib-score/

request.rb

mhcpred http://www.jenner.ac.uk/MHCPred/

multipredann http://research.i2r.a-star.edu.sg/multipred/HTML/

predict.html

pepdist http://www.pepdist.cs.huji.ac.il/

predbalbc http://antigen.i2r.a-star.edu.sg/predBalbc/

rankpep http://mif.dfci.harvard.edu/Tools/rankpep.html

svmhc http://www.sbc.su.se/svmhc/new.cgi

syfpeithi http://www.syfpeithi.de/

aThe SMM, ARB, and ANN methods from Peters et al. (2006).
bUpdated version of the ANN method from Peters et al. (2006).
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14 HLA-DR (human MHC) and three mouse H2-IA alleles,

and consists of peptide/IC50 affinity data downloaded from the

publicly available IEDB database (Peters et al., 2005), and

could set the start for large-scale unbiased evaluations of novel

methods for MHC class II prediction.

2.3 Processing

Successful prediction of the proteasome cleavage site specificity

should provide valuable additional information useful in the

design of treatments based on CTL responses. However, the

complexity of proteasomal enzymatic specificity complicates

such predictions. The proteasome have a highly stochastic

element, exemplified by the observation that only �80% of the

cleavage sites observed in one in vitro experiment can be verified

in a second identical experiment (Hansjörg Schild, personal

communication). It is thus expected that the accuracy for

prediction of proteasomal activity will be relatively low when

compared to that of methods for MHC peptide binding.
FragPredict, which is publicly available as a part of MAPPP

service (http://www.mpiibberlin.mpg.de/MAPPP/), combines

proteasomal cleavage predictions with MHC- and TAP-binding

predictions. FragPredict consists of two algorithms. The first

algorithm uses a statistical analysis of cleavage-enhancing

and -inhibiting amino acid motifs to predict potential protea-

somal cleavage sites (Holzhutter et al., 1999). The second

algorithm, which uses the results of the first algorithm as an

input, predicts which fragments are most likely to be generated.

This model takes the time-dependent degradation into account

based on a kinetic model of the 20S proteasome (Holzhutter

and Kloetzel, 2000). At the moment, FragPredict is the only

method that can predict fragments, instead of only possible

cleavage sites.
PAProC (http://www.paproc.de) is a prediction method

for cleavages by human as well as wild type and mutant

yeast proteasomes. The influences of different amino acids

at different positions are determined by using a stochastic

hillclimbing algorithm (Kuttler et al., 2000) based on the

experimentally in vitro verified cleavage and non-cleavage sites

(Nussbaum et al., 2001). Both the FragPredict and PAProC

methods make use of the limited in vitro proteasomal digest

data available. FragPredict is a linear method, and it may

not capture the non-linear features of the specificity of the

proteasome. The NetChop (Kesmir et al., 2002) method tries

to address these two issues. The prediction system is a multi-

layered ANN and uses naturally processed MHC class I ligands

to predict proteasomal cleavage. Since some of these ligands

are generated by the immunoproteasome, and some by the

constitutive proteasome, such a method should predict the

combined specificity of both forms of proteasomes. In 2003,

NetChop-2.0 were evaluated to be the best-performing predic-

tor on an independent evaluation set (Saxová et al., 2003).

Pcleavage is another web accessible proteasomal cleavage

predictor, which is SVM based and have a published perfor-

mance comparable to NetChop-2.0 (Bhasin and Raghava,

2005). An update of the NetChop method [NetChop-3.0,

Nielsen et al. (2005)] consists of a combination of several

ANNs, each trained using a different sequence-encoding

scheme of the data. NetChop 3.0 has an increase in the

prediction sensitivity as compared to NetChop 2.0, without
lowering the specificity, and is thus probably the current best
predictor of proteasomal cleavage. Tenzer et al. (2004) have

published a weight matrix based method for prediction of both
constitutive- and immunoproteasomal cleavage specificity.
Both matrices are trained on in vitro digest data.

Relatively few methods have been developed to predict
the specificity of TAP. Daniel et al. (1998) have developed
ANNs using peptide 9mers for which TAP affinity was deter-
mined experimentally. Surprisingly, they found that some

MHC alleles have ligands with very low TAP affinities,
e.g. HLA-A2. However, it has been shown that TAP ligands
can be trimmed in ER before binding to MHC molecules

(Fruci et al., 2001), i.e. a TAP ligand might be an epitope
precursor and thus does not need to be 9 amino acids long.
HLA-A2 might easily have precursors of its optimal ligands,

which are also good TAP binders. Peters et al. (2003) used
an SMM to predict TAP affinity of peptides. This method has
the advantage of not being bound to only 9mers but can also

be used for longer peptides. The method assumes that only the
first three positions in the N-terminal and the last position at
the C-terminal influences the TAP binding. The method is very

well evaluated and the accuracy is high. The significance
of TAP binding in the epitope presentation pathway is much
lower than the MHC binding (see later) and the AUC value

when this method is used alone as an epitope predictor
of 0.79 is thus significantly lower than most MHC-binding
prediction methods. Two methods were published in 2004.

Bhasin and Raghava (2004) published a method for which they
do only compare to the method of Daniel et al. (1998) and it is
not determined how it performs compared to the Peters’

method. The method of Doytchinova et al. (2004) is evaluated
by comparing the resulting method (matrix) with other
matrices. From such a comparison it can only be concluded

that this method is closer to Peters’ model than to the model of
Bhasin and Raghava (2004) but not how it actually performs.
Recently a new TAP predictor, PredTAP, have been published

(Zhang et al., 2006). This method does not have an AUC value
for the methods performance in epitope prediction making a
direct comparison to other models impossible. With increasing

numbers of TAP ligands available on the internet (e.g. Jen-Pep
database, http://www.jenner.ac.uk) (Blythe et al., 2002), it will
likely soon be possible to obtain more accurate TAP

predictions.
With respect to TAP-independent transport and cleavage of

peptides, the most established model is especially connected to

the most abundant HLA supertype (A2) and is related to the
signal peptides and the processing of such (Larsen et al., 2006).
Prediction of potential signal peptides that can be transported

by Sec61 can be made with tools for prediction of signal
peptides, and some of these will also predict the signal peptidase
cleavage site (Bendtsen et al., 2004; Kall et al., 2004; Zhang and

Henzel, 2004), but the value in the context of CD8þ T-cell
epitope predictions remains to be elucidated.
The TCRs are generated by highly stochastic processes that

secures that the TCRs in general will be able to recognize the
entire probable space of MHC–peptide complexes. However,
TCRs that recognize self-peptides will be eliminated so peptides

that form complex with MHC are indistinguishable from
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self-peptides will not be recognized. It is still not clear how close

peptides must be to the self to be able to escape recognition

in this way (Louzoun et al., 2006).

2.4 Integrated T-cell epitope predictions

Reliable predictions of immunogenic peptides can reduce the

experimental effort needed to identify new epitopes, and though

reliable predictions of the MHC binding alone can indeed be

used to rank the possible epitopes very accurately, even better

predictions should be possible if the other steps in the pathway

were integrated in the predictions. Accordingly, many attempts

have been made to predict the outcome of the steps involved in

antigen presentation, MAPP (Hakenberg et al., 2003), NetCTL

(Larsen et al., 2005), MHCpathway (Tenzer et al., 2005),

epiJen (Doytchinova et al., 2006) and WAPP (Donnes and

Kohlbacher, 2005). All these methods attempt to predict

antigen presentation by integrating peptide–MHC binding

predictions with one or more of the other events involved

in the antigen presentation pathway. To benchmark these,

a set of verified epitopes can be used as the positive dataset.

Negative examples (peptides that cannot induce an immunolo-

gic response) are hard to identify, as it is very hard to determine

that a peptide will never be an epitope in any persons with

a given HLA haplotype. Instead, epitopes from well-studied

pathogens (e. g. HIV) are often used as the positive set, and all

other peptides from the genome of the same pathogen that have

never been shown to be an epitope are assumed negative as they

have a very low probability of being an epitope. Running a

large-scale benchmark calculation comparing the predictive

performance of several publicly available MHC-I presentation

prediction methods evaluated on a large set of known HIV

epitopes (http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2/

HIV_dataset) reveals that the updated NetCTL and

MHCpathway methods have the highest predictive perfor-

mance with 475% if the epitopes being within the top 5%

peptides with the highest prediction scores (Mette Volby

Larsen, personal communication).

3 SIMULATING THE IMMUNE SYSTEM

Improved understanding of the immune systems, and its

population-wide variation, is one of the major challenges in

the next decade within biology and medicine. Many of the steps

by which the immune system deal with infectious agents and

disease can now successfully be modeled by computational

techniques, and it is clear that the theoretical approaches will be

a major player in this area, adding a systems view to the

massive experimental effort being carried out at the moment. In

this review, we have summarized how a number of bioinfor-

matics tools that use genomic sequences as input to predict

epitopes, have been developed over the past decade. At the

same time, theoretical models have been developed that

describe the dynamics of different immune-cell populations

and their interactions with microbes (Borghans and de Boer,

2007; Carneiro et al., 2007; Davenport et al., 2007). These

models have been used to interpret experimental findings where

timing is of importance, such as the interval between admin-

istration of a vaccine and infection with the microbe that the

vaccine is intended to protect against. Moreover, these dynamic
models allowed for generating a quantitative picture of immune
system kinetics and diversity during health and disease. The

quantitative approach is necessary to understand the function-
ing of the immune system, which consists of many different cell
types and molecules interacting in complicated regulatory

pathways involving positive and negative feedback loops.
Surprisingly little is known about the population dynamics,
i.e. the production rates, division rates and distribution of life

spans of mouse or human lymphocyte populations. As a
consequence, fundamental questions like the maintenance of
memory, the maintenance of a diverse naive repertoire and the

role of homeostatic mechanisms, remain largely unresolved.
Having so little insight in the normal lymphocyte population
dynamics also hampers our understanding of immune

responses during disease and immune reconstitution after
therapeutic interventions such as chemotherapy, irradiation
and/or bone marrow transplantation. Several areas in immu-
nology call for a better interpretation of data by means of

theoretical models. A simple PubMed search reveals that at
least 10% of the recent papers in the immunological literature
involve labeling experiments in which lymphocytes are labeled

radioactively, with deuterium, or with dyes. However, the
interpretation of such labeling data is controversial and is
notoriously difficult (Boer et al., 2003a, b; Deenick et al., 2003;

Gett and Hodgkin, 2000; Hellerstein, 1999; Mohri et al., 1998;
Mohri et al., 2001; Revy et al., 2001; Ribeiro et al., 2002), which
emphasizes the enormous demand to develop a quantitative

mathematical approach to immunology. Similar examples of
how difficult it is to properly interpret kinetic data come from
the attempts to characterize the division history of cells from

the length of the telomeres, or from the presence of autosomal
DNA circles (TRECs) that are formed in the thymus (Boer and
Noest, 1998; Douek et al., 1998; Dutilh and de Boer, 2003;

Hazenberg et al., 2000; Hazenberg et al., 2003).
Integrating the dynamic (using mathematical models and

computer simulations) and bioinformatics approaches clearly

could lead to a better understanding of the immune responses
and their role during normal, disease and reconstitution
states, where both timing and sequence specificity are highly

significant. Diseases that are characterized by complex
interactions between the host cellular immune system and
evolving pathogens such as HIV infection, or diseases where

molecular similarities between self and non-self are important
such as in autoimmune diseases could be investigated in such
integrated models. Complex generalized cellular automata have

been proposed as models of the immune system (Kohler et al.,
2000; Seiden and Celada, 1992). These methods have now
developed to a stage where it is possible successfully to simulate

the outcome of cancer vaccine protocols using a mouse
simulation model (Castiglione and Piccoli, 2007; Lollini et al.,
2006; Motta et al., 2005; Pappalardo et al., 2006). In a recent

paper, Rapin et al. (2006) outline a framework for integration
of these bioinformatics and simulation approaches by devel-
oping a simple model in which HIV dynamics are correlated

with genomics data. This model is the first one where,
the fitness of wild-type and mutated virus is assessed by
means of a sequence-dependent scoring matrix that links

protein sequences to growth rates of the virus. Further
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refinements of these approaches may involve increasing the
spatial resolution by including different tissues and their
geometry.
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Abele,R. and Tampé,R. (2004) The ABCs of immunology: structure and function

of TAP, the transporter associated with antigen processing. Physiology, 19,

216–224.

Adams,H.P. and Koziol,J.A. (1995) Prediction of binding to MHC class I

molecules. J. Immunol. Methods, 185, 181–190.

Alix,A.J. (1999) Predictive estimation of protein linear epitopes by using the

program PEOPLE. Vaccine, 18, 311–314.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucleic Acids Res., 25,

3389–3402.

Andersen,M.H. et al. (2006) Cytotoxic T cells. J. invest. dermatol., 126, 32–41.

Assarsson,E. et al. (2007) A quantitative analysis of the variables affecting the

repertoire of T cell specificities recognized after vaccinia virus infection.

J. Immunol., 178, 7890–7901.

Baldi,P. and Brunak,S. (2001) Bioinformatics: The Machine Learning Approach,

2nd edition. MIT Press, Cambridge, Mass.

Batori,V. et al. (2006) An in silico method using an epitope motif database for

predicting the location of antigenic determinants on proteins in a structural

context. J. Mol. Recognit., 19, 21–29.

Bendtsen,J.D. et al. (2004) Improved prediction of signal peptides: SignalP 3.0.

J. Mol. Biol., 340, 783–795.

Bhasin,M. and Raghava,G.P. (2004) Analysis and prediction of affinity of TAP

binding peptides using cascade SVM. Protein Sci., 13, 596–607.

Bhasin,M. and Raghava,G.P. (2007) A hybrid approach for predicting

promiscuous MHC class I restricted T cell epitopes. J. Biosci., 32, 31–42.

Bhasin,M. and Raghava,G.P.S. (2005) Pcleavage: an SVM based method for

prediction of constitutive proteasome and immunoproteasome cleavage sites

in antigenic sequences. Nucleic Acids Res., 33, W202–W207.

Blythe,M.J. and Flower,D.R. (2005) Benchmarking B cell epitope prediction:

underperformance of existing methods. Protein Sci., 14, 246–248.

Blythe,M.J. et al. (2002) JenPep: a database of quantitative functional peptide

data for immunology. Bioinformatics, 18, 434–439.

Boer,R.J.d. and Noest,A.J. (1998) T cell renewal rates, telomerase, and telomere

length shortening. J. Immunol., 160, 5832–5837.

Boer,R.J.d. et al. (2003a) Different dynamics of CD4þ and CD8þ T cell

responses during and after acute lymphocytic choriomeningitis virus infection.

J. Immunol., 171, 3928–3935.

Boer,R.J.d. et al. (2003b) Estimating average cellular turnover from 5-bromo-20-

deoxyuridine (BrdU) measurements. Proceedings, 270, 849–858.

Borghans,J.A.M. and de Boer,R.J. (2007) Quantification of T-cell dynamics:

from telomeres to DNA labeling. Immunol. Rev., 216, 35–47.

Brusic,V. et al. (1994) Prediction of MHC binding peptides using artificial neural

networks. In Stonier,R.J. and Yu,X.S. (ed.) Complex Systems: Mechanism of

Adaptation. Amsterdam, IOS Press, pp. 253–260.

Brusic,V. et al. (1998) Prediction of MHC class II-binding peptides using an

evolutionary algorithm and artificial neural network. Bioinformatics, 14,

121–130.

Brusic,V. et al. (2002) Prediction of promiscuous peptides that bind HLA class I

molecules. Immunol. Cell. Biol., 80, 280–285.

Bui,H.H. et al. (2005) Automated generation and evaluation of specific MHC

binding predictive tools: ARB matrix applications. Immunogenetics, 57,

304–314.

Burton,D.R. (2002) Antibodies, viruses and vaccines. Nat. Rev. Immunol., 2,

706–713.

Buus,S. et al. (2003) Sensitive quantitative predictions of peptide-MHC binding

by a ‘Query by Committee’ artificial neural network approach. Tissue

Antigens, 62, 378–384.

Carneiro,J. et al. (2007) When three is not a crowd: a crossregulation model of the

dynamics and repertoire selection of regulatory CD4þ T cells. Immunol. Rev.,

216, 48–68.

Castellino,F. et al. (1997) Antigen presentation by MHC class II molecules:

invariant chain function, protein trafficking, and the molecular basis of

diverse determinant capture. Hum. Immunol., 54, 159–169.

Castiglione,F. and Piccoli,B. (2007) Cancer immunotherapy, mathematical

modeling and optimal control. J.Theor. Biol., 247, 723–732.

Chang,S.T. et al. (2006) Peptide length-based prediction of peptide-MHC class II

binding. Bioinformatics, 22, 2761–2767.

Consogno,G. et al. (2003) Identification of immunodominant regions among

promiscuous HLA-DR-restricted CD4þ T-cell epitopes on the tumor antigen

MAGE-3. Blood, 101, 1038–1044.

Cortes,C. and Vapnik,V. (1995) Support-vector networks. Mach. Learn., 20,

273–297.

Dahlback,M. et al. (2006) Epitope mapping and topographic analysis of

VAR2CSA DBL3X involved in P. falciparum placental sequestration.

PLoS pathog., 2, e124.

Daniel,S. et al. (1998) Relationship between peptide selectivities of human

transporters associated with antigen processing and HLA class I molecules.

J. Immunol., 161, 617–624.

Davenport,M.P. et al. (2007) Understanding the mechanisms and limitations of

immune control of HIV. Immunol. Rev., 216, 164–175.

Davies,M.N. and Flower,D.R. (2007) Harnessing bioinformatics to discover new

vaccines. Drug Discov. Today, 12, 389–395.

Daza-Vamenta,R. et al. (2004) Genetic divergence of the rhesus Macaque major

histocompatibility complex. Genome Res., 14, 1501–1515.

de Groot,A.S. (2006) Immunomics: discovering new targets for vaccines and

therapeutics. Drug Discov. Today, 11, 203–209.

de Groot,A.S. and Moise,L. (2007) Prediction of immunogenicity for therapeutic

proteins: state of the art. Curr. Opin. Drug Discov. Devel., 10, 332–340.

Debelle,L. et al. (1992) Predictions of the secondary structure and antigenicity

of human and bovine tropoelastins. Eur. Biophys. J., 21, 321–329.

Deenick,E.K. et al. (2003) Stochastic model of T cell proliferation: a calculus

revealing IL-2 regulation of precursor frequencies, cell cycle time, and

survival. J. Immunol., 170, 4963–4972.

Donnes,P. and Kohlbacher,O. (2005) Integrated modeling of the major

events in the MHC class I antigen processing pathway. Protein Sci., 14,

2132–2140.

Douek,D.C. et al. (1998) Changes in thymic function with age and during the

treatment of HIV infection. Nature, 396, 690–695.

Doytchinova,I. et al. (2004) Transporter associated with antigen processing

preselection of peptides binding to the MHC: a bioinformatic evaluation.

J. Immunol., 173, 6813–6819.

Doytchinova,I.A. and Flower,D.R. (2002) Physicochemical explanation of

peptide binding to HLA-A*0201 major histocompatibility complex: a three-

dimensional quantitative structure-activity relationship study. Proteins, 48,

505–518.

Doytchinova,I.A. et al. (2006) EpiJen: a server for multistep T cell epitope

prediction. BMC Bioinformatics, 7, 131.

Dutilh,B.E. and de Boer,R.J. (2003) Decline in excision circles requires

homeostatic renewal or homeostatic death of naive T cells. J. Theor. Biol.,

224, 351–358.

Enshell-Seijffers,D. et al. (2003) The mapping and reconstitution of a conforma-

tional discontinuous B-cell epitope of HIV-1. J. Mol. Biol., 334, 87–101.

Falk,K. et al. (1990) Cellular peptide composition governed by major

histocompatibility complex class I molecules. Nature, 348, 248–251.

Fleury,D. et al. (2000) Structural evidence for recognition of a single epitope by

two distinct antibodies. Proteins, 40, 572–578.

Fruci,D. et al. (2001) Efficient MHC class I-independent amino-terminal

trimming of epitope precursor peptides in the endoplasmic reticulum.

Immunity, 15, 467–476.

Gett,A.V. and Hodgkin,P.D. (2000) A cellular calculus for signal integration by

T cells. Nature immunol., 1, 239–244.

Godkin,A.J. et al. (2001) Naturally processed HLA class II peptides reveal highly

conserved immunogenic flanking region sequence preferences that reflect

antigen processing rather than peptide-MHC interactions. J. Immunol., 166,

6720–6727.

Modeling the adaptive immune system

3273



Greenbaum,J.A. et al. (2007) Towards a consensus on datasets and evaluation

metrics for developing B-cell epitope prediction tools. J. Mol. Recognit., 20,

75–82.

Gulukota,K. et al. (1997) Two complementary methods for predicting peptides

binding major histocompatibility complex molecules. J. Mol. Biol., 267,

1258–1267.

Hakenberg,J. et al. (2003) MAPPP: MHC class I antigenic peptide processing

prediction. Appl. Bioinformatics, 2, 155–158.

Halperin,I. et al. (2003) Sitelight: binding-site prediction using phage display

libraries. Protein Sci., 12, 1344–1359.

Haste,A.P. et al. (2006) Prediction of residues in discontinuous B-cell epitopes

using protein 3D structures. Protein Sci., 15, 2558–2567.

Hazenberg,M.D. et al. (2000) Increased cell division but not thymic dysfunction

rapidly affects the T-cell receptor excision circle content of the naive T cell

population in HIV-1 infection. Nat. med., 6, 1036–1042.

Hazenberg,M.D. et al. (2003) Thymic output: a bad TREC record. Nature

immunol., 4, 97–99.

Hellerstein,M.K. (1999) Measurement of T-cell kinetics: recent methodologic

advances. Immunol. Today, 20, 438–441.

Hertz,T. and Yanover,C. (2007) Identifying HLA supertypes by learning distance

functions. Bioinformatics, 23, e148–155.

Holzhutter,H.G. and Kloetzel,P.M. (2000) A kinetic model of vertebrate 20{S}

proteasome accounting for the generation of major proteolytic fragments

from oligomeric peptide substrates. Biophys. J., 79, 1196–1205.

Holzhutter,H.G. et al. (1999) A theoretical approach towards the identification of

cleavage-determining amino acid motifs of the 20 S proteasome. J. Mol. Biol.,

286, 1251–1265.

Hopp,T.P. (1994) Different views of protein antigenicity. Pept. Res., 7, 229–231.

Hopp,T.P. and Woods,K.R. (1981) Prediction of protein antigenic determinants

from amino acid sequences. Proc. Natl. Acad. Sci. USA, 78, 3824–3828.

Hopp,T.P. and Woods,K.R. (1983) A computer program for predicting protein

antigenic determinants. Mol. immunol., 20, 483–489.

Huang,J. et al. (2006) MIMOX: a web tool for phage display based epitope

mapping. BMC Bioinformatics, 7, 451.

Hughey,R. and Krogh,A. (1996) Hidden Markov models for sequence analysis:

extension and analysis of the basic method. Comput. Appl. Biosci., 12, 95–107.

Jameson,B.A. and Wolf,H. (1988) The antigenic index: a novel algorithm for

predicting antigenic determinants. Comput. Appl. Biosci., 4, 181–186.

Janeway,C.A. et al. (2001) Immunobiology: The Immune System in Health and

Disease. Garland Publications, New York, London.

Jesaitis,A.J. et al. (1999) Actin surface structure revealed by antibody imprints:

evaluation of phage-display analysis of anti-actin antibodies. Protein Sci., 8,

760–770.

Jojic,N. et al. (2006) Learning MHC I-peptide binding. Bioinformatics, 22,

e227–235.

Kall,L. et al. (2004) A combined transmembrane topology and signal peptide

prediction method. J. Mol. Biol., 338, 1027–1036.

Karpenko,O. et al. (2005) Prediction of MHC class II binders using the ant

colony search strategy. Artif. Intell. Med., 35, 147–156.

Kawashima,S. and Kanehisa,M. (2000) AAindex: amino acid index database.

Nucleic Acids Res., 28, 374.

Kesmir,C. et al. (2002) Prediction of proteasome cleavage motifs by neural

networks. Protein Eng., 15, 287–296.

Kohler,B. et al. (2000) A systematic approach to vaccine complexity using an

automaton model of the cellular and humoral immune system. I. viral

characteristics and polarized responses. Vaccine, 19, 862–876.

Kondo,A. et al. (1997) Two distinct HLA-A*0101-specific submotifs illustrate

alternative peptide binding modes. Immunogenetics, 45, 249–258.

Korber,B. et al. (2006) Immunoinformatics comes of age. PLoS Comput. Biol., 2,

e71.

Kubo,R.T. et al. (1994) Definition of specific peptide motifs for four major

HLA-A alleles. J. Immunol., 152, 3913–3924.

Kulkarni-Kale,U. et al. (2005) CEP: a conformational epitope prediction server.

Nucleic Acids Res., 33, W168–171.

Kuttler,C. et al. (2000) An algorithm for the prediction of proteasomal cleavages.

J. Mol. Biol., 298, 417–429.

Larsen,J.E. et al. (2006) Improved method for predicting linear B-cell epitopes.

Immunome Res., 2, 2.

Larsen,M.V. et al. (2005) An integrative approach to CTL epitope prediction:

a combined algorithm integrating MHC class I binding, TAP transport

efficiency, and proteasomal cleavage predictions. Eur. J. Immunol., 35,

2295–2303.

Larsen,M.V. et al. (2006) TAP-independent MHC class I presentation.

Curr. Immunol. Rev., 2, 233–245.

Lawrence,C.E. et al. (1993) Detecting sutble sequence signals: a Gibbs sampling

strategy for multiple alignment. Science, 262, 208–214.

Lefranc,M.P. (2005) IMGT, the international ImMunoGeneTics information

system(R): a standardized approach for immunogenetics and immunoinfor-

matics. Immunome Res., 1, 3.

Levitt,M. (1976) A simplified representation of protein conformations for rapid

simulation of protein folding. J. Mol. Biol., 104, 59–107.

Li,Z. et al. (2004) The generation of antibody diversity through somatic

hypermutation and class switch recombination. Genes Dev., 18, 1–11.

Logean,A. et al. (2001) Customized versus universal scoring functions:

application to class I MHC-peptide binding free energy predictions.

Bioorg. Med. Chem. Lett., 11, 675–679.

Lollini,P.L. et al. (2006) Discovery of cancer vaccination protocols with a genetic

algorithm driving an agent based simulator. BMC Bioinformatics, 7, 352.

Loureiroa,J. and Ploegha,H.L. (2006) Antigen presentation and the ubiquitin-

proteasome system in host–pathogen interactions. Adv. Immunol., 92,

225–305.

Louzoun,Y. et al. (2006) T-cell epitope repertoire as predicted from human and

viral genomes. Mol. Immunol., 43, 559–569.

Lund,O. et al. (2004) Definition of supertypes for HLA molecules using clustering

of specificity matrices. Immunogenetics, 55, 797–810.

Lund,O. et al. (2005) Immunological Bioinformatics. MIT Press, Cambridge, MA.

Lundegaard,C. et al. (2004) MHC class I epitope binding prediction trained on

small data sets. In Artificial Immune Systems, Proceedings. Springer,

pp. 217–225.

Maksyutov,A.Z. and Zagrebelnaya,E.S. (1993) ADEPT: a computer program for

prediction of protein antigenic determinants. Comput. Appl. Biosci., 9,

291–297.

Mamitsuka,H. (1998) Predicting peptides that bind to MHC molecules using

supervised learning of hidden Markov models. Proteins, 33, 460–474.

Meister,G.E. et al. (1995) Two novel T cell epitope prediction algorithms based

on MHC-binding motifs; comparison of predicted and published epitopes

from Mycobacterium tuberculosis and HIV protein sequences. Vaccine, 13,

581–591.

Meloen,R.H. et al. (2000) Mimotopes: realization of an unlikely concept.

J. Mol. Recognit., 13, 352–359.

Mirza,O. et al. (2000) Dominant epitopes and allergic cross-reactivity: complex

formation between a Fab fragment of a monoclonal murine IgG antibody and

the major allergen from birch pollen Bet v 1. J. Immunol., 165, 331–338.

Mohri,H. et al. (1998) Rapid turnover of T lymphocytes in SIV-infected rhesus

macaques. Science, 279, 1223–1227.

Mohri,H. et al. (2001) Increased turnover of T lymphocytes in HIV-1 infection

and its reduction by antiretroviral therapy. J. Exp. Med., 194, 1277–1287.

Moreau,V. et al. (2006) Discontinuous epitope prediction based on mimotope

analysis. Bioinformatics, 22, 1088–1095.

Motta,S. et al. (2005) Modelling vaccination schedules for a cancer immunopre-

vention vaccine. Immunome Res., 1, 5.

Moutaftsi,M. et al. (2006) A consensus epitope prediction approach identifies the

breadth of murine T(CD8þ)-cell responses to vaccinia virus. Nat. Biotechnol.,

24, 817–819.

Mumey,B.M. et al. (2003) A new method for mapping discontinuous antibody

epitopes to reveal structural features of proteins. J. Comput. Biol., 10,

555–567.

Murugan,N. and Dai,Y. (2005) Prediction of MHC class II binding peptides

based on an iterative learning model. Immunome Res., 1, 6.

Nielsen,M. et al. (2003) Reliable prediction of T-cell epitopes using neural

networks with novel sequence representations. Protein Sci., 12, 1007–1017.

Nielsen,M. et al. (2004) Improved prediction of MHC class I and class II epitopes

using a novel Gibbs sampling approach. Bioinformatics, 20, 1388–1397.

Nielsen,M. et al. (2005) The role of the proteasome in generating cytotoxic T-cell

epitopes: insights obtained from improved predictions of proteasomal

cleavage. Immunogenetics, 57, 33–41.

Nielsen,M. et al. (2007a) Quantitative, pan-specific predictions of peptide binding

to HLA- A and-B locus molecules. PLoS ONE, 2, e796.

Nielsen,M. et al. (2007b) Prediction of MHC class II binding affinity using

SMM-align, a novel stabilization matrix alignment method. BMC

Bioinformatics, 8, 238.

Noguchi,H. et al. (2002) Hidden Markov model-based prediction of antigenic

peptides that interact with MHC class II molecules. J. Biosci. Bioeng., 94,

264–270.

C.Lundegaard et al.

3274



Novotny,J. et al. (1986) Antigenic determinants in proteins coincide with surface

regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci.

USA, 83, 226–230.

Nussbaum,A.K. et al. (2001) {PAProC}: a prediction algorithm for proteasomal

cleavages available on the {WWW}. Immunogenetics, 53, 87–94.

Odorico,M. and Pellequer,J.L. (2003) BEPITOPE: predicting the location of

continuous epitopes and patterns in proteins. J. Mol. Recognit., 16, 20–22.

Pamer,E.G. et al. (1991) Expression and deletion analysis of the Trypanosoma

brucei rhodesiense cysteine protease in Escherichia coli. Infect. Immun., 59,

1074–1078.

Pappalardo,F. et al. (2006) Analysis of vaccine’s schedules using models.

Cell. Immunol., 244, 137–140.

Parker,J.M. et al. (1986) New hydrophilicity scale derived from high-performance

liquid chromatography peptide retention data: correlation of predicted

surface residues with antigenicity and X-ray-derived accessible sites.

Biochemistry, 25, 5425–5432.

Parker,K.C. et al. (1994) Scheme for ranking potential HLA-A2 binding

peptides based on independent binding of individual peptide side-chains.

J. Immunol., 152, 163–175.

Pellequer,J.L. et al. (1991) Predicting location of continuous epitopes in proteins

from their primary structures. Meth. Enzymol., 203, 176–201.

Pellequer,J.L. et al. (1993) Correlation between the location of antigenic sites and

the prediction of turns in proteins. Immunol. Lett., 36, 83–99.

Peters,B. and Sette,A. (2005) Generating quantitative models describing the

sequence specificity of biological processes with the stabilized matrix method.

BMC Bioinformatics, 6, 132.

Peters,B. et al. (2003) Identifying MHC class I epitopes by predicting the TAP

transport efficiency of epitope precursors. J. Immunol., 171, 1741–1749.

Peters,B. et al. (2005) The immune epitope database and analysis resource: from

vision to blueprint. PLoS Biol., 3, e91.

Peters,B. et al. (2006) A community resource benchmarking predictions of peptide

binding to MHC-I molecules. PLoS Comput. Biol., 2, e65.

Petrovsky,N. and Brusic,V. (2006) Bioinformatics for study of autoimmunity.

Autoimmunity, 39, 635–643.

Rammensee,H. et al. (1999) SYFPEITHI: database for MHC ligands and peptide

motifs. Immunogenetics, 50, 213–219.

Rapin,N. et al. (2006) Modelling the human immune system by combining

bioinformatics and systems biology approaches. J. Biol. Phys., 32, 335–353.

Reche,P.A. and Reinherz,E.L. (2004) Definition of MHC supertypes through

clustering of MHC peptide binding repertoires. In Artificial Immune Systems,

Proceedings. pp. 189–196.

Reche,P.A. et al. (2002) Prediction of MHC class I binding peptides using profile

motifs. Hum. Immunol., 63, 701–709.

Regenmortel,M.H.V.V. and Muller,S. (1999) Synthetic Peptides as Antigens.

Elsevier, Amsterdam.

Revy,P. et al. (2001) Functional antigen-independent synapses formed between

T cells and dendritic cells. Nat. Immunol., 2, 925–931.

Ribeiro,R.M. et al. (2002) Modeling deuterated glucose labeling of

T-lymphocytes. Bull. Math. Biol., 64, 385–405.

Rothbard,J.B. and Taylor,W.R. (1988) A sequence pattern common to T cell

epitopes. Embo. J., 7, 93–100.

Rotzschke,O. et al. (1991) Exact prediction of a natural T cell epitope.

Eur. J. Immunol., 21, 2891–2894.
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