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Simple Summary: Relapse after apparent remission remains a major cause of death in patients with
acute myeloid leukemia (AML). On the cellular level, leukemia relapse is considered to emerge from
subpopulations of therapy-resistant leukemic stem cells (LSC). Identification and targeting of LSC are
thus most important goals for AML treatment. However, AML and their LSC are highly heterogeneous.
Here, we review the current knowledge on AML LSC identification and targeting via surface antigens
with a focus on heterogeneity among different AML subgroups and genetic backgrounds.

Abstract: Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical
outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and
outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform
variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal
hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized
and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the
cellular level constitute the driver of the disease and may evolve during therapy. This genetic and
hierarchical complexity results in a pronounced phenotypic variability, which is observed among
AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis
and during the course of the disease. Here, we review the current knowledge on the heterogeneous
landscape of AML surface markers with particular focus on those identifying LSC, and discuss why
identification and targeting of this important cellular subpopulation in AML remains challenging.
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1. Introduction

Acute myeloid leukemia (AML) is a devastating, rapidly-evolving disease characterized by an abnormal
proliferation of poorly-differentiated cells which impairs normal hematopoiesis. AML patients suffer from
cytopenia associated with recurrent infections, anemia, easy bleeding, and other manifestations [1] and show
highly variable responses to therapy and survival rates. Notably, a major cause of disease progression and
relapse is the persistence of therapy-resistant, clonogenic leukemic subpopulations: the leukemic stem
cells (LSC) [2].
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In 1994, John Dick and colleagues were the first to prove the existence of human LSC in an in vivo
experimental model. Human CD34+ leukemic cells were shown to repopulate the bone marrow
(BM) of severe combined immunodeficient (SCID) mice, while CD34− leukemic blasts remained
non-leukemogenic [3,4]. These CD34+ cells responsible for leukemia initiation and maintenance
were termed LSC. Nowadays, they are documented as cells with enhanced capacities to selectively
escape chemotherapy treatments [5] as well as immune surveillance [6], thus leading to disease
relapse after therapy, a major cause of death in these patients. Since AML is highly heterogeneous
with respect to genetic alterations, epigenetics, and leukemia cell of origin, it is not surprising that
considerable heterogeneity is also observed among surface markers of AML cells and their LSC [2],
making immunological targeting of LSC a constant challenge [7–9].

2. Leukemic Stem Cells and Healthy Stem/Progenitor Cells

Hematopoiesis is organized hierarchically with a minor subset of hematopoietic stem cells (HSC)
giving rise to all blood cells during the lifespan of an individual. HSC must balance regenerative
requirements (which naturally involve cell division and differentiation) with the need to protect
their own genomic integrity by reducing cell division. In order to achieve this, HSC undergo highly
complex fine-tuned interactions with the BM microenvironment and interact with several other cell
types (e.g., osteoblasts, stromal cells, endothelial cells, adipocytes, and neural cells) via soluble factors,
biophysical forces, and cell-mediated interactions [10]. Similarly, LSC also reside and are influenced by
the so-called BM niche, which sustains their quiescence and protects them from genotoxic stress [11,12].

AML is also organized hierarchically and contains subpopulations of LSC that share functional
and molecular properties with their cells of origin, the healthy hematopoietic stem and progenitor cells
(HSPC) [4,13–15]. Consistent with a close relationship between these two cell types, molecules expressed
on healthy HSPC, i.e., CD34, were also reported to identify LSC [16]. Functionally, the CD34 family
encompasses podocalyxin and endoglycan proteins and is considered to regulate cell differentiation,
adhesion, trafficking, and proliferation [17]. CD34 is expressed on the vast majority of HSC, but rare
CD34− HSC giving rise to CD34+ HSPC have also been reported [16].

In 2016, the LSC17 gene expression score was defined as the molecular LSC hallmark that predicts
outcome and treatment resistance in patients with AML [18]. Among the genes highlighted in the LSC17
score were e.g., CD34 and the G protein-coupled receptor GPR56, a surface protein involved in
cell adhesion which was also described to mark healthy HSC [16,19]. However, great phenotypic
heterogeneity is observed in AML LSC and a wide range of surface markers has been found to identify
LSC in only some, but not all AML (e.g., CD93, TIM3, CD44, CD123, etc. [9,20–26]).

3. The Relevance of Immunomodulatory Proteins for LSC Detection

Interestingly, a variety of antigens involved in LSC identification are in fact involved in
immunological processes (Figure 1, Table 1). This suggests that LSC and non-LSC may have different
interactions with the immune system. This notion has been substantiated by recent work from our
research group demonstrating that LSC selectively escape immune surveillance by suppressing surface
expression of NKG2D ligands (NKG2DL) [6]. When compared to corresponding non-stem leukemic
blasts from the same patients, LSC lack expression of such ligands for activating NKG2D receptors
on natural killer (NK) cells thereby evading NK-mediated lysis. In several AML patient samples of
heterogeneous genetic backgrounds, lack of NKG2DL surface expression robustly distinguished LSC
from other non-stem leukemic cells [6].

Other examples of immunomodulatory proteins involved in LSC identification (Figure 1) include
the immunoglobulin superfamily member CD96, a molecule expressed on healthy T and natural
killer cells with known inhibitory roles on NK cells [27], TIM-3 (T cell immunoglobulin mucin-3),
a homeostasis-maintaining molecule of the immune system expressed on the surface of CD4+ T type
1 helper cells (Th1) and CD8+ T type 1 cytotoxic cells, monocytes/macrophages, dendritic cells
(DC), and mast cells [28], the lectin protein CLL-1 regulating cell activation during inflammation
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and CD32, an immune-activating immunoglobulin Fc receptor family member showing broad
expression on hematopoietic cells [29,30]. Furthermore, the interleukin-2 receptor alpha-chain
CD25 commonly expressed on activated and regulatory T cells, but also found on resting memory
T cells [31], and CD123, the interleukin-3 receptor (IL-3R) alpha chain, which is part of the IL-3R system
that includes interleukin-5 receptor (IL-5R) and granulocyte-macrophage colony stimulating factor
receptor (GM-CSFR), are also found on LSC. While interleukin 2 is important for survival, activation,
and proliferation of T cells, the IL-3R system influences proliferation, survival, and differentiation of
hematopoietic cells and is involved in immunity and inflammatory response by specifically binding
respective ligands (IL-3, IL-5, and GM-CSF) [32].
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Figure 1. Surface antigens involved in leukemic stem cells (LSC) identification. Several surface proteins
involved in LSC identification are involved in immune processes (e.g., TIM-3, CLL-1, CD47 . . . )
or interactions with the bone marrow niche (e.g., GPR56, CD44 . . . ).

Last but not least, the immunoglobulin-like and integrin-associated protein CD47 was identified as a
novel AML LSC marker [33]. CD47 serves as a ligand of signal regulatory protein-1 (SIRP-1) and thereby
functions as a “don’t eat me” signal, protecting LSC from macrophage phagocytosis [34].

4. LSC Surface Markers in CD34 Expressing Compared to CD34 Non-Expressing AML

The HSPC antigen CD34 is a well-established LSC surface marker in AML. However, approximately
30% of AML cases lack robust CD34 expression among leukemic blasts, perhaps because they originate
from healthy CD34− hematopoietic progenitors. The LSC compartment of these AML cases (in the
following termed “CD34 non-expressing AML”) is less well studied but was shown to also contain
CD34 negative LSC [18,35–37]. We have therefore decided to separately review LSC markers reported
for CD34 expressing and non-expressing AML subtypes and their LSC (See Table 1).

4.1. CD34 Expressing AML Contain CD34+ LSC

AML LSC were first experimentally defined as subpopulations of CD34+ AML cells [3]. In follow-up
studies, LSC were then further enriched in this subpopulation by selection for the lack of CD38 expression,
an antigen induced upon myeloid differentiation in healthy hematopoietic cells [4] functioning as a
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NAD+ glycohydrolase [38] or co-expression of the tyrosine phosphatase CD45RA [35,39,40], a CD45
isoform which plays a role in T cell signaling [41]. Upon isolation and injection into immunodeficient
mice, LSC positive or negative for CD45RA and/or CD38 were able to induce leukemia, indicating that
LSC can also be found in populations that phenotypically resemble more mature cells, such as common
myeloid or granulomonocytic progenitors (CMP/GMP) [25,35,39,40]. CD45RA has been shown to potently
enrich/isolate LSC compared to markers such as CD123, CCL-1, or the pan-myeloid antigen CD33 [39],
however here only the CD34+/CD38− compartment was investigated regarding CD45RA expression.
Therefore, LSC might have been missed in CD34− or CD38+ subpopulations in these studies.

Interestingly, CD45RA+ LSC were also documented to express CD123. In two independent studies,
CD34+/CD38−/CD45RA+/CD123+ or CD34+/CD38+/CD45RA+/CD123+ cells were leukemogenic,
highlighting the potential of CD123 as a marker capable of identifying and enriching LSC [35,40].
In line, recent studies showed that high percentages of CD34+/CD38−/CD123+ cells at diagnosis of
AML could indicate poor prognosis in patients [42]. A retrospective analysis of more than 100 patients
under 65 years of age with de novo AML indicated that higher percentages of CD34+/CD38−/CD123+

leukemia cells at diagnosis associate with enhanced probability of resistance to intensive chemotherapy
and shorter disease-free survival [42]. A prospective study including 444 elderly AML patients
confirmed the prognostic significance of CD34+/CD38−/CD123+ at diagnosis for the clinical outcome
of patients receiving intensive chemotherapy, but not for those treated with hypomethylating agents
only [43]. Since CD123 is likely not expressed on healthy HSC [44,45], it might represent an attractive
candidate for immunological targeting of LSC.

Proteins of the so-called multi drug resistant (MDR) group, such as MDR1, BCRP, MDR3, MRP1
(also known as CD9), or LRP [46], are also heterogeneously expressed in AML with higher expression
levels in CD34+CD38−CD123+ LSC. Expression of the tetraspanin protein CD9 nicely enables the
discrimination of LSC from HSC. However, CD9 is also detectable on multipotent and lymphoid primed
multipotent progenitors [47] and on cells from solid tumors (e.g., lung, breast, thyroid, and pancreas
cancer (stem) cells [48,49]).

Finally, contradictory data exists on the expression of CD90, a multifunction cell surface glycoprotein
and its involvement in LSC biology [50–52]. As such, it was e.g., documented that CD90 is absent on most
AML blasts [52] despite its function in the maintenance of HSC both in vitro and in vivo [53], and cells
lacking surface expression of this antigen were able to form colonies and lead to leukemia onset in
patient-derived xenograft (PDX) assays [52].

4.2. CD34 Non-Expressing AML and Their LSC

The so-called “CD34 non-expressing AML” is known to completely lack or harbor only very low
percentages of CD34+ subpopulations. Taussig and colleagues demonstrated that in such AML, LSC are
comprised within CD34− subpopulations. Among these, CD34−/CD38+ as well as CD34−/CD38−

subpopulations induced leukemia [37]. The existence of CD34- LSC was separately demonstrated by
Sarry and colleagues [35]. Especially when present at very low numbers, CD34+ cells from such “CD34
non-expressing AML” may lack leukemogenic properties because they in fact represent contaminating
cells that are of a non-malignant nature. This notion is supported by their capacities to regenerate
normal hematopoiesis in xenotransplanted mice [37].

The existence of CD34 non-expressing AML (and CD34− LSC) suggests that these cells may
derive from more differentiated (CD34−) healthy hematopoietic cells. They might undergo leukemic
transformation by acquisition of mutations in genes aberrantly conferring self-renewal and stem-like
properties, such as mutations in nucleophosmin NPM1, which are commonly found in CD34
non-expressing AML, thereby leading to aberrant activation of Hox gene expression [54].

Further enrichment within CD34− LSC subpopulations can be provided by analyses of surface
expression levels of the transmembrane tyrosine kinase cKIT (CD117) and the natural killer cell receptor
2B4, also known as CD244 (See Table 1). cKIT+ cells alone showed various level of engraftment,
but cKIT and CD244 double positive cells robustly engrafted in all AML cases [36]. Among healthy
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hematopoietic cells, cKIT and CD244 are expressed by GMPs. In line, CD34− LSC from NPM1 mutated
AML were shown to harbor both a GMP and a stemness signature [36]. Accordingly, Goardon and
colleagues demonstrated that LSC can derive from more committed progenitors regardless of their
CD34 expression [40]. Furthermore, CD32 expression was shown to enrich LSC when applied in
conjunction with CD38 in CD34 non-expressing AML [7]. Finally, although being expressed at higher
levels in CD34-non-expressing AML, CLL-1 expression can distinguish LSC in both CD34-expressing
and non-expressing AML [55,56]. Of note, CLL-1 is apparently not expressed on healthy HSC [24].
Further underscoring the complexity of these heterogeneous cellular systems, there are also data
reporting that CD34− LSC may develop in vivo into serially transplantable CD34+ and CD34− cells [36],
which in secondary recipients may give rise to both subpopulations.

4.3. Review of Markers Capturing LSC in AML Samples Regardless of Their CD34 Expression

In the following section, we review the most robust markers that have been described to enrich
LSC across all AML, regardless of their CD34 expression.

4.3.1. Absence of NKG2D Ligands

Recently, we have shown that LSC suppress NKG2DL expression on their surface to avoid
NK-mediated killing [6]. NKG2DL− but not corresponding NKG2DL+ AML cells from the same patients
were demonstrated to induce leukemia in PDX models as well as in in vivo syngeneic mouse leukemia
models, despite the fact that both subpopulations contained similar leukemia-specific mutations.

When compared to NKG2DL+ cells, NKG2DL− cells showed enriched PARP1 expression [6].
Importantly, suppression of PARP1 could induce NKG2DL expression on previously NKG2DL− LSC,
making them sensitive to NK-mediated recognition and killing. Consistently, treatment with PARP1
inhibitors followed by allogeneic NK cell transplantation could eradicate primary human LSC in PDX
assays in vivo. This is the first study to provide functional information on the relationship between
stem cells and NK cell immune evasion in AML.



Cancers 2020, 12, 3742 6 of 21

Table 1. Non-comprehensive list of human markers that can be found on LSC and their (potential) expression on the cell surface of other healthy blood cells. Highlighted
in grey are the markers expressed on the cell surface of LSC from both CD34-expressing and non-expressing acute myeloid leukemia (AML). In white: markers only
demonstrated to play roles in LSC from CD34 expressing AML. N.D: Not described/MPP: multipotential progenitor/MEP: megakaryocyte– erythroid progenitor).

Antigen Percentage of AML Patients
Expressing the Marker

Expression on
Non-LSC

Expression on
HSC

Expression on Other Healthy
Blood Cells Function in Healthy Conditions References

CLL-1 92 Yes No Monocytes, granulocytes,
CMP, GMP

Modulates the activation state of cells during
inflammation processes

Bakker et al. 2004 [57]
Jiang et al. 2018 [58]
Daga et al. 2019 [55]

Marshall et al. 2006 [29]

CD9 40 Yes No
Monocytes, macrophages,

granulocytes, DC, endothelial
cells, B, T, and NK cells

Cell migration, adhesion, activation,
Brosseau et al. 2018 [59]
Touzet et al. 2019 [47]

Paprocka et al. 2017 [46]

CD25 10–25 Yes No T cells and regulatory T cells Important role for T cells survival
Saito et al. 2010 [60]

Kageyama et al. 2018 [61]
Triplett et al. 2012 [31]

CD26 N.D Yes No T, B, NK, and myeloid cells T cell activation and proliferation,
cell adhesion, metabolism

Herrmann et al. 2020 [25]
Klemann et al. 2016 [62]

CD32 35 Yes No Monocytes, B and T cells Immune cell activation Saito et al. 2010 [60]
Anania et al. 2019 [30]

CD33 88 Yes Yes Myeloid cells, lymphocytes,
NK cells, MPP, GMP, MEP

Modulates inflammatory and immune responses by
reducing tyrosine kinase dependent pathways

Ehninger et al. 2014 [63]
Liu et al. 2007 [64]

Laszlo et al. 2014 [65]
Haubner et al. 2017 [24]

CD34 70 Yes Yes Mast cells, eosinophils,
neurons, fibrocytes

Regulates cell differentiation, adhesion, trafficking
and proliferation

Quek et al. 2016 [36]
Engelhardt et al. 2002 [16]

Nielsen et al. 2008 [17]

CD36 N.D Yes No Platelets, monocytes,
adipocytes Fatty acid uptake, angiogenesis, PRR recognition

Silverstein et al. 2009 [66]
Sachs et al. 2020 [67]

Herrmann et al. 2020 [25]

CD38 5–55
(FAB subtypes) Yes No

T and B cells, monocytes,
NK, granulocytes, platelets,

red blood cells
Regulates calcium levels and NAD+ homeostasis

Hogan et al. 2019 [38]
Sarry et al. 2011 [35]

Goardon et al. 2011 [40]
Keyhani et al. 2000 [68]

CD44 N.D Yes Yes
T cells, mesenchymal cells,

ectodermal cells,
neuron-like cells

Cell adhesion molecule, cellular signaling

Ponta et al. 2003 [69]
Jin et al. 2006 [70]

Bendall et al. 2000 [71]
Herrmann et al. 2020 [25]
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Table 1. Cont.

Antigen Percentage of AML Patients
Expressing the Marker

Expression on
Non-LSC

Expression on
HSC

Expression on Other Healthy
Blood Cells Function in Healthy Conditions References

CD45RA N.D Yes Yes T and B cells CD45 isoform, cell signaling

Kersten et al. 2016 [39]
Goardon et al. 2011 [40]

Sarry et al. 2011 [35]
Holmes 2006 [41]

CD47 N.D Yes Yes Various healthy cells “don’t eat me” signal on cells in order to prevent
inappropriate phagocytosis

Majeti et al. 2009 [34]
Jaiswal et al. 2009 [33]

Sick et al. 2012 [72]

CD56 Up to 20 Yes No DC, T and NK cells Linked to NK cytotoxicity
Van Acker et al. 2017 [73]

Sasca et al. 2019 [74]
Herrmann et al. 2020 [25]

CD69 N.D N.D No T cells T cell differentiation, tissue retention,
and metabolic reprogramming

Cibrián et al. 2017 [75]
Sachs et al. 2020 [67]

Herrmann et al. 2020 [25]

CD70 N.D Yes No DC T and B cell activation
Riether et al. 2015 [76]
Riether et al. 2017 [77]
Borst et al. 2005 [78]

CD90 40 (in elderly patients) Yes Yes Fibroblasts, neurons,
endothelial cells Maintenance of HSC, cell adhesion, matrix adhesion

Buccisano et al. 2004 [79]
Blair et al. 1997 [52]

Brendel et al. 1999 [50]
Kisselbach et al. 2009 [80]

Craig et al. 1993 [53]

CD93 N.D N.D No (only on
CD34-HSC) Myeloid and endothelial cells Mechanism in innate host defense

Bohlson et al. 2008 [81]
Iwasaki et al. 2015 [82]
Sumide et al. 2018 [83]

CD96 27 Yes Only 5% T and NK cells Inhibits NK and T cells
Fatlawi et al. 2016 [84]

Georgiev et al. 2018 [27]
Hosen et al. 2007 [85]

CD117 87 Yes Yes GMP Promotes HSC growth by binding the stem cell factor

Sperling et al. 1997 [86]
Geissler et al. 1991 [87]

Quek et al. 2016 [36]
Wells et al. 1996 [88]

CD123 97 Yes No Basophils, plasmacytoid DC Proliferation, survival, activation, and differentiation
by binding respective ligand

Yu et al. 2016 [88]
Guthridge et al. 1998 [32]

Bras et al. 2019 [45]
Haubner et al. 2019 [24]

Al-Mawali et al. 2017 [44]

CD200 N.D Yes Yes Myeloid, T and B cells Immunoregulatory molecule Ngwa et al. 2019 [89]
Ho et al. 2020 [90]
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Table 1. Cont.

Antigen Percentage of AML Patients
Expressing the Marker

Expression on
Non-LSC

Expression on
HSC

Expression on Other Healthy
Blood Cells Function in Healthy Conditions References

CD244 N.D Yes Yes GMP, HSPC, granulocytes,
monocytes, DC, NK and T cells Regulates NK, T, and DC activation state

Zhang et al. 2017 [91]
Haubner et al. 2019 [24]

Quek et al. 2016 [36]
Agresta et al. 2018 [92]

GPR56 N.D No Yes Central nervous system, T cells Frontal cortex development, NK inhibition, cell
migration, HSC generation

Pabst et al. 2016 [93]
Daga et al. 2019 [55]

Kartalaei et al. 2015 [94]
Huang et al. 2018 [95]

NKG2DL
(its absence
defines LSC)

Highly variable Yes No Not expressed on healthy cells
Upregulation of NG2DL on malignant or

virus-infected cells resulting in their clearance by
NK cells

Paczulla et al. 2019 [6]
Zingoni et al. 2018 [96]

TIM-3 98 Yes No
T cells, monocytes,
macrophages, DC,

and mast cells

Homeostasis-maintaining molecule of the
immune system

Jan et al. 2011 [97]
Haubner et al. 2019 [24]

Kikushige et al. 2010 [98]
Han et al. 2013 [28]
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4.3.2. GPR56

The GPR56 protein was first discovered in neural stem cells, where its mutant form associates
with brain malformations [99]. Subsequent studies demonstrated that GPR56 is also expressed on
HSC with long-term repopulation potential [94]. Interestingly, GPR56 expression was also detectable
on AML cells and specifically on LSC. Pabst and colleagues furthermore observed various level of
LSC activity in PDX assays for cells expressing different levels of CD34 and GPR56, with the double
positive population showing the highest in vivo leukemia-initiating capacity [93]. Inhibition of GPR56
in leukemic cells decreased BM and tissue infiltration capacity, indicating a functional role in AML LSC.
Mechanistically, GPR56 loss was associated with increased leukemic cell apoptosis and impaired ability
of LSC to adhere in the BM niche in a RhoA-dependent manner, while colony formation interestingly
remained unchanged [19,100,101]. Finally, targeting AML cells using a blocking anti-GPR56 antibody
demonstrated anti-leukemic activity and prolonged survival in PDX assays [101].

As observed with other LSC markers, high GPR56 expression has been associated with poor clinical
outcome in patients [93]. In fact, GPR56 is one of the genes that is part of the 17-genes stemness score [18],
and was retrieved as the most strongly expressed gene in NKG2DL− LSC [6]. The involvement of GPR56
in healthy HSC [19] might limit its relevance for AML treatment; however it remains a robust marker for
distinguishing LSC from non-LSC.

4.3.3. CD200

CD200, a glycoprotein from the immunoglobulin superfamily, represents the latest surface marker
described to enrich LSC in both CD34-expressing and non-expressing AML [90]. In healthy blood cells,
CD200 was reported to be expressed on HSPCS and other cells (Table 1) and to negatively regulate
memory T and NK cells function in AML [90,102,103]. In AML cases with >10% CD200+ among
CD45dim cells, leukemic engraftment was only observed from CD200+ cells, while for samples with
<10% CD200+ of CD45dim cells, CD200+ cells gave rise to multilineage grafts, indicating contamination
with healthy cells [90]. Moreover, CD200+ cells encompass both CD34+ and CD34− cells and robustly
enrich LSC in PDX assays from CD34 non-expressing NPM1 mutated AML [90]. Finally, transcriptomic
data confirmed a HSPC-like signature in CD200+ cells when compared to a myeloid-like signature in
CD200− cells.

5. Phenotypic LSC Evolution and Intra-Patient Heterogeneity

Over the last decade, many studies focused on the phenotypic and molecular characterization of LSC,
with the ultimate goal of developing tools for better prediction on disease aggressiveness and improving
therapy results by targeting LSC. The field has proven challenging due to the vast heterogeneity between
LSC within different AML as well as within one patient during the course of the disease (Figure 2).

Markers like TIM3 [97], CD25 [60], CD32 [60], CD96 [85], and CLL-1 [104] showed LSC enriching
abilities in PDX models in some, but not all AML cases. Furthermore, marker expression was noted to
sometimes change during the course of the disease even within the same AML. For example, CD25+ LSC
were shown to give rise to a progeny of CD25− LSC capable of leukemic engraftment in serial
transplantation assays in PDX models [61]. CD123 expression was furthermore shown to be highly
variable from diagnosis to relapse in AML samples [24,25,45,55]. A possible explanation for phenotypic
shifts is genetic evolution, e.g., by acquisition of novel mutations in the same leukemic (sub)clones or
partially transformed HSPC (e.g., carrying pre-leukemic mutations) (Figure 2).

This is consistent with the results documented by Becker and colleagues in comparative LSC analyses
from paired samples collected from patients at diagnosis or relapse. By using CD34/CD38 or CD32/CD38
gating strategies for CD34 expressing and respectively non-expressing AML, the authors identified
differences in LSC phenotype between these two time-points. For example, marker combinations that
failed to identify LSC at diagnosis could indeed retrieve subpopulations with LSC activity in the
corresponding relapse sample. On the molecular level, these newly engrafting subpopulations isolated
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from the relapse samples gained mutations in i.e., DNMT3A, CDKN2A, and differences highlighted by
high-dimensional mass cytometry assays are indicative of molecular evolution [7].
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Figure 2. AML evolution and LSC heterogeneity after therapy. At diagnosis, various leukemic (sub)clones
with corresponding LSC and non-LSC subpopulations may co-exist next to healthy and pre-malignant
HSPC. Sensitivity to treatment varies between such cells, resulting in the elimination of non-LSC and
potentially selection of (sub)clones and their corresponding LSC. Relapse may be driven by persistent
LSC from the main (sub)clone(s) or from LSC from minor subclones that at diagnosis remained
undetectable but then grow out to drive relapse. Furthermore, genetic evolution might occur conferring
growth advantages to LSC and perhaps changing their surface phenotype. Finally, new leukemic clones
can develop through acquisition of further mutations in the pre-malignant HSPC; disease "relapse"
is in this case driven by de novo leukemic clones.

Another major explanation for changes in the LSC phenotype within the same patient is (sub)clonal
shifts in response to treatments. As such, initially underrepresented leukemic (sub)clones, which are
hypoproliferative and show enhanced therapy resistance, may grow out under therapy, thereby
becoming increasingly detectable at later time points. In contrast, less resistant (sub)clones and their
LSC compartments may be preferentially eradicated by such therapies. Thus, LSC markers may be
conserved or not in diagnosis versus relapse samples, reflecting these shifts in clonal dynamics [25].
Various scenarios have been reported for different AML samples and markers at diagnostic compared
to relapse samples (e.g., TIM-3 [24], CLL-1 [55], GPR56: with similar [55] or higher expression [93]),
in line with the possibility that relapse-driving therapy-resistant minor clones and their LSC are already
present at diagnosis and then survive therapies to cause deadly relapse (Figure 2).

6. Association between the Genetic Background and the LSC Phenotype in AML

Several studies have linked genetic alterations with specific phenotypes. As mentioned above,
CD34 non-expressing AML often show NPM1 mutations [36,54], while this mutation has also been
linked to high expression of CD123 [45]. Furthermore, high CD47 surface expression was associated
with FLT3-ITD mutations [34], but not with FLT3-TKD, EVI1high, NRAS, KRAS, or CEBPA mutations,
while TIM3 expression was correlated with core binding factor (CBF)-translocations, t(8;21)(q22;q22),
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inv(16), or CEBPA [104]. Recently, GMP-like LSC were linked to mutations in CEBPA, DNMT3A,
and IDH1 mutations, whereas MPP-like LSC were identified in KRAS and NRAS mutated AML.
Finally, lymphoid-primed multipotent progenitor (LMPP)-like LSC were found in AML with TP53 or
ASXL1 [105].

AML with a monosomic karyotype, CBF AML, or AML with chromosomal inversion did not
show any specific phenotype, but were documented to express CD33 and CD123 at various level
like other AML subgroups [63]. CBF-AML commonly associated with low CD33 expression [106],
and the specific CBFB MYH11 AML showed enhanced NKG2DL expression [6]. Furthermore, strong
expression of CD34 and cKIT were observed in AML with inv(16) [107]. Additionally, the presence
of CD34+CD123+CD25+CD99+ subsets has been reported to be associated with FLT3 mutations in
NPM1-positive AML [108].

6.1. GPR56

GPR56 was identified on LSC of high-risk AML such as EVI1high AML [19], but also on LSC from
AML with mutations in NPM1 and FLT3 [102], RUNX1 or TP53 [94]. More recently, a higher frequency
of LSC phenotyped as GPR56highCD34low cells was noted in DNMT3A, NPM1, and FLT3-ITD triple
mutated AML, which also showed enrichment for the transcription factor hepatic leukemia factor
(HLF) [109]. HLF suppression reduced the LSC content and engraftment ability by slowing cell cycle
progression through HES1, a transcriptional repressor, and CDKN1C, a kinase inhibitor that negatively
regulates the cell cycle.

6.2. CD93

CD93 is a C-type lectin connected to cellular adhesion. Its expression may regulate niche interactions
and it was first described as LSC marker in chronic myeloid leukemia [110], but later shown to be
also expressed on MLL-rearranged (MLLr) AML [70], specifically on the CD34+CD38− compartment.
In contrast, healthy cells and leukemic cells from other AML subtypes did not significantly express
CD93. When compared to the CD93− counterpart MLLr AML cells, CD93+ cells were shown to
possess enhanced abilities to induce colonies in colony forming unit assays and leukemia in PDX
models. Mechanistically, CD93 expression regulates LSC differentiation, self-renewal capacity, and in vivo
progression by modulating the cell cycle inhibitor CDKN2B [71].

6.3. CD26

Recently, CD26, a multifunctional ectoenzyme expressed on T cells, was linked to AML bearing
FLT3-ITD mutations [25]. The majority of FLT3-ITD positive AML cases also showed higher CD25
levels compared to patients with wild-type FLT3. Interestingly, wild-type FLT3 AML cases did not
express CD26 on the surface, but in fact, harbor CD26− LSC. FLT3 ITD positive AML also displayed
higher expression of CD33 and CD123 compared to AML LSC with wild-type FLT3 [25], as also
documented by other research groups [24,64].

Collectively, genetic backgrounds and respective phenotypes are in parts linked in AML [105]
and may be therapeutically exploitable in some cases (e.g., CD93 targeting in MLLr AML [82] or CD26
in FLT3 ITD AML [25]). Specific phenotypes might be the result of mutated genes inducing certain
surface markers. Alternatively, phenotypes might reflect the cells of origin with different susceptibility
for selected mutations.

7. Therapeutic Targeting of LSC

CD33 belongs to the immunoglobulin superfamily and is a member of the sialoadhesin family of
cellular interaction molecules. It is expressed on healthy HSPC and myeloid lineage cells [24], with some
expression also detectable on peripheral blood lymphocytes and NK cells.

In patients with AML, CD33 is expressed on the majority of leukemic blasts and found on both
bulk AML and the LSC [63,111,112]. CD33 has been used as a target in AML, alone or in conjunction
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with CD123 [113–115]. Relapse was still observed in these patients, possibly due to escape mechanisms
such as absence or downregulation of CD33 expression in LSC [106,116]. Moreover, because of the
overlapping expression on healthy cells, targeted therapy against CD33 with the antibody drug
conjugate gemtuzumab ozogamicin (GO) showed several adverse events such as hepatotoxicity,
cardiotoxicity, hemorrhages, or infections [117–119] and was after first studies withdrawn from clinical
use. More recently, GO obtained re-approval for the use in specific clinical applications in patients
with AML [119,120].

CD47 is currently also studied as a therapeutical target in AML. Majeti and colleagues initially
showed that blockade of the CD47-SIRPα axis using a monoclonal CD47 antibody can induce
macrophage-mediated LSC killing and suppress in vivo leukemia development in experimental
models [34]. Another in vivo study demonstrated that LSC clearance by macrophage-mediated
phagocytosis is dependent on SIRPα signaling [121]. Using a SIRP-Fc fusion protein, the authors
showed that disruption of the CD47-SIRPα interaction enhanced phagocytosis, leading to impaired
leukemic engraftment of AML cells in NOD/SCID mice. Treatment with a humanized monoclonal
antibody against CD47 furthermore eradicated AML LSC, leading to long-term disease-free survival
in PDX assays [122]. This antibody has now entered clinical trials in patients with AML and solid
tumors. The significance of CD47 as a target in AML therapy was validated in further reports [123,124].
Recent clinical data from another phase 1B study indicates that a combination of vincristine and
magrolimab, a first-in-class antibody targeting CD47, may be effective in the treatment of AML and
MDS [125]. Lately, enhanced CD47 expression was linked to CD123 expression and shown to be
responsible for drug resistance in AML that could be overcome by treatment with the histone deacetylase
inhibitor Romidepsin [126]. However, phase 1 trials using monoclonal anti-CD47 antibodies were
terminated due to insufficient activity (CC-90002, NCT02641002) [127], life threatening side effects
(Ti-061, 2016-004372-22; Hu5F9-g4, NCT02678338), or anemia (due to CD47 expression on red blood
cells [128]). Results from other currently recruiting clinical trials are underway.

The transmembrane glycoprotein CD44, known to bind hyaluronan, selectins, and osteopontin,
displays a plethora of functions in healthy and diseased tissues [69] and has been targeted therapeutically
in AML before it was described as an LSC marker. Overall, CD44 shows higher expression in AML cells
compared to healthy HSC and displays several splice variants that are heterogeneously distributed
among AML cases. High expression of CD44-6v especially correlates with shorter survival in patients
with AML [71,129]. Treatment with CD44 antibodies was shown to inhibit proliferation and induce
differentiation and apoptosis in AML cells [130–133]. Later on, CD44 targeting was reported to also
eradicate AML LSC in PDX assays by impacting LSC trafficking to BM niche [70]. Future research
will show whether the therapeutic effect of anti-CD44 antibodies may be potentiated by combinatorial
application with other drugs [134].

Targeting CD123 has also been reported to show anti-leukemic effects in preclinical as well as
clinical studies. Jin et al., for example, demonstrated that the use of a neutralizing CD123 antibody
was able to inhibit leukemogenicity in PDX assays [135]. Ex vivo treatment of bulk AML or LSC with
a neutralizing-antibody or direct injection at different time points of this antibody in mice reduced
engraftment and improved survival in different animal models. This decrease is linked to a reduced
homing combined with an antibody-dependent cell-mediated cytotoxicity (ADCC) effect. On the
molecular level, CD123 blockade reduces proliferation and survival of in vitro cultured AML cells [135].
CD123 also helps clinicians to monitor disease outcome, in which CD34+CD38-CD123+ LSC levels
are higher in the non-complete remission group [136] and represents an interesting target in cancer
treatment (reviewed elsewhere [137]). Clinical trials targeting CD123 were initiated, but unfortunately
in several cases, suspended ahead of schedule (i.e., NCT02715011, NCT02113982, or Talacotuzumab,
e.g., due to serious adverse events). Interestingly, the single-agent flotetuzumab, an investigational
CD123 × CD3 bispecific DART protein, has shown evidence of clinical activity in a Phase 1 study of
relapsed/refractory (R/R) AML [138,139]. Further clinical trials using CD123 CAR T cells were initiated
(NCT02159495, NCT04230265) with so far promising results [140,141].
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TIM-3 and CLL-1 are additional surface proteins which make interesting targets, because they
are both absent on healthy HSCs (Table 1). Clinical trials with promising results are underway or
were performed with agents targeting these molecules (TIM-3, phase 1b clinical trial, NCT03066648;
CLL-1, [142]).

Finally, the tumor necrosis factor receptor and LSC marker CD70 may also serve as a potential
target molecule in AML. Transiently upregulated on immune cells upon activation, CD70 is otherwise
not expressed in normal tissues [143]. In AML, CD70 expression was reported to promote blast
stemness [77]. Treatment with cusatuzumab, a human αCD70 monoclonal antibody with enhanced
antibody-dependent cellular cytotoxicity activity, was recently shown to hold anti-leukemic activity
in in vitro and in vivo PDX assays. In a phase 1 study, cusatuzumab alone or in combination with
azacitidine showed pronounced efficacy in previously untreated AML patients or patients that are
unfit for intensive chemotherapy [144]. Further clinical phase 2 and 3 trials using these approaches
are underway.

8. Concluding Remarks

LSC and their biology gained great interest in the last decades, since it is now well accepted that
efficient targeting of this subpopulation is essential to achieve cure in patients with AML. Defining the
surface markers that reliably identify LSC is a critical goal, since it enables further investigations of
these subpopulations, monitoring of the clinical course, and the development of novel immunotherapy
strategies targeting surface antigens in LSC.

Next to their close molecular relationship to HSPC (Figure 1), the greatest challenge in targeting LSC
is their profound heterogeneity among patients as well as within the same patient (see Table 1 ‘Percentage
of AML Patients Expressing the Marker‘ and Figure 2). The establishment of marker combinations
may be required for both diagnostic [22,24,26,145,146] and therapeutic purposes (i.e., targeting
CD123/CD47 [126], CD33/TIM3 [24], CLL1/TIM3 [24], CCL1/CD56 [104], or CD33/CD123 [114]).
Selected genetic lesions may induce the expression of specific surface antigens (e.g., CD93 on MLL-r
AML LSC [82]), which may hold great promise, however, currently remains exceptional and only
applicable to rare AML subtypes.

Novel technical developments allowing high-throughput screening of low amounts of cells on
both transcriptome [18,25,147], proteome [147,148], and surface antigen level [25] may provide further
valuable insights into LSC surface antigens (e.g., identification of the fatty acid translocase CD36 and
the type 2 C-lectin receptor CD69 via single-cell RNA sequencing [67]).

Finally, although some surface markers sound appealing as AML targets (e.g., CD123 or CD47),
it still remains challenging to safely target them in patients, as observed by many trials still in a lagging
phase or stopped due to severe toxicities. Personalized approaches involving multi-antigen detection
and validations during disease evolution, or alternative strategies that e.g., induce antigen expression
to make LSC targetable for immunological therapies [6] may hold promise for efficient LSC targeting
in the future.
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