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In this paper, a dual wavelength short near-infrared system is described for the detection of 
glucose levels. The system aims to improve the accuracy of blood glucose detection in a cost-

effective and non-invasive way. The accuracy of the method is evaluated using real-time samples 
collected with the reference finger prick glucose device. A feed forward neural network (FFNN) 
regression method is employed to predict glucose levels based on the input data obtained from 
NIR technology. The system calculates glucose evaluation metrics and performs Surveillance error 
grid (SEG) analysis. The coefficient of determination 𝑅2 and mean absolute error are observed 
0.99 and 2.49 mg/dl, respectively. Additionally, the system determines the root mean square 
error (RMSE) as 3.02 mg/dl. It also shows that the mean absolute percentage error (MAPE) is 
1.94% and mean squared error (MSE) is 9.16 (𝑚𝑔∕𝑑𝑙)2 for FFNN. The SEG analysis shows that the 
glucose values measured by the system fall within the clinically acceptable range when compared 
to the reference method. Finally, the system uses the multi-class classification method of the 
multilayer perceptron (MLP) and K-nearest neighbors (KNN) classifier to classify glucose levels 
with an accuracy of 99%.

1. Introduction

The International Diabetes Federation (IDF) has stated that diabetes mellitus is a chronic disease that significantly affects global 
health. Globally, diabetes caused 6.7 million deaths in 2021, with approximately 537 million adults between the ages of 20 and 79 
living with the disease. The number of patients with diabetes is projected to increase by 46% by 2045 [1,2]. Regularly monitoring 
persons who are in a prediabetic condition, have gestational diabetes, or have reduced glucose tolerance is essential in order to 
avoid the development of diabetes [3]. Effective management of diabetes can be achieved through artificial insulin intake, exercise, 
a balanced diet, and regular monitoring of blood glucose levels by test. Hence, self-monitoring their blood glucose each day is 
an important part of their diabetes management. It can be monitored using various methods such as invasive (IN) [4], minimally 
invasive (MI), and non-invasive (NI) [5,6].
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The IN method of blood glucose detection is the most common method of blood glucose detection. A lancet pricks the fingertip 
to collect a drop of blood on a test strip, which is then inserted into a glucose meter to read the glucose level. However, IN 
methods of blood glucose detection carry risks of infection, bleeding, and nerve damage. An MI monitoring method, which causes 
minimal skin damage, offers an alternative way to measure glucose levels [7,8]. However, it needs periodic calibration with standard 
measurements and has long-term reliability and stability difficulties, making the devices costlier and unreliable for routine blood 
glucose monitoring. As a result, researchers have explored various NI methods for measuring blood glucose that are painless, reliable, 
and cost-effective [9]. This advancement has the potential to make regular blood glucose monitoring more comfortable and accessible 
to millions of people. Both in vitro and in vivo approaches have been proposed for NI blood glucose detection [10].

In vitro methods for NI blood glucose measurement take place outside of a live body, often in a laboratory environment [4]. On 
the other hand, in vivo methods are performed on a living organism and are more suitable for continuous self-monitoring of blood 
glucose. Optical technologies are particularly well-suited for glucose detection in the in vivo approach due to the complexity of blood 
and tissue properties [11]. Additionally, optical technologies are less likely to cause irritation to targeted biological tissue. Recent 
advancements in optical technologies, such as visible laser light, Raman spectroscopy, mid-infrared (MIR), and near-infrared (NIR) 
spectroscopy, have provided users with various options for glucose measurement [12]. Among these techniques, NIR spectroscopy is 
a precise approach for glucose monitoring, and short NIR is superior to long NIR due to its deeper penetration capability underneath 
the skin to detect glucose molecules.

On the other hand, in the realm of predicting glucose levels and their classification, multiple linear regression (MLR) is commonly 
used to study the relationship between multiple independent variables and a dependent variable [13]. However, statistical regression 
techniques can be inefficient when dealing with multiple features. To overcome this limitation, artificial intelligence (AI) and machine 
learning (ML) have made significant progress in developing models that establish relationships between attributes and instances for 
classification and regression tasks. The aim of ML is to create accurate predictions by extracting relevant features from existing data 
and building a model. Regression is a crucial component of ML that employs a trained model to make predictions [14,15].

There are various ML regression algorithms that can be used for this purpose, including linear regression, support vector machine 
(SVM), K-nearest neighbor (KNN), decision tree, random forest (RF), and adaptive boosting [16]. Linear regression, SVM, KNN, and 
decision tree are commonly used to solve simple regression problems [17]. In contrast, ensemble methods such as RF and AdaBoost 
are used to combine the predictions of multiple ML models that are individually weak, resulting in a more accurate forecast [18–20]. 
In healthcare, ML has the potential to revolutionize disease diagnosis and personalized treatment [21,22]. Numerous ML techniques 
have been proposed in the literature to extract relevant features from measured or predicted data. For instance, RF has been employed 
to analyze continuous glucose monitoring data and predict the occurrence of hypoglycemic events in type 1 diabetes patients [23]. 
Photoplethysmography (PPG) based glucose detection with smartphone using principle component regression, SVM and RF [24]. 
Additionally, KNN algorithms have been used to classify glucose data based on their similarity to previously observed patterns [25]. 
Therefore, the use of ML techniques in glucose prediction and classification [26] has yielded promising results, and this approach 
holds significant potential for improving diabetes management.

Artificial neural networks also belong to the field of machine learning and utilize a set of algorithms to solve both linear and 
non-linear problems [27]. There exist different types of neural networks, each with its unique structure and application. Multiple 
neural network models are appropriate for solving regression problems, including the Multi-layer Perceptron (MLP), a feed forward 
neural network with multiple hidden layers that can perform regression [28].

This study investigates the potential of ML techniques to improve the precision of glucose level measurement using short-wave 
NIR absorbance and reflectance spectroscopy. We propose a dual-wavelength system that overcomes limitations of single-wavelength 
approaches by providing a deeper understanding of glucose levels. Specifically, we select wavelengths in both reflective and trans-

mission modes with subtle differences for measuring glucose on human finger tissue. These wavelengths balance glucose absorption, 
tissue penetration, and resistance to interference from other tissue components. Specifically, light with a wavelength of 940 nm 
displays a higher absorption coefficient for glucose, while light at 950 nm exhibits enhanced transmission through tissue.

In addition to the dual-wavelength approach, we propose the integration of ML algorithms, particularly feed forward neural 
network (FFNN) to further enhance the accuracy of glucose measurements. FFNN trained on collected dataset of NIR spectra and 
corresponding blood glucose levels to identify complex relationships between spectral features and glucose concentration. This data-

driven approach can potentially lead to more precise and personalized glucose monitoring. The performance of this ML approach is 
then compared to that of other fundamental models. Furthermore, two classification techniques, namely MLP and KNN, are utilized 
to categorize glucose levels into three categories: normal, hypoglycemia, and hyperglycemia.

2. Literature on glucose monitoring technologies

In recent years, there has been progress in glucose monitoring methods, particularly in the development of NI approaches for 
glucose estimation. These approaches are categorized based on their technologies, which include electromagnetic (EM) wave sensing, 
transdermal, and enzymatic methods. Enzymatic methods can enable NI monitoring through readily accessible body fluids such as 
saliva, tear drops, or exhaled breath [29]. Enzymatic methods require the use of specialized sensors that can be costly and may have 
limited accuracy due to variations in the composition of bodily fluids [30]. Transdermal methods, on the other hand, may be limited 
by the skin barrier and require special preparations to enhance skin permeability. EM wave sensing, however, does not have these 
limitations and is capable of providing accurate glucose measurements through various body tissues using NI techniques.

EM sensing encompasses various non-ionizing EM radiation technologies, such as ultraviolet (UV), visible light, microwave 
2

(MW)/mm-wave, optical wave spectroscopy technology (OWST). While studies on EM waves sensing with UV can lead to ioniz-



Heliyon 10 (2024) e28720M. Naresh, V.S. Nagaraju, S. Kollem et al.

ing radiation and tissue damage [31]. On the other hand, lower frequencies, typically below 100 MHz, are utilized to study the 
tissue impedance and are directly related to material properties [32]. The technique used to measure this impedance is known as 
impedance spectroscopy, which involves measuring the skin’s impedance using a known alternating current intensity. Although this 
technique is relatively simple and affordable in practical scenarios, it has limitations as it can be affected by factors such as sweat, 
water content, and temperature variation.

As an alternative to high and low frequencies, numerous studies have been conducted in MW/mm-wave spectroscopy and OWST. 
The MW/mm-wave frequency range corresponds to 1 mm to 1 m, and EM wave radiation carries lower photon energy, which 
relatively avoids tissue damage [33]. These devices are advantageous in terms of portability and cost. However, the dielectric 
properties of the skin are closely related to the dielectric properties of these sensors, and they vary with changes in glucose levels 
[34]. It is also a challenging task to obtain the relationship between glucose levels and permittivity, which is one of the cores 
limiting factors in their development. Therefore, researchers are currently working on improving microwave sensors’ selectivity and 
sensitivity [35].

OWST is another NI glucose monitoring technique that utilizes various optical techniques to measure glucose levels. It encom-

passes a wide range of technologies, including photoacoustic spectroscopy, occlusion spectroscopy, optical coherence tomography 
(OCT), optical polarimetry, Raman spectroscopy, thermal emission, MIR, and NIR. Although some of these techniques, such as 
photoacoustic spectroscopy, occlusion spectroscopy, and OCT, may indirectly involve the use of EM radiation, they primarily rely 
on other physical principles for glucose measurement. Photoacoustic spectroscopy uses acoustic waves generated by EM radiation 
absorption to measure glucose. This technique is simple and resistant to water absorption. However, this method is vulnerable to 
temperature, pressure, and environmental changes, and it has a low signal-to-noise ratio. The instrumentation required for this 
method is also expensive [36]. Occlusion spectroscopy relies on changes in light scattering and absorption due to changes in blood 
volume [37]. This technique is limited to a depth of a few millimeters in tissue, which restricts its use for the measurement of deep 
tissue glucose levels. The OCT uses light interference patterns to generate high resolution images of tissues [38]. The technique has 
a limited field of view, which means that only a small area can be imaged at once. OCT is a relatively expensive technique, which 
may limit its availability in some healthcare settings. Mostly, this technique has been widely utilized for various clinical applications 
[39].

On the other hand, optical polarimetry, thermal emission, Raman spectroscopy, MIR, and NIR directly involve the use of EM ra-

diation. These techniques operate on the principles of light absorption, reflection, refraction, polarization, and scattering to measure 
glucose levels. The optical polarimetry is the measurement and interpretation of the polarization of light. It is a NI, non-destructive 
technique that can provide information on the molecular composition, structure, and orientation of biological tissues [40]. This 
technology has been used for glucose monitoring by measuring the polarimetric changes in the light as it passes through the skin. 
However, due to light scattering and other physiological factors, it is not suitable for skin measurements. Instead, it can be used on 
aqueous humor of the eye due to its high resolution and sensitivity to small changes in glucose concentration. Also, this method is 
sensitive to temperature changes, eye motion, and interferences from other optically active compounds in the eye. The other method 
called thermal emission [41] involves the measurement of infrared radiation emitted by an object, which is directly related to its tem-

perature. The technique is highly dependent on the temperature of the skin, and any changes in skin temperature can cause variations 
in the measured signal, leading to inaccuracies in glucose measurement. Also, thermal emission spectroscopy requires sophisticated 
instrumentation and signal processing algorithms, making it difficult to implement in low-cost, portable glucose monitoring devices.

Raman spectroscopy is another technique that utilizes laser light to excite molecular vibrations in glucose molecules and measures 
the scattered light to determine glucose concentrations [42]. One of the main challenges is the interference from other biological 
molecules present in the sample, which can affect the accuracy and specificity of glucose measurements [43]. Additionally, the cost 
of the equipment required for Raman spectroscopy is relatively high, which may limit its accessibility for some applications [44]. It 
also requires careful calibration to obtain accurate measurements, which can be time-consuming and require technical expertise.

Despite facing certain challenges, infrared spectroscopy has demonstrated potential in glucose monitoring. Two emerging tech-

nologies in this field are mid-infrared (MIR) [45] and near-infrared (NIR) spectroscopy, both of which rely on light absorption and 
reflection to measure glucose levels. MIR spectroscopy operates in the MIR region of the EM spectrum, which spans from 2500 μm to 
25 μm to detect glucose concentration in interstitial fluid through reflection [46–49]. MIR has a high sensitivity for glucose detection 
due to its sharp response peaks and low scattering. However, it is limited to reflection mode since it cannot penetrate human tissue 
well, making it incapable of determining glucose levels in blood vessels [50].

In contrast, NIR has good penetration depth in the skin and has been studied for glucose estimation for several decades. NIR 
spectroscopy and NIR PPG are both techniques that use NIR light to analyze biological samples or signals, but they differ in their 
specific applications and measurement methods. NIR PPG measures the changes in light absorption or reflection caused by blood 
flow in tissues. It works by shining NIR light into the tissue and measuring the amount of light that is reflected back to a detector. As 
blood flows through the tissue, it changes the amount of NIR light that is absorbed or reflected, allowing for the detection of glucose 
[51]. However, PPG signals have drawbacks such as low signal-to-noise ratio (SNR), sensitivity to motion artifacts, and interference 
from other physiological factors.

On the other hand, NIR spectroscopy involves illuminating a sample with NIR light and measuring the absorption or reflection of 
the light by the sample. This can be used to identify the molecular composition of the sample, such as the presence and concentration 
of different compounds. NIR spectroscopy is divided into long and short wave NIR. NIR waves fall within the EM spectrum range of 
700-2500 nm and can be divided into two regions based on its bandwidths, the first overtone band (1400-2000 nm) and the second 
overtone band (750-1400 nm). Some researchers have presented glucose measurements using long-wave NIR spectroscopy [47]. 
3

However, the system has not been designed for continuous glucose monitoring. Another method has been utilized for continuous 
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glucose monitoring but the narrow penetration of long-wave NIR hinders in vivo testing. In contrast, short NIR wavelengths have 
excellent penetration for in-vivo testing [52]. This makes NIR a promising technology for NI glucose monitoring. However, its 
accuracy is hindered by scattering and the limited bandwidth, which results in a poor correlation with blood glucose levels.

Several studies have attempted to improve the accuracy of NIR for glucose monitoring by combining it with other technologies. 
One study that utilized short-wave NIR in combination with Raman spectroscopy to improve the specificity of glucose measurement 
[53]. Despite these efforts, NIR technology still faces challenges in achieving the required accuracy and sensitivity for glucose 
monitoring. Ongoing research and development are focused on addressing these challenges and improving the performance of 
NIR technology. NIR waves can be used to measure the concentration of functional groups in the blood by partially scattering or 
absorbing through the skin tissue. The absorption and reflection of NIR waves are related to the molecular vibrations of chemical 
bonds of molecules present in the medium, including glucose molecules.

Glucose molecules are made up of carbon, hydrogen, and oxygen atoms, which bond together to form C-H and C-O bonds, as well 
as O-H groups. These chemical bonds interact with near-infrared (NIR) waves, which are capable of penetrating the skin and reaching 
the blood vessels underneath. When NIR waves encounter glucose molecules, they are either absorbed or reflected by the glucose 
molecules in a manner that is dependent on the glucose concentration. In a research conducted by [54] examined the accuracy of NI 
blood glucose measurement using short wavelength NIR spectroscopy. Their results indicated that the detection of a CH vibration at 
920 nm did not overlap with the OH vibration of water molecules [55]. Shorter wavelengths can result in higher selectivity to glucose 
molecules by minimizing the interfering effect of water [56]. In a study developed by Jain et al. used an NI glucose measurement 
device that uses both transmittance and reflectance modes, with three different wavelengths operating at 940 nm and 1300 nm, and 
achieved 94% accuracy [57].

Particularly, NI glucose meters that use NIR spectroscopy at 940 nm, show high levels of reliability in detecting glucose levels, 
offering an innovative way to monitor diabetes mellitus [58,59]. The study conducted by Yadav et al. utilizes a NIR LED emitting at 
940 nm (TSAL5300) to minimize interference from other substances, such as water [60]. Similarly, in other works, a wavelength of 
950 nm was specifically chosen for an adequate penetration depth [61–63].

Based on above work, to improve accuracy, a continuous glucose monitoring system using short-wave NIR spectroscopy was 
developed. It uses a dual wavelength of 950 nm and 940 nm NIR technology to achieve an accuracy level of 99% with RMSE of 3.02 
mg/dl. The data collected from both the wavelengths was used in FFNN, which accurately predicted glucose levels from the input 
features such as voltage, absorbance, transmittance, and reflections with MSE of 9.16 (𝑚𝑔∕𝑑𝑙)2.

This combined approach allows for the development of a reliable and accurate glucose monitoring system, which can be employed 
for diabetes management.

3. Design and implementation

To address the limitations of single-wavelength technology, we propose the adoption of dual-wavelength system to achieve 
comprehensive glucose insights. The light at 940 nm has a higher absorption coefficient for glucose, while the light at 950 nm passes 
more easily through tissue, so it is possible to measure thicker tissues, such as the back of a hand, at this wavelength. As a result, 
they effectively reduce skin interference and provide enhanced stability, ensuring more accurate glucose readings.

In order to measure the amount of light reflected and transmitted by a finger, TCR1000 (a combination emitter-photo transistor) 
and TSAL6400 emitter and BPW34 photodetector are used. The system also includes a precise analog-to-digital converter (ADC) and 
a computation unit using a micro-controller to process the data, as shown in Fig. 1.

The TCRT1000 device is capable of detecting glucose-induced energy absorption when an infrared (IR) emitting LED comes into 
contact with a finger. To protect the IR LED, a current-limiting resistor 𝑅1 = 100 Ω is added in series. Similarly, a resistor 𝑅2 = 10 𝑘Ω
is connected in series with the collector through the phototransistor. In the case of the 940 nm, a current-limiting resistor 𝑅3 = 100 Ω
is added in series with the TSAL6400 emitter to prevent damage. Additionally, a resistor 𝑅4 = 10 𝑘Ω is added in series with the 
BPW34 photodetector. These resistance values can be calculated from the respective devices’ datasheets.

In order to convert the analog signal to digital signal, the output is routed to an ADS1115 converter. Particularly the channels 
𝐴0 and 𝐴2 are used to convert the signal from reflective and transmission modes, respectively. The micro-controller reads the digital 
value from ADC and then processed and analyzed to extract the features. The procedure to extract the features are given in Table 1, 
as Algorithm 1 and Algorithm 2 with a wavelength of 950 nm and the 940 nm, respectively.

As from the algorithms in Table 1, the detectors read a signal from finger and pass it to the micro-controller via ADC. Then, the 
received samples are smoothed and averaged to reduce the random variation of the extracted input features.

After the data obtained from both the wavelengths, it is possible to predict the glucose concentration using an ML regression 
model. The model considered four input features from each wavelength and predicts the glucose concentration by training. The 
proposed glucose prediction using FFNN regression model work presented in the following section.

4. Glucose prediction and evaluation metrics

To predict the blood glucose concentration, a ML model such as a neural network was used. The independent variables from 
each wavelength were used as input features to the model, and the blood glucose concentration was the target variable. The model 
would then learn the relationship between the input features and the target variable by updating the weights and biases through an 
4

iterative process such as back propagation.
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Fig. 1. Block diagram of sensor and computational unit.

Table 1

Algorithm 1 and Algorithm 2 for 950 nm and 940 nm detector respectively.

Algorithm-1 Algorithm-2

Input: adc0 Input: adc2

Output: 𝑋1, 𝑋2, 𝑋3, 𝑋4 Output: 𝑋5, 𝑋6, 𝑋7, 𝑋8
Input features from 950 nm Input features from 940 nm

Step 1: Read the detector value from finger Step 1: Read the detector value from

to adc0 ADS1115 finger to adc2 ADS1115

Step 2: initialize mv ← 0, R ← 4.08 Step 2: initialize mv ← 0, T ← 3.78

(offset value) (offset value)

Step 3: convert detector value into millivolts. Step 3: convert detector value into millivolts.

mv ← (adc0*0.1875)/100 mv ← (adc0*0.1875)/100

Step 4: Get 10 sample value from Step 4: Get 10 sample value

the detector for smoothing. from the detector for smoothing.

a[i] ← mv a[i] ← mv

Step 5: sort the data from small to large. Step 5: sort the data from small to large.

B ← a[i] B ← a[i]

a[i] ← c[j] a[i] ← c[j]

c[j] ← B c[j] ← B

Step 6: take the average value of 6 center Step 6: take the average value of 6 center

samples. samples.

d+ ← a[i] d+ ← a[i]

e ← d/6 e ← d/6

Step 7: to get average voltage value in V. Step 7: to get average voltage value in V.

X1 ← e X5 ← e

Step 8: Calculate Transmittance. Step 8: Calculate Transmittance.

𝑋2 ← 𝑋1/R 𝑋6 ← 𝑋5/T

Step 9: Calculate Absorbance of signal. Step 9: Calculate Absorbance of signal.

𝑋3 ← -log(𝑋2) X7 ← -log(𝑋6)

Step10: Calculate Reflectance of signal. Step10: Calculate Reflectance of signal.

𝑋4 ← 1 −𝑋2 −𝑋3 𝑋8 ← 1 −𝑋6 −𝑋7

4.1. Predictive model for blood glucose concentration

The FFNN has been designed to predict the glucose concentration and trained on a dataset collected from the detectors. The data 
is divided using a non-stratified approach, with 75% used for training and 25% for testing.

The FFNN consists of an input layer, two hidden layers, and an output layer. The input layer has 8 neurons corresponding to 
each of the input features. The hidden layers consist of 64 neurons in the first hidden layer, and 16 neurons each in the second 
hidden layers. The number of neurons in each layer was determined using a grid search approach, which involves testing multiple 
different network architectures with different numbers of layers and nodes to determine which performs best on a validation set. 
5

This approach is time-consuming but can be effective for finding the optimal network architecture.
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Fig. 2. Proposed FFNN glucose prediction.

Based on this approach a total of 80 neurons in the two hidden layers were used. The output layer has one neuron, which rep-

resents the predicted glucose concentration denoted by the vector y’ as shown in Fig. 2. Each layer applies a linear transformation 
to the output of the previous layer, followed by a non-linear activation function. The rectified linear unit (ReLU) activation func-

tion was used in each layer to achieve a non-linear transformation of the data and linear activation is used for the output layer. 
Mathematically, the output of each layer can be calculated using equation (1) to (3).

𝑍𝐹 =𝑅𝑒𝐿𝑈 (𝑊𝐹 ∗𝑋 + 𝑏𝐹 ) (1)

𝑍𝑠 =𝑅𝑒𝐿𝑈 (𝑊𝑆 ∗𝑍𝐹 + 𝑏𝑆 ) (2)

𝑦̂ =𝑊𝐿 ∗𝑍𝑆 + 𝑏𝐿 (3)

Where 𝑍𝐹 and 𝑍𝑆 is the output of the first and second layers, 𝑊𝐹 and 𝑊𝑆 are the weight matrix connecting the input layer to the 
first layer and from first layer to the second layer respectively. 𝑏𝐹 and 𝑏𝑆 are the bias vector of the first and second layers. 𝑦̂ is the 
predicted glucose concentration, 𝑊𝐿 is the weight matrix connecting the second layer to the output layer, and 𝑏𝐿 is the bias vector 
of the output layer. X is the input vector containing the received data from detectors. The input vector (X), weight matrices (𝑊𝐹 , 𝑊𝑆

and 𝑊𝐿) and bias vectors (𝑏𝐹 , 𝑏𝑆 and 𝑏𝐿) are represented in following manner.

𝑋8×1 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑋1
𝑋2
𝑋3
∶
∶
𝑋8

⎤⎥⎥⎥⎥⎥⎥⎦

𝑊𝐹8×64
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑊1,1 𝑊1,2 .... 𝑊1,64
𝑊2,1 𝑊2,2 .... 𝑊2,64
𝑊3,1 𝑊3,2 .... 𝑊3,64
∶ ∶ .... ∶
∶ ∶ .... ∶
∶ ∶ .... ∶

𝑋8,1 𝑊8,2 .... 𝑊8,64

⎤⎥⎥⎥⎥⎥⎥⎥⎦[ ]

6

𝑏𝐹1×8 = 𝑏1,1 𝑏1,2 𝑏1,3 ...... 𝑏1,64
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𝑊𝑆64×16
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑊1,1 𝑊1,2 .... 𝑊1,16
𝑊2,1 𝑊2,2 .... 𝑊2,16
𝑊3,1 𝑊3,2 .... 𝑊3,16
∶ ∶ .... ∶
∶ ∶ .... ∶
∶ ∶ .... ∶

𝑋64,1 𝑊64,2 .... 𝑊64,16

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝑏𝑆1×16

=
[
𝑏1,1 𝑏1,2 𝑏1,3 ...... 𝑏1,16

]

𝑊𝐿16×1 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑊3,1
𝑊3,2
𝑊3,3
∶
∶

𝑊3,16

⎤⎥⎥⎥⎥⎥⎥⎦
𝑏𝐿 =

[
𝑏3

]
The network uses glorot initialization method with adam optimizer to update the weights with 𝑙2 regularization method. The 

purpose of using this method is to prevent the vanishing or exploding gradients problem, which can occur in deep neural networks. 
This problem can cause the gradients to become too small or too large, which can negatively impact the training of the neural 
network. The glorot uniform initialization method was shown to be effective in mitigating this problem. This method generates 
initial values for the weights from a uniform distribution. The range of this distribution depends on the number of input and output 
units in each layer as calculated in equation (4).

𝑟𝑎𝑛𝑔𝑒 =

√
6

𝑛𝑖𝑛𝑝𝑢𝑡𝑛𝑜𝑑𝑒𝑠 + 𝑛𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝑜𝑑𝑒𝑠
(4)

where 𝑛𝑖𝑛𝑝𝑢𝑡𝑛𝑜𝑑𝑒 is the number of input units and 𝑛𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝑜𝑑𝑒𝑠 is the number of output units in the layer. For the first layer in our 
FFNN, which has 8 inputs and 64 neurons, the range for initialization is calculated. This means that the weights in the first layer was 
initialized within the range (-0.2886, 0.2886) using a uniform distribution.

Similarly, for the second layer, the input dimensions are determined by the number of neurons in the previous layer. In this case, 
the second layers have 16 neurons, and the previous layer has 64 neurons, so the range for initialization is calculated as (-0.2738, 
0.2738) using a uniform distribution. Finally, the output layer has only one neuron and is linearly activated. Hence, there is no need 
to specify any range for initialization. Using this initialization method the weights in the FFNN start at reasonable values and can be 
effectively trained.

After initializing the weights using the glorot uniform initialization method, the FFNN is ready to be trained on the dataset 
obtained from both the detectors. During training, the FFNN is fed with the input data through the network and comparing the 
predicted output to the true output using a loss function. The loss function measures how well the network is performing and is used 
to update the weights in the network through an optimization algorithm, such as Adam optimizer. Adam is used due to its efficiency 
in terms of memory and computational requirements. The optimizer aims to minimize the loss function, such as mean squared 
error (MSE) by calculating the gradient of the loss function with respect to the weights in the network through backpropagation. 
Backpropagation is an algorithm that calculates the partial derivative of the loss function with respect to each weight in the network, 
and it does so by propagating the error from the output layer back to the input layer. The gradient of the loss function was computed 
using equation (5).

𝜕𝐿

𝜕𝑦
= 2(𝑦̂𝑏𝑎𝑡𝑐ℎ − 𝑦𝑏𝑎𝑡𝑐ℎ) (5)

Where 𝜕𝐿
𝜕𝑦

is the gradient of the loss function, 𝑦̂𝑏𝑎𝑡𝑐ℎ is the predicted output for given input and 𝑦𝑏𝑎𝑡𝑐ℎ is the actual output for the 
same input.

After the gradient of the loss function is calculated using backpropagation, the optimizer updates the weights in the network to 
move in the direction that minimizes the loss function. The optimizer uses two estimates, namely momentum and second moment 
estimates, to update the weights. The momentum estimate represents the exponentially weighted average of the gradients, and the 
second moment estimate represents the exponentially weighted average of the squared gradients. These estimates are used to update 
the weights and biases, which helps the optimizer avoid getting trapped in local optima and allows for faster and more reliable 
convergence than other optimization algorithms. The equations for updating the momentum and second moment estimates are as 
given in equation (6) and (7), respectively.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐿

𝜕𝑦𝑡
(6)

Where 𝑚𝑡, is the momentum estimate at time step t, 𝛽1 is a hyperparameter that controls the exponential decay of the moving 
7

average, 𝑚𝑡−1 is the momentum estimate at the previous time step, and 𝜕𝐿
𝜕𝑦𝑡

is the gradient at time step t.
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Fig. 3. MSE with respect to epochs.

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(
𝜕𝐿

𝜕𝑦𝑡
)2 (7)

Where 𝑣𝑡 is the second moment estimate at time step t, 𝛽2 is a hyperparameter that controls the exponential decay of the moving 
average, 𝑣𝑡−1 is the second moment estimate at the previous time, and 𝜕𝐿

𝜕𝑦𝑡

2
is the element-wise squared gradient at time step t. The 

new weights and biases are computed using the update rule given in equation (8).

𝜃𝑡 = 𝜃𝑡−1 −

(
𝛼√
𝑣𝑡 + 𝜖

)
𝑚̂𝑡 (8)

Where 𝜃𝑡 is the weight or bias at time step t, 𝛼 is the learning rate, and 𝜖 is a small constant to prevent division by zero. 𝑚̂𝑡 and 𝑣̂𝑡
are bias-corrected estimates of the momentum and second moment, respectively. These terms are used to correct the bias towards 
zero of the momentum and second moment estimates at the start of the training process. They are calculated using equations (9) and

(10).

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
(9)

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
(10)

After updating the weights, the next batch of data is fed through the network and the process is repeated for a specified number 
of epochs. An epoch is a full iteration through the entire dataset. After training, the performance of the network was evaluated on 
a separate test dataset to assess the network generalizes to new or unseen data. This step is crucial to ensure that the model can 
generalize well on unseen data. The evaluation results help to understand the performance of the model and determine if it has 
overfit or underfit the training data. This evaluation involved the feeding of test dataset through the network and comparing the 
predicted output to the true output using a performance metrics. This has been discussed in the following sub section.

4.2. Evaluation metrics for predicted glucose

The performance metrics were evaluated from the predicted blood glucose concentration with respect to reference glucose. Dr. 
Trust’s conventional intrusive glucometer was used to measure reference blood glucose. The metrics calculated for 575 samples with 
289 subjects from the age group of 19–69. The data was collected from individuals in the random blood glucose test mode. To 
evaluate the performance of a model, the entire dataset acquired through experiments was separated from the one used for training 
dataset as 460 samples, and the test dataset of 115 samples are used to evaluate its performance. Once the model is trained, the 
evaluation results help to understand the performance of the model. To understand the performance, various metrics such as mean 
squared error (MSE), mean absolute error (MAE), and coefficient of determination (𝑅2) was evaluated on both the training and test 
sets. One way to do this is by plotting a learning curve. A learning curve is a plot that shows the performance of the model on the 
training and testing data as a function of the number of epochs.

The results displayed in Fig. 3 indicate that the MSE decreases for both the training and testing datasets as the number of epochs 
increases. It indicates that the model is learning from the data and generalizing well to new, unseen data. Similar kind of response is 
obtained for MAE curve shown in Fig. 4. On the other hand the learning curve for the 𝑅2 increases for both datasets as the number 
of epochs increases as shown in Fig. 5.

In contrast, overall evaluation metrics provide a summary of the model’s performance across the entire dataset. These metrics 
8

are typically calculated after the model has been trained and tested on the entire dataset. For this purpose, the evaluation metrics 
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Fig. 4. MAE with respect to epochs.

Fig. 5. Coefficient of determination (𝑅2) with respect to epochs.

include the MSE, MAE, and mean absolute percentage error (MAPE) were evaluated. These metrics provide a single number that 
summarizes the overall performance of the model. This overall metrics are determined by using equations (11) to (13). The MSE loss 
function is used to calculate the difference between the predicted output and the actual output. It is given by equation (11).

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦− 𝑦̂|2 (11)

The MAE measures the average absolute difference between the predicted output and the actual output. It is given by equation 
(12).

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦− 𝑦̂| (12)

Where 𝑦 is the actual output, 𝑦̂ is the predicted output, and 𝑛 is the total number of samples. The MAPE is given in equation (13).

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛∑
𝑖=1

𝑦− 𝑦̂

𝑦
× 100 (13)

Finally, the 𝑅2 is evaluated in addition to the above metrics. It measures the proportion of the variance in the dependent variable 
that can be explained by the independent variable(s). Mathematically, it is calculated as in equation (14).

2 𝑆𝑆𝑟𝑒𝑠
9

𝑅 = 1 − (
𝑆𝑆𝑡𝑜𝑡

) (14)
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Table 2

Comprehensive performance evaluation metrics comparison of various ML models.

Metrics FFNN LR RF DT KNN XGB SVM

Layers 64X16 - - - - - -

Optimizer Adam - - - - - -

Epoch 200 - - - - - -

Batchsize 32 - - - - - -

HL activation Relu - - - - - -

O/p activation Linear - - - - - -

𝑅2 0.99 0.99 0.99 0.99 0.99 0.99 0.93

MSE (mg/dl)2 9.16 9.74 10.52 15.08 11.50 12.4 509.3

MAPE (%) 1.94 2.04 1.88 2.15 2.00 1.93 18.06

MAE (mg/dl) 2.49 2.60 2.48 2.82 2.72 2.5 20.95

RMSE (mg/dl) 3.02 3.12 3.24 3.88 3.39 3.5 22.56

Table 3

Performance comparison of the current work with existing studies.

Proposed [57] [61] [64] [65] [66] [67]

𝑅2 value 0.99 0.908 0.96 0.95 - - 0.93

mAPE (%) 1.94 3.25 - - 7.01 - 5.43

MSE (mg/dl)2 9.16 - - - - - -

MAE (mg/dl) 2.49 3.87 - - 5.23 - -

RMSE 3.02 5.61 11 - 7.64 - -

Technology NIR NIR NIR OCT Photoacoustic Visible NIR

Where 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals (i.e., the sum of squared differences between the predicted and actual values) 
and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares (i.e., the sum of squared differences between the actual values and the mean of the dependent 
variable). A higher 𝑅2 value indicates a better fit between the predicted values and the actual values, and hence a better performance 
of the model.

To demonstrate the effectiveness of the proposed FFNN system, we conducted a comprehensive evaluation comparing it with 
various ML algorithms, including LR, RF, DT, KNN, extreme gradient boost (XGB), and SVM. Across the evaluation metrics, the 𝑅2

value remained consistently high for all algorithms, ranging from 0.93 to 0.99. This robust 𝑅2 performance signifies the ability of 
these models to effectively explain the variance in glucose levels. In terms of the MAPE, results ranged from 1.88% to 18.06%. 
Especially, the FFNN, LR, and XGB models achieved the lowest MAPE values, indicating their superior accuracy in predicting glucose 
levels. Further, examined the MSE in 𝑚𝑔∕𝑑𝑙2. These values spanned from 9.16 to 509.3 and both the FFNN and LR models exhibited 
the lowest values, underscoring their higher precision in predictions. When considering the MAE in mg/dl, the range extended from 
2.48 to 20.95. Here, the FFNN model attained the lowest value, reinforcing its accuracy in predicting glucose levels. Finally, the 
RMSE values ranged from 3.02 to 22.56 and the FFNN model boasted the lower RMSE values, which reflects its enhanced ability 
to capture differences between predicted and actual glucose levels. Based on the above metrics, both the FFNN and LR models 
consistently demonstrated well in terms of accuracy, precision, and prediction of glucose levels This robust evaluation underscores 
the effectiveness of our proposed FFNN approach and its alignment with the LR model’s efficacy in handling this complex predictive 
task as shown in Table 2.

In addition, to demonstrate the strength of the proposed approach, a performance comparison between the current work and 
existing studies is provided in Table 3.

4.3. Relation between predicted glucose and input features

After the analysis of the predicted glucose, it was observed that there is a strong correlation between the input features and the 
glucose concentration in the subject’s finger. Fig. 6, depict the relationship between the input features and the glucose concentration 
present in the subject’s finger. As the voltage obtained by the detectors increases, the glucose molecules absorb low signal, resulting in 
a decrease in the predicted glucose concentration. Conversely, if the glucose concentration absorbs more signal, the obtained voltage 
decreases, indicating a higher predicted glucose concentration.in addition, the relationship between transmittance, absorbance, and 
reflections of the signal can be further explored in terms of predicted glucose concentration. As the predicted glucose concentration 
increases, the absorbance of the signal also increases, while the transmittance of the signal decreases with a decaying behavior de-

picted in Fig. 6. Based on the measured maximum and minimum glucose in both the reflective and transmission modes, respectively, 
they appear to be 400 mg/dl and 404 mg/dl, as well as 63 mg/dl and 64 mg/dl. Moreover, Table 4 presents the predicted glucose 
concentration ranges for minimum and maximum values based on absorbance, transmittance, and reflections at both wavelengths.

Furthermore, the measured predicted glucose with FFNN model and the reference glucose from reference device with respect to 
10

number of samples collected is shown in Fig. 7. The predicted glucose shows a linear relationship with the reference glucose. The 
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Fig. 6. Relation between predicted glucose and input features.

Table 4

Input features, minimum and maximum values compared to predicted 
glucose.

950 nm Reflectance 940 nm Transmission

Min Max Min Max

Glucose (mg/dl) 63 400 64 404

Absorbance (A) 0.12 0.44 0.04 0.40

Transmittance (T) 0.75 0.35 0.89 0.39

Reflections (R) 0.12 0.19 0.05 0.20

Fig. 7. Glucose comparison between reference and predicted.

subsequent section described the analysis of clinical accuracy and consistency of the glucose prediction model. To accomplish this, 
two widely used methods were employed, the SEG and Bland-Altman plot analyses.

4.4. Clinical accuracy and consistency analysis

The SEG and Bland-Altman plot are both commonly used methods for evaluating the accuracy of a measurement or prediction 
method, but they serve different purposes and are appropriate for different types of analyses.

By plotting the measured glucose values from a device against reference values of finger prick glucometer, the SEG method 
allows for a visual representation of the device’s accuracy and clinical acceptability. The accuracy of the model for predicting glucose 
values was evaluated by undergoing a SEG analysis. To assess the accuracy of the model, the SEG analysis was conducted on both 
the train and test datasets. The grid’s layout determines the zone for each data point, signifying the level of clinical risk linked to 
the measurement error. These zones range from A (green area) to E (dark red or black), where A is the most clinically acceptable 
11

and E signifies the highest risk. In the proposed system, the predicted glucose falls within zone A, which is clinically acceptable 
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Fig. 8. SEG analysis: (a) Training dataset, (b) Test dataset.

Fig. 9. Bland-Altman plot with mean difference for the proposed model.

in comparison to the reference device. This is demonstrated in Fig. 8(a) and Fig. 8(b). The results showed that the FFNN method 
achieved 100% linearity with the reference glucose values up to 430 mg/dl. This indicates that the model can accurately predict 
glucose values across a wide range of concentrations, which is crucial for effectively managing diabetes.

On the other hand, the Bland-Altman plot is a graphical method used to evaluate the level of agreement between two measurement 
methods. It is particularly useful for comparing the difference between the two methods with their average and plots them on a graph. 
This plot consists of a scatter plot of the difference between the two measurement methods on the y-axis and the average of the two 
methods on the x-axis. A horizontal line is also included to indicate the mean difference between the two methods, and two additional 
lines are included to show the upper and lower limits of agreement. In this study, the plot analysis shown in Fig. 9, revealed a mean 
difference between the predicted and actual glucose values of 0.16 mg/dl, which is relatively small and indicates good agreement 
between the predicted and actual glucose values. Moreover, the plot shows a cluster of data points around the mean difference 
line, which further supports the accuracy of the glucose prediction model. After analyzing the SEG and Bland-Altman plot results, 
the subsequent stage involves categorizing glucose levels into various groups based on predicted values, through a MLP and KNN 
classifiers. This process will be elucidated in the following section.

5. Multiclass glucose classification with MLP and KNN classifiers

In this section, we focus on the use of the MLP and KNN classifiers for the multiclass classification of glucose levels from the input 
features. The ML classification models are trained to accurately predict the class labels of new cases. The multiclass classification 
task is to classify the glucose levels into three classes - hypoglycemic (class 0), normal (class 1), and hyperglycemic (class 2) within 
12

the glucose concentration range of 63 mg/dL to 404 mg/dL.
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Table 5

Optimized hyperparameters for MLP for different fold CV.

Evaluation Folds Gridsearch CV Hyperparameters

5-Fold activation= tanh, hiddenlayersize= 100, learningrate= constant, solver= adam

10-Fold activation=tanh, hiddenlayersize= 100, learningrate= constant, solver= adam

15-Fold activation= tanh hiddenlayersize= 100, learningrate= constant, solver= adam

*Constant learning rate: 0.001.

Fig. 10. MLP classifier performance (a) 5-fold accuracy, (b) 5-fold accuracy loss, (c) 5-fold model performance, (d) 10-fold accuracy, (e) 10-fold accuracy loss, (f) 
10-fold model performance, (g) 15-fold accuracy, (h) 15-fold accuracy Loss, and (i) 15-fold model performance.

5.1. MLP classifier classification

The MLP classifier operates through training the network using a labeled data set, which includes a series of input features: 
𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, and 𝑋8. To divide the data, a stratified approach was employed. This involved splitting the data set into 
two parts: 80% was allocated for training, and the remaining 20% was reserved for testing. After training, the MLP classifier were 
used to predict the output class for new input. To enhance the classifiers’ performance, hyperparameter tuning was performed using 
the grid search cross-validation (CV) method. During this process, a range of hyperparameters were examined and then selected 
the best combination from the initial parameters. The optimized hyperparameters for 5-fold, 10-fold, and 15-fold CV are described 
in Table 5. Fig. 10 illustrates the performance of the MLP model across various metrics, including accuracy (Fig. 10(a), Fig. 10(d), 
and Fig. 10(g)), loss (Fig. 10(b), Fig. 10(e), and Fig. 10(h)), and overall model performance (Fig. 10(c), Fig. 10(f), and Fig. 10(i)), 
utilizing three distinct CV techniques. The mean accuracy and neg log loss is given in Table 7.

Further, a multi-class classification analysis was conducted with three classes (0, 1, and 2) using 5, 10, and 15 CV folds. The 
results are presented in Fig. 11, Fig. 12, and Fig. 13, respectively. This analysis allowed us to observe both the correct and incorrect 
13

predictions made by the model for each class, utilizing a confusion matrix.
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Fig. 11. MLP Classifier Metrics for 5-fold CV (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

Fig. 12. MLP Classifier Metrics for 10-folds (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

During the 5-fold validation process, the confusion matrix analysis (Fig. 11(a)) for Class 0 showed a precision of 93%, a recall of 
100%, and an F1-score of 96% across 26 instances. In contrast, Class 1 demonstrated a precision of 100%, a recall of 96%, and an 
F1-score of 98% across 45 instances. For Class 2, both precision and recall were 100%, resulting in an F1-score of 100% across 44 
14

instances. The model achieved an accuracy of 98% across 115 instances. The macro average for precision, recall, and F1-score was 
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Fig. 13. MLP Classifier Metrics for 15-folds (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

Table 6

Optimized hyperparameters of KNN for different fold CV.

Evaluation Folds Gridsearch CV Hyperparameters

5-Fold n-neighbors=14

10-Fold n-neighbors=16

15-Fold n-neighbors=20

98%, 99%, and 98%, respectively. Similarly, the weighted average for precision, recall, and F1-score remained at 98% for the 5-fold 
CV in Fig. 11(d).

The ROC-AUC curve fitted well for class 0, class 1, and class 2 in the 5-fold MLP classifier (Fig. 11(b)). The learning curve 
maintained a balance from the initial to the final instances in the multiclass classification, as illustrated in Fig. 11(c).

Moving on to the 10-fold and 15-fold validation processes, the analysis of Class 0, Class 1, and Class 2 consistently showed a 
precision and recall of 100% in each fold, resulting in an F1-score of 100% across 26, 45, and 44 instances (Fig. 12(a) and Fig. 13(a)). 
Also, the ROC-AUC curve fitted well for all classes as shown in Fig. 12(b) and Fig. 13(b). Additionally, the learning curves maintained 
a balance from the initial to the final instances in multiclass classification, as illustrated in Fig. 12(c) and Fig. 13(c). Based on these 
results, the model achieved both macro average and weighted average accuracies of 100% for each metric, as depicted in Fig. 12(d) 
and Fig. 13(d) for the 10-fold and 15-fold CV, respectively.

5.2. KNN classifier classification

The KNN classifier is a type of ML method that is commonly for classification tasks. The k-nearest training data points to the test 
data point are considered, and the class that appears most frequently among these k-neighbors is assigned to the test data point. The 
closer a neighbor is to the test data point, the higher its weight. After training, the KNN classifier were used to predict the output 
class for new input. To enhance the classifiers’ performance, hyperparameter tuning was performed using the grid search CV method. 
During this process, a range of hyperparameters were examined and then selected the best combination from the initial parameters. 
The optimized hyperparameters for 5-fold, 10-fold, and 15-fold CV are described in Table 6. Fig. 14 illustrates the performance of 
the KNN model across various metrics, including accuracy (Fig. 14(a), Fig. 14(d), and Fig. 14(g)), loss (Fig. 14(b), Fig. 14(e), and 
Fig. 14(h)), and overall model performance (Fig. 14(c), Fig. 14(f), and Fig. 14(i)), utilizing three distinct CV techniques. The mean 
accuracy and neg log loss is given in Table 7.

Further, a KNN multi-class classification analysis was conducted with three classes (0, 1, and 2) using 5, 10, and 15 CV folds. The 
results are presented in Fig. 15, Fig. 16, and Fig. 17, respectively. During CV process in each fold Class 0 confusion matrix analysis 
(Fig. 15(a), Fig. 16(a), and Fig. 17(a)) showed across 26 instances. In contrast, Class 1 demonstrated a precision of 98%, a recall of 
15

100%, and an F1-score of 99% across 45 instances. For Class 2, both precision and recall were 100%, resulting in an F1-score of 
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Fig. 14. KNN classifier performance (a) 5-fold accuracy, (b) 5-fold accuracy loss, (c) 5-fold model performance, (d) 10-fold accuracy, (e) 10-fold accuracy loss, (f) 
10-fold model performance, (g) 15-fold accuracy, (h) 15-fold accuracy loss, and (i) 15-fold model performance.

100% across 44 instances. The model achieved an accuracy of 99% across 115 instances. The macro average for precision, recall, 
and F1-score was 99%, 99%, and 99%, respectively. Similarly, the weighted average for precision, recall, and F1-score remained at 
99%, as shown in Fig. 15(d) for 5-fold CV, Fig. 16(d) for 10-fold CV, and Fig. 17(d) for 15-fold CV. The ROC-AUC curve fitted well 
for class 0, class 1, and class 2 in the 5-fold (Fig. 15(b)), 10-fold (Fig. 16(b), and 15-fold (Fig. 17(b)) KNN classifier. The learning 
curve maintained a balance from the initial to the final instances in all folds of KNN classifier as illustrated in Fig. 15(c), Fig. 16(c), 
and Fig. 17(c), respectively.

5.3. Classification performance evaluation

The two aforementioned classifier performance results were compared across various metrics such as precision, recall, and an 
F1-score. These comparative results have been presented in Table 7. Also, the classification metrics for 3 classes and two methods 
are shown in Fig. 18. The training and testing accuracy is depicted in Fig. 19, for 5-fold, 10-fold, and 15-fold. After evaluating the 
classifiers, it has been observed that both classifiers are effective in classifying the given data. The results indicate that the both the 
classifiers are comparatively higher ROC-AUC and precision-recall values, implying better overall performance.

However, to ascertain the superiority, an additional metric, known as negative log loss, was utilized to evaluate the models. This 
evaluation approach proves effective due to its capacity to provide insights into the alignment of a probabilistic model’s predictions 
with actual outcomes. It takes into account the probabilities assigned to predicted outputs and assigns scores based on the magnitude 
of error. This metric can be achieved using equation (15).

𝑛𝑒𝑔𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = − 1
𝑁

𝑁∑
𝑖=1

𝐶∑
𝑗=1

𝑦𝑖𝑗 log(𝑦𝑝𝑟𝑒𝑑,𝑖𝑗 ) (15)

where, N is the total number of instances, C is the total number of classes, 𝑦𝑖𝑗 is a binary indicator (1 or 0) for whether class j is the 
16

correct classification for instance i 𝑦𝑝𝑟𝑒𝑑,𝑖𝑗 is the predicted probability of instance i being classified as class j. Table 8 presents the 
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Fig. 15. KNN Classifier Metrics for 5-folds (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

Fig. 16. KNN Classifier Metrics for 10-folds (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

performance results of the model classifiers under different conditions of CV folds. The mean accuracy and mean negative log loss 
results collectively offer insights into the performance of both models.

The KNN model tends to achieve marginally higher mean accuracy and lower mean negative log loss values compared to the MLP 
model across various CV fold settings. These results suggest that the KNN model demonstrates better confidence in its predictions 
17

and a slightly superior average accuracy in classifying instances. From Table 9 we observed that the average training and CV 



Heliyon 10 (2024) e28720M. Naresh, V.S. Nagaraju, S. Kollem et al.

Fig. 17. KNN Classifier Metrics for 15-folds (a) Confusion matrix, (b) ROC AUC curve, (c) Learning curve, and (d) Precision-recall.

Table 7

Performance metrics for different folds and models.

5-Fold 10-Fold 15-Fold

MLP KNN MLP KNN MLP KNN

Precision 0.93 1 1 1 1 1

Class-0 Recall 1 0.96 1 0.96 1 0.96

F1-score 0.96 0.98 1 0.98 1 0.98

Precision 1 0.98 1 0.98 1 0.98

Class-1 Recall 0.96 1 1 1 1 1

F1-score 0.98 0.99 1 0.99 1 0.99

Precision 1 1 1 1 1 1

Class-2 Recall 1 1 1 1 1 1

F1-score 1 1 1 1 1 1

Table 8

Comparison for ML classification for mean accuracy and neg log loss.

Model classifier Grid Search CV Folds Mean Accuracy Mean neg logloss

5 0.976(+/-0.022) -0.084(+/-0.015)

MLP 10 0.976(+/-0.025) -0.127(+/-0.025)

15 0.974(+/-0.036) -0.108(+/-0.030)

5 0.983(+/-0.015) -0.040(+/-0.019)

KNN 10 0.980(+/-0.030) -0.044(+/-0.034)

15 0.978(+/-0.020) -0.048(+/-0.041)

performance using learning curves, the KNN model appears to be slightly better than the MLP model. It has higher training and CV 
scores, indicating better generalization to unseen data.

6. Discussion

The proposed dual wavelength NI blood glucose detection technique has been found to be superior to the technologies discussed 
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in Section 2 and Section 3, with a high 𝑅2 value and minimum MSE [57][61]. The 𝑅2 value of 99%, the dual-wavelength model 
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Fig. 18. Performance comparison for MLP and KNN classifiers.

Fig. 19. Training and testing accuracy for MLP and KNN classifiers.

Table 9

Learning Curve (Average).

Model Performance %

Training Cross-validation

MLP 93.8 93.2

93.0 91.8

93.0 92.8

KNN 94.4 94.2

93.4 93.0

93.7 93.5

demonstrates strong predictive capabilities, effectively capturing the relationships between 8 input features and predicted glucose 
with respect to reference values. The utilization of an MLP and KNN classifier in the classification revealed that the KNN classifier 
demonstrated superior performance over the MLP classifier. The MLP classifier demonstrates stable training performance at around 
93.8%, highlighting high accuracy on training data, with CV averaging around 92.6%, indicating good generalization. The KNN 
classifier shows slightly higher training performance (94.4%) and closely aligned CV (93.6%), reflecting effective learning and 
generalization capabilities. The study involved the collection of samples from 289 subjects, with hypo, normal and hyperglycaemia 
19

subjects (gender: male and female, age: 19-69 years; BMI at 29 ± 6, blood glucose level through Glucometer (BG ranging from 63 to 
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400 mg/dL). Also, the samples included 282 T2D and 7 T1D patients, overseen by a medical practitioner. The inclusion of samples 
from both patient groups is imperative for a more precise representation of real-world scenarios. Blood glucose levels were measured 
using the proposed glucose monitoring technique and a reference Dr Trust finger pick device. A total of 575 samples were collected, 
covering individuals with a history of hypoglycemia, normal, and hyperglycemia conditions. Categorizing blood glucose levels break 
down into hypoglycemic (< 70 mg/dL), normal (70 to 120 mg/dL), and hyperglycemic (> 120 mg/dL) ranges in fasting is crucial 
for both immediate clinical decision-making and long-term management. This categorization improves the interpretation of data 
obtained through the proposed system and the Dr Trust finger pick device, ensuring a comprehensive assessment of glycemic control. 
Informed consent was obtained from all participants, in compliance with the Helsinki guidelines.

The blood glucose levels were measured using a proposed glucose monitoring technique and a reference Dr Trust finger pick 
device, with the data obtained from a total of 575 samples collected from subjects with a history of hypoglycemia, normal, and 
hyperglycemia. The blood glucose levels obtained through the proposed method ranged from 63 to 404 mg/dL, with the levels 
categorized as hypoglycemic (BG level < 70 mg/dL), normal (69 > BG level < 180 mg/dL), and hyperglycemic (BG level > 180 
mg/dL). The reference Dr Trust device uses the enzyme (FAD − GAD) on the principal Glucose dehydrogenase (GDH) flavin adenine 
dinucleotide (FAD), with a measuring range of 30-600 mg/dL, using 0.5 microlitre blood drop with the help of Dr Trust glucose 
strips. The device has been validated with HbA1C lab test of 7 patients, and the results were found to be 99% accurate with the 
reference device.

During the sample collection, it was observed that there was no significant correlation between finger width and finger length. The 
received light intensity for both hands pointing, middle and ring fingers was identical, and finger color did not affect blood glucose 
levels. With the prototype system setup, glucose measurement values were unaffected by changing light conditions. An analysis of 
the subject at age 38 was conducted to demonstrate this. Blood glucose levels were measured at 3-hour intervals throughout the day, 
and data was collected from various finger combinations. The proposed method was found to be suitable only for measuring fingertip 
tissue.

Despite these promising outcomes, the study acknowledges certain limitations for future improvements. The system has the po-

tential to be enhanced into a continuous glucose monitoring system that can predict future glucose levels based on the patient’s 
recent medical history. Moreover, furthermore, incorporating demographic information into the model, including factors like age 
and gender, holds promise for further enhancing measurements. Furthermore, ongoing investigation’s primary focus has been on ap-

plying machine learning algorithms to optimize detector data for determining glucose levels. Future stages could explore integrating 
machine learning methodologies into the device design process itself to expand the horizons of our research.

7. Conclusion

In this study, a dual-wavelength system using 950 nm and 940 nm was proposed for non-invasive glucose level determination. 
The system was tested on 289 subjects, and a total of 575 real-time samples were collected and compared with measurements taken 
from a gold standard Dr. Trust glucose meter. To enhance accuracy, a FFNN regression model was used, resulting in an 𝑅2 value 
of 99% and an MAE of 2.49 mg/dl, for real-time data analysis with the proposed method. The RMSE was found to be 3.02 mg/dl 
and the MSE was 9.16 (𝑚𝑔∕𝑑𝑙)2 compared with basic machine learning models. Two classification methods were used to predict 
multiclass, with 99% accuracy achieved using 2-classifiers. Based on these results, the proposed method appears to be more efficient 
for predicting glucose and glucose level classes. The scope of system can be further implemented for time series data with Type-I and 
Type-II diabetes sample for continuous glucose monitoring for future prediction of glucose based on previous history.
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